Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (487)

Search Parameters:
Keywords = etching condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4384 KB  
Article
Fault Diagnosis and Health Monitoring Method for Semiconductor Manufacturing Equipment Based on Deep Learning and Subspace Transfer
by Peizhu Chen, Zhongze Liu, Junxi Han, Yi Dai, Zhifeng Wang and Zhuyun Chen
Machines 2026, 14(2), 176; https://doi.org/10.3390/machines14020176 - 3 Feb 2026
Viewed by 91
Abstract
Semiconductor manufacturing equipment such as vacuum pumps, wafer handling mechanisms, etching machines, and deposition systems operates for a long time under high vacuum, high temperature, strong electromagnetic, and high-precision continuous production environments. Its reliability is directly related to the yield and stability of [...] Read more.
Semiconductor manufacturing equipment such as vacuum pumps, wafer handling mechanisms, etching machines, and deposition systems operates for a long time under high vacuum, high temperature, strong electromagnetic, and high-precision continuous production environments. Its reliability is directly related to the yield and stability of the production line. During equipment operation, the fault signals are often weak, the noise is strong, and the working conditions are variable, so traditional methods are difficult to achieve high-precision recognition. To solve this problem, this paper proposes a fault diagnosis and health monitoring method for semiconductor manufacturing equipment based on deep learning and subspace transfer. Firstly, considering the cyclostationary characteristics of the operating signals of key equipment, the cyclic spectral analysis technology is used to obtain the cyclic spectral coherence map, which effectively reveals the feature differences under different health states. Then, a deep fault diagnosis model based on the convolutional neural network (CNN) is constructed to extract deep feature representations. Furthermore, the subspace transfer learning technology is introduced, and group normalization and correlation alignment unsupervised adaptation layers are designed to achieve automatic alignment and enhancement of the statistical characteristics of deep features between the source domain and the target domain, which effectively improves the generalization and adaptability of the model. Finally, simulation experiments based on the public bearing dataset verify that the proposed method has strong feature representation ability and high classification accuracy under different working conditions and different loads. Because the key components and experimental scenarios of semiconductor manufacturing equipment have similar signal characteristics, this method can be directly transferred to the early fault diagnosis and health monitoring of semiconductor production line equipment, which has important engineering application value. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

21 pages, 5441 KB  
Article
The Role of Plasma-Emitted Photons in Plasma-Catalytic CO2 Splitting over TiO2 Nanotube-Based Electrodes
by Palmarita Demoro, Nima Pourali, Francesco Pio Abramo, Christine Vantomme, Evgeny Rebrov, Gabriele Centi, Siglinda Perathoner, Sammy Verbruggen, Annemie Bogaerts and Salvatore Abate
Catalysts 2026, 16(2), 137; https://doi.org/10.3390/catal16020137 - 2 Feb 2026
Viewed by 192
Abstract
The plasma-catalytic conversion of CO2 is a promising route toward sustainable fuel and chemical production under mild operating conditions. However, many aspects still need to be better understood to improve performance and better understand the catalyst-plasma synergies. Among them, one aspect concerns [...] Read more.
The plasma-catalytic conversion of CO2 is a promising route toward sustainable fuel and chemical production under mild operating conditions. However, many aspects still need to be better understood to improve performance and better understand the catalyst-plasma synergies. Among them, one aspect concerns understanding whether photons emitted by plasma discharges could induce changes in the catalyst, thereby promoting interaction between plasma species and the catalyst. This question was addressed by investigating the CO2 splitting reaction in a planar dielectric barrier discharge (pDBD) reactor using titania-based catalysts that simultaneously act as discharge electrodes. Four systems were examined feeding pure CO2 at different flow rates and applied voltage: bare titanium gauze, anodically formed TiO2 nanotubes (TiNT), TiNT decorated with Ag–Au nanoparticles (TiNTAgAu), and TiNT supporting Ag–Au nanoparticles coated with polyaniline (TiNTAgAu/PANI). The TiNTAgAu exhibited the highest CO2 conversion (35% at 10 mL min−1 and 5.45 kV) and the most intense optical emission, even in the absence of external light irradiation, suggesting that the improvement is primarily attributed to plasma–nanoparticle interactions and self-induced localized surface plasmon resonance (si-LSPR) rather than conventional photocatalytic pathways. SEM analyses indicated severe plasma-induced degradation of TiNT and TiNTAgAu surfaces, leading to performance decay over time. In contrast, the TiNTAgAu/PANI catalyst retained structural integrity, with the polymeric coating mitigating plasma etching while maintaining competitive efficiency. There is thus a complex behavior with catalytic performance governed by nanostructure stability, plasmonic enhancement, and the interfacial protection. The results demonstrate how integrating plasmonic nanoparticles and conductive polymers can enable the rational design of durable and efficient plasma-photocatalysts for CO2 valorization and other plasma-assisted catalytic processes. Full article
Show Figures

Graphical abstract

27 pages, 5961 KB  
Article
Experimental Study of the Effect of Surface Texture in Sliding Contacts Using Infrared Thermography
by Milan Omasta, Tomáš Knoth, Petr Šperka, Michal Hajžman, Ivan Křupka, Pavel Polach and Martin Hartl
Lubricants 2026, 14(2), 64; https://doi.org/10.3390/lubricants14020064 - 31 Jan 2026
Viewed by 134
Abstract
This study investigates the influence of surface texturing on temperature distribution in lubricated sliding contacts using infrared thermography. The work addresses the broader challenge of understanding thermal effects in conformal hydrodynamic contacts, where localized heating and viscosity variations can significantly affect tribological performance. [...] Read more.
This study investigates the influence of surface texturing on temperature distribution in lubricated sliding contacts using infrared thermography. The work addresses the broader challenge of understanding thermal effects in conformal hydrodynamic contacts, where localized heating and viscosity variations can significantly affect tribological performance. A pin-on