Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (199)

Search Parameters:
Keywords = excited state dynamics simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7320 KiB  
Article
A Comprehensive Evaluation of a Chalcone Derivative: Structural, Spectroscopic, Computational, Electrochemical, and Pharmacological Perspectives
by Rekha K. Hebasur, Varsha V. Koppal, Deepak A. Yaraguppi, Neelamma B. Gummagol, Raviraj Kusanur and Ninganagouda R. Patil
Photochem 2025, 5(3), 20; https://doi.org/10.3390/photochem5030020 - 30 Jul 2025
Viewed by 124
Abstract
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole [...] Read more.
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole moments provide insight into their resonance structures in both ground and excited states. Electrochemical analysis revealed a reversible redox process, indicating a favorable charge transport potential. HOMO and LUMO energies of the compound were computed via oxidation and reduction potential standards. 3NPEO exhibits optimal one-photon and two-photon absorption characteristics, validating its suitability for visible wavelength laser applications in photonic devices. Furthermore, molecular docking and dynamics simulations demonstrated strong interactions between 3NPEO and the progesterone receptor enzyme, supported by structure–activity relationship (SAR) analyses. In vitro cytotoxicity assays on the MDAMB-231 breast cancer cell line showed moderate tumor cell inhibitory activity. Apoptosis studies confirmed the induction of both early and late apoptosis. These findings suggest that 3NPEO holds promise as a potential anticancer agent targeting the progesterone receptor in breast cancer cells. Overall, the findings highlight the substantial influence of solvent polarity on the photophysical properties and the design of more effective and stable therapeutic agents. Full article
Show Figures

Figure 1

19 pages, 3060 KiB  
Article
Research on Damage Identification in Transmission Tower Structures Based on Cross-Correlation Function Amplitude Vector
by Qing Zhang, Xing Fu, Wenqiang Jiang and Hengdong Jin
Sensors 2025, 25(15), 4659; https://doi.org/10.3390/s25154659 - 27 Jul 2025
Viewed by 287
Abstract
Transmission towers constitute critical power infrastructure, yet structural damage may accumulate over their long-term service, underscoring the paramount importance of research on damage identification. This paper presents a cross-correlation function amplitude vector (CorV) method for damage localization based on time-domain response analysis. The [...] Read more.
Transmission towers constitute critical power infrastructure, yet structural damage may accumulate over their long-term service, underscoring the paramount importance of research on damage identification. This paper presents a cross-correlation function amplitude vector (CorV) method for damage localization based on time-domain response analysis. The approach involves calculating the CorV of structural members before and after damage using dynamic response data, employing the CorV assurance criterion (CVAC) to quantify changes in CorV, and introducing first-order differencing for damage localization. Taking an actual transmission tower in Jiangmen as the engineering backdrop, a finite element model is established. Damage conditions are simulated by reducing the stiffness of specific members, and parameter analyses are conducted to validate the proposed method. Furthermore, experimental validation in a lab is performed to provide additional confirmation. The results indicate that the CVAC value of the damaged structure is significantly lower than that in the healthy state. By analyzing the relative changes in the components of CorV, the damage location can be accurately determined. Notably, this method only requires acquiring the time-domain response signals of the transmission tower under random excitation to detect both the existence and location of damage. Consequently, it is well suited for structural health monitoring of transmission towers under environmental excitation. Full article
(This article belongs to the Special Issue Sensors for Non-Destructive Testing and Structural Health Monitoring)
Show Figures

Figure 1

13 pages, 3937 KiB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Viewed by 186
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a σ-molecular orbital localized on the elongated O–H bond. Full article
Show Figures

Figure 1

27 pages, 9584 KiB  
Article
Dynamic Response of a Floating Dual Vertical-Axis Tidal Turbine System with Taut and Catenary Mooring Under Extreme Environmental Conditions in Non-Operating Mode
by Yunjun Lee, Jinsoon Park and Woo Chul Chung
J. Mar. Sci. Eng. 2025, 13(7), 1315; https://doi.org/10.3390/jmse13071315 - 8 Jul 2025
Viewed by 235
Abstract
This study analyzes the dynamic response of a floating dual vertical-axis tidal turbine platform under extreme environmental loads, focusing on two different mooring systems as follows: taut and catenary. The analysis assumes a non-operational turbine state where power generation is stopped, and the [...] Read more.
This study analyzes the dynamic response of a floating dual vertical-axis tidal turbine platform under extreme environmental loads, focusing on two different mooring systems as follows: taut and catenary. The analysis assumes a non-operational turbine state where power generation is stopped, and the vertical turbines are lifted for structural protection. Using time-domain simulations via OrcaFlex 11.4, the floating platform’s motion and mooring line effective tensions are evaluated under high waves, strong wind, and current loads. The results reveal that sway and heave motions are significantly influenced by wave excitation, with the catenary system exhibiting larger responses due to mooring system features, while the taut system experiences higher mooring effective tension but shows more restrained motion. Notably, in the roll direction, both systems exhibit peak frequencies unrelated to the wave spectrum, attributed instead to resonance with the system’s natural frequencies—0.12438 Hz for taut and 0.07332 Hz for catenary. Additionally, the failure scenario of ML02 (Mooring Line 02) and the application of dynamic power cables to the floating platform are analyzed. The results demonstrate that under non-operational and extreme load conditions, mooring system type plays a main role in determining platform stability and structural safety. This comparative analysis offers valuable insights for selecting and designing mooring configurations optimized for reliability in extreme environmental conditions. Full article
(This article belongs to the Special Issue Numerical Analysis and Modeling of Floating Structures)
Show Figures

Figure 1

22 pages, 5129 KiB  
Article
A Dynamic Analysis of a Cantilever Piezoelectric Vibration Energy Harvester with Maximized Electric Polarization Due to the Optimal Shape of the Thickness for First Eigen Frequency
by Paulius Skėrys and Rimvydas Gaidys
Appl. Sci. 2025, 15(13), 7525; https://doi.org/10.3390/app15137525 - 4 Jul 2025
Viewed by 279
Abstract
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to [...] Read more.
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to amplify axial strain within the piezoelectric layers, thereby increasing electric polarization and maximizing the conversion efficiency of mechanical vibrations into electrical energy. The steady-state response under harmonic base excitation at resonance was modeled to evaluate the harvester’s dynamic behavior against uniform-thickness counterparts. Results show that the optimized beam achieves significantly higher output voltage and energy harvesting efficiency. Simulations reveal effective strain concentration in regions of high piezoelectric sensitivity, enhancing power generation under resonant conditions. Two independent experimental setups were employed for empirical validation: a non-contact laser vibrometry system (Polytec 3D) and a first resonant base excitation setup. Eigenfrequencies matched within 5% using a Polytec multipath interferometry system, and constant excitation tests showed approximately 30% higher in optimal shapes electrical potential value generation. The outcome of this study highlights the efficacy of geometric tailoring—specifically, non-linear thickness shaping—as a key strategy in achieving enhanced energy output from piezoelectric harvesters operating at their fundamental frequency. This work establishes a practical route for optimizing unimorph structures in real-world applications requiring efficient energy capture from low-frequency ambient vibrations. Full article
Show Figures

Figure 1

30 pages, 7377 KiB  
Article
Gas–Solid Coupling Dynamic Modeling and Transverse Vibration Suppression for Ultra-High-Speed Elevator
by Jiacheng Jiang, Chengjin Qin, Pengcheng Xia and Chengliang Liu
Actuators 2025, 14(7), 319; https://doi.org/10.3390/act14070319 - 25 Jun 2025
Viewed by 226
Abstract
When in operation, ultra-high-speed elevators encounter transverse vibrations due to uneven guide rails and airflow disturbances, which can greatly undermine passenger comfort. To alleviate these adverse effects and boost passenger comfort, a gas–solid coupling dynamic model for ultra-high-speed elevator cars is constructed, and [...] Read more.
When in operation, ultra-high-speed elevators encounter transverse vibrations due to uneven guide rails and airflow disturbances, which can greatly undermine passenger comfort. To alleviate these adverse effects and boost passenger comfort, a gas–solid coupling dynamic model for ultra-high-speed elevator cars is constructed, and a vibration suppression approach is proposed. To start with, the flow field model of the elevator car-shaft under different motion states is simulated, and the calculation formula of air excitation is derived. Next, by incorporating the flow field excitation into the four degrees of freedom dynamic model of the separation between the car and the frame, a transverse vibration model of the elevator car based on gas–solid coupling is established. Finally, an LQR controller is used to suppress elevator transverse vibration, and a multi-objective optimization algorithm is applied to optimize the parameters of the weight matrix to obtain the optimal solution of the LQR controller. A set of controllers with moderate control cost and system performance meeting the requirements was selected, and the effectiveness of the controller was verified. Compared with other methods, the proposed LQR-based method has greater advantages in suppressing the transverse vibration of ultra-high-speed elevators. This work provides an effective solution for enhancing the ride comfort of ultra-high-speed elevators and holds potential for application in the vibration control of high-speed transportation systems. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

27 pages, 3401 KiB  
Article
Human–Seat–Vehicle Multibody Nonlinear Model of Biomechanical Response in Vehicle Vibration Environment
by Margarita Prokopovič, Kristina Čižiūnienė, Jonas Matijošius, Marijonas Bogdevičius and Edgar Sokolovskij
Machines 2025, 13(7), 547; https://doi.org/10.3390/machines13070547 - 24 Jun 2025
Viewed by 258
Abstract
Especially in real-world circumstances with uneven road surfaces and impulsive shocks, nonlinear dynamic effects in vehicle systems can greatly skew biometric data utilized to track passenger and driver physiological states. By creating a thorough multibody human–seat–chassis model, this work tackles the effect of [...] Read more.
Especially in real-world circumstances with uneven road surfaces and impulsive shocks, nonlinear dynamic effects in vehicle systems can greatly skew biometric data utilized to track passenger and driver physiological states. By creating a thorough multibody human–seat–chassis model, this work tackles the effect of vehicle-induced vibrations on the accuracy and dependability of biometric measures. The model includes external excitation from road-induced inputs, nonlinear damping between structural linkages, and vertical and angular degrees of freedom in the head–neck system. Motion equations are derived using a second-order Lagrangian method; simulations are run using representative values of a typical car and human body segments. Results show that higher vehicle speed generates more vibrational energy input, which especially in the head and torso enhances vertical and angular accelerations. Modal studies, on the other hand, show that while resonant frequencies stay constant, speed causes a considerable rise in amplitude and frequency dispersion. At speeds ≥ 50 km/h, RMS and VDV values exceed ISO 2631 comfort standards in the body and head. The results highlight the need to include vibration-optimized suspension systems and ergonomic design approaches to safeguard sensitive body areas and preserve biometric data integrity. This study helps to increase comfort and safety in both traditional and autonomous car uses. Full article
Show Figures

Figure 1

18 pages, 33781 KiB  
Article
New Experimental Single-Axis Excitation Set-Up for Multi-Axial Random Fatigue Assessments
by Luca Campello, Vivien Denis, Raffaella Sesana, Cristiana Delprete and Roger Serra
Machines 2025, 13(7), 539; https://doi.org/10.3390/machines13070539 - 20 Jun 2025
Viewed by 240
Abstract
Fatigue failure, generated by local multi-axial random state stress, frequently occurs in many engineering fields. Therefore, it is customary to perform experimental vibration tests for a structural durability assessment. Over the years, a number of testing methodologies, which differ in terms of the [...] Read more.
Fatigue failure, generated by local multi-axial random state stress, frequently occurs in many engineering fields. Therefore, it is customary to perform experimental vibration tests for a structural durability assessment. Over the years, a number of testing methodologies, which differ in terms of the testing machines, specimen geometry, and type of excitation, have been proposed. The aim of this paper is to describe a new testing procedure for random multi-axial fatigue testing. In particular, the paper presents the experimental set-up, the testing procedure, and the data analysis procedure to obtain the multi-axial random fatigue life estimation. The originality of the proposed methodology consists in the experimental set-up, which allows performing multi-axial fatigue tests with different normal-to-shear stress ratios, by choosing the proper frequency range, using a single-axis exciter. The system is composed of a special designed specimen, clamped on a uni-axial shaker. On the specimen tip, a T-shaped mass is placed, which generates a tunable multi-axial stress state. Furthermore, by means of a finite element model, the system dynamic response and the stress on the notched specimen section are estimated. The model is validated through a harmonic acceleration base test. The experimental tests validate the numerical simulations and confirm the presence of bending–torsion coupled loading. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

27 pages, 4277 KiB  
Article
Probability Density Evolution and Reliability Analysis of Gear Transmission Systems Based on the Path Integration Method
by Hongchuan Cheng, Zhaoyang Shi, Guilong Fu, Yu Cui, Zhiwu Shang and Xingbao Huang
Lubricants 2025, 13(6), 275; https://doi.org/10.3390/lubricants13060275 - 19 Jun 2025
Viewed by 454
Abstract
Aimed at dealing with the problems of high reliability solution cost and low solution accuracy under random excitation, especially Gaussian white noise excitation, this paper proposes a probability density evolution and reliability analysis method for nonlinear gear transmission systems under Gaussian white noise [...] Read more.
Aimed at dealing with the problems of high reliability solution cost and low solution accuracy under random excitation, especially Gaussian white noise excitation, this paper proposes a probability density evolution and reliability analysis method for nonlinear gear transmission systems under Gaussian white noise excitation based on the path integration method. This method constructs an efficient probability density evolution framework by combining the path integration method, the Chapman–Kolmogorov equation, and the Laplace asymptotic expansion method. Based on Rice’s theory and combined with the adaptive Gauss–Legendre integration method, the transient and cumulative reliability of the system are path integration method calculated. The research results show that in the periodic response state, Gaussian white noise leads to the diffusion of probability density and peak attenuation, and the system reliability presents a two-stage attenuation characteristic. In the chaotic response state, the intrinsic dynamic instability of the system dominates the evolution of the probability density, and the reliability decreases more sharply. Verified by Monte Carlo simulation, the method proposed in this paper significantly outperforms the traditional methods in both computational efficiency and accuracy. The research reveals the coupling effect of Gaussian white noise random excitation and nonlinear dynamics, clarifies the differences in failure mechanisms of gear systems in periodic and chaotic states, and provides a theoretical basis for the dynamic reliability design and life prediction of nonlinear gear transmission systems. Full article
(This article belongs to the Special Issue Nonlinear Dynamics of Frictional Systems)
Show Figures

Figure 1

19 pages, 2216 KiB  
Article
Research on Time Constant Test of Thermocouples Based on QNN-PID Controller
by Chenyang Xu, Xiaojian Hao, Pan Pei, Tong Wei and Shenxiang Feng
Sensors 2025, 25(12), 3819; https://doi.org/10.3390/s25123819 - 19 Jun 2025
Viewed by 404
Abstract
The aim of this study is to solve the problem of it being difficult to obtain quantitative step signals when testing the time constant of thermocouples using the laser excitation method, thereby restricting the accuracy and repeatability of the test of the time [...] Read more.
The aim of this study is to solve the problem of it being difficult to obtain quantitative step signals when testing the time constant of thermocouples using the laser excitation method, thereby restricting the accuracy and repeatability of the test of the time constant of thermocouples. This paper designs a thermocouple time constant testing system in which laser power can be adjusted in real time. The thermocouple to be tested and a colorimetric thermometer with a faster response speed are placed on a pair of conjugate focal points of an elliptic mirror. By taking advantage of the aberration-free imaging characteristic of the conjugate focus, the temperature measured by the colorimetric thermometer is taken as the true value on the surface of the thermocouple so as to adjust the output power of the laser in real time, make the output curve of the thermocouple reach a steady state, and calculate the time constant of the thermocouple. This paper simulates and analyzes the effects of adjusting PID parameters using quantum neural networks. By comparing this with the method of optimizing PID parameters with BP neural networks, the superiority of the designed QNN-PID controller is proven. The designed controller was applied to the test system, and the dynamic response curves of the thermocouple reaching equilibrium at the expected temperatures of 800 °C, 900 °C, 1000 °C, 1050 °C, and 1100 °C were obtained. Through calculation, it was obtained that the time constants of the tested thermocouples were all within 150 ms, proving that this system can be used for the time constant test of rapid thermocouples. This also provides a basis for the selection of thermocouples in other subsequent temperature tests. Meanwhile, repeated experiments were conducted on the thermocouple test system at 1000 °C, once again verifying the feasibility of the test system and the repeatability of the experiment. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 2735 KiB  
Article
State-Space Method-Based Frame Dynamics Analysis of the Six-Rotor Unmanned Aerial Vehicles
by Ruijing Liu, Yu Liu and Yi Zhang
World Electr. Veh. J. 2025, 16(6), 331; https://doi.org/10.3390/wevj16060331 - 15 Jun 2025
Viewed by 442
Abstract
As a key component of unmanned aerial vehicles (UAVs), the vibrational characteristics of the airframe critically impact flight safety and imaging quality. These vibrations, often generated by motor-propeller systems or aerodynamic forces, can lead to structural fatigue during flight or cause image blur [...] Read more.
As a key component of unmanned aerial vehicles (UAVs), the vibrational characteristics of the airframe critically impact flight safety and imaging quality. These vibrations, often generated by motor-propeller systems or aerodynamic forces, can lead to structural fatigue during flight or cause image blur in payloads like cameras. To analyze the dynamic performance of the six-rotor UAV frame, this paper develops a state-space model based on linear state-space theory, structural dynamics principles, and modal information. The Direct Current (DC) gain method is employed to reduce the number of modes, followed by frequency response analysis on the reduced modes to derive the frequency–domain transfer function between the excitation input and response output points. The contribution of each mode to the overall frequency response is evaluated, and the frequency response curve is subsequently plotted. The results indicate that the model achieves a 73-fold speed improvement with an error rate of less than 13%, thereby validating the accuracy of the six-rotor UAV frame state-space model. Furthermore, the computational efficiency has been significantly enhanced, meeting the requirements for vibration simulation analysis. The dynamic analysis approach grounded in state-space theory offers a novel methodology for investigating the dynamic performance of complex structures, enabling efficient and precise analysis of frequency response characteristics in complex linear systems such as electric vehicle (EV) battery modules and motor systems. By treating EV components as dynamic systems with coupled mechanical–electrical interactions, this method contributes to the reliability and safety of sustainable transportation systems, addressing vibration challenges in both UAVs and EVs through unified modeling principles. Full article
Show Figures

Figure 1

20 pages, 719 KiB  
Article
Entanglement Dynamics of Two Giant Atoms Embedded in a One-Dimensional Photonic Lattice with a Synthetic Gauge Field
by Vassilios Yannopapas
Photonics 2025, 12(6), 612; https://doi.org/10.3390/photonics12060612 - 14 Jun 2025
Viewed by 485
Abstract
We investigate the entanglement dynamics of two giant atoms coupled to a one-dimensional photonic lattice with synthetic chirality. The atoms are connected to multiple lattice sites in a braided configuration and interact with a structured photonic reservoir featuring direction-dependent hopping phases. By tuning [...] Read more.
We investigate the entanglement dynamics of two giant atoms coupled to a one-dimensional photonic lattice with synthetic chirality. The atoms are connected to multiple lattice sites in a braided configuration and interact with a structured photonic reservoir featuring direction-dependent hopping phases. By tuning the atomic detuning and the synthetic gauge phase, we identify distinct dynamical regimes characterized by decoherence-free population exchange, damped oscillations, long-lived revivals, and excitation trapping. Using a combination of time-domain simulations and resolvent-based analysis, we show how interference and band structure effects lead to the emergence of bound states, quasi-bound states, and phase-dependent entanglement dynamics. We compare the initial states with localized and delocalized atomic excitations, demonstrating that pre-existing entanglement can enhance the robustness against decoherence or accelerate its loss, depending on the system parameters. These results highlight the utility of synthetic photonic lattices and nonlocal emitter configurations in tailoring quantum coherence, entanglement, and information flows in structured environments. Full article
(This article belongs to the Special Issue Advanced Research in Quantum Optics)
Show Figures

Figure 1

21 pages, 6108 KiB  
Article
Torsional Vibration Suppression in Multi-Condition Electric Propulsion Systems Through Harmonic Current Modulation
by Hanjie Jia, Guanghong Hu, Xiangyang Xu, Dong Liang and Changzhao Liu
Actuators 2025, 14(6), 283; https://doi.org/10.3390/act14060283 - 9 Jun 2025
Viewed by 623
Abstract
Electric helicopters represent a pivotal component in the advancement of urban air mobility (UAM), with considerable potential for future development. The electric propulsion system (EPS) is the core component of these systems. However, the inherent complexities of electromechanical coupling can induce excessive torsional [...] Read more.
Electric helicopters represent a pivotal component in the advancement of urban air mobility (UAM), with considerable potential for future development. The electric propulsion system (EPS) is the core component of these systems. However, the inherent complexities of electromechanical coupling can induce excessive torsional vibrations, potentially compromising operational comfort and even threatening flight safety. This study proposes an active torsional vibration suppression method for EPS that explicitly incorporates electromechanical coupling characteristics. A nonlinear dynamic model has been developed, accounting for time-varying meshing stiffness, meshing errors, and multi-harmonic motor excitation. The motor and transmission system models are coupled using torsional angular displacement. A harmonic current command generation algorithm is then formulated, based on the analysis of harmonic torque-to-current transmission characteristics. To achieve dynamic tracking and the real-time compensation of high-order harmonic currents under non-steady-state conditions, a high-order resonant controller with frequency-domain decoupling characteristics was designed. The efficacy of the proposed harmonic current modulation is verified through simulations, showing an effective reduction of torsional vibrations in the EPS under both steady-state and non-steady-state conditions. It decreases the peak dynamic meshing force by 4.17% and the sixth harmonic amplitude by 88.15%, while mitigating overshoot and accelerating vibration attenuation during speed regulation. The proposed harmonic current modulation method provides a practical solution for mitigating torsional vibrations in electric propulsion systems, enhancing the comfort, reliability, and safety of electric helicopters. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

9 pages, 9851 KiB  
Article
Manipulation of Topological Edge States and Realization of Zero-Dimensional Higher-Order Topological Point States
by Jiahui Ren, Wenjing Ding, Sihan Wang and Shiwei Tang
Micromachines 2025, 16(6), 686; https://doi.org/10.3390/mi16060686 - 7 Jun 2025
Viewed by 474
Abstract
Topological photonics has provided revolutionary ideas for the design of next-generation photonic devices due to its unique light transmission properties. This paper proposes a honeycomb photonic crystal structure based on a mirror-symmetric interface and numerically simulates the precise manipulation of topological edge states [...] Read more.
Topological photonics has provided revolutionary ideas for the design of next-generation photonic devices due to its unique light transmission properties. This paper proposes a honeycomb photonic crystal structure based on a mirror-symmetric interface and numerically simulates the precise manipulation of topological edge states and the robust excitation of high-order topological corner states in this structure. Specifically, two honeycomb photonic crystals with non-trivial topological properties form an interface through mirror-symmetric stitching. Continuous adjustment of the spacing between their coupling pillars can induce the closure and reopening of topological edge state energy bands, accompanied by significant band inversion, revealing the dynamic process of topological phase transitions. Furthermore, zero-dimensional high-order topological corner states are observed at the junction of boundaries with different topological properties. Their localized field strengths are strictly confined and exhibit strong robustness against structural defects. This study not only provides a new mechanism for the local symmetry manipulation of topological edge states but also lays a foundation for the design of high-order topological photonic crystals and the practical application of topological photonic devices. Full article
(This article belongs to the Special Issue Novel Electromagnetic and Acoustic Devices)
Show Figures

Figure 1

21 pages, 2362 KiB  
Article
Non-Markovian Dynamics of Giant Atoms Embedded in an One-Dimensional Photonic Lattice with Synthetic Chirality
by Vassilios Yannopapas
Photonics 2025, 12(6), 527; https://doi.org/10.3390/photonics12060527 - 22 May 2025
Cited by 1 | Viewed by 412
Abstract
In this paper we investigate the non-Markovian dynamics of a giant atom coupled to a one-dimensional photonic lattice with synthetic gauge fields. By engineering a complex-valued hopping amplitude, we break reciprocity and explore how chiral propagation and phase-induced interference affect spontaneous emission, bound-state [...] Read more.
In this paper we investigate the non-Markovian dynamics of a giant atom coupled to a one-dimensional photonic lattice with synthetic gauge fields. By engineering a complex-valued hopping amplitude, we break reciprocity and explore how chiral propagation and phase-induced interference affect spontaneous emission, bound-state formation, and atom–field entanglement. The giant atom interacts with the lattice at multiple, spatially separated sites, leading to rich interference effects and decoherence-free subspaces. We derive an exact expression for the self-energy and perform real-time Schrödinger simulations in the single-excitation subspace, for the atomic population, von Neumann entropy, field localization, and asymmetry in emission. Our results show that the hopping phase ϕ governs not only the directionality of emitted photons but also the degree of atom–bath entanglement and photon localization. Remarkably, we observe robust bound states inside the photonic band and directional asymmetry, due to interference from spatially separated coupling points. These findings provide a basis for engineering non-reciprocal, robust, and entangled light–matter interactions in structured photonic systems. Full article
(This article belongs to the Special Issue Advanced Research in Quantum Optics)
Show Figures

Figure 1

Back to TopTop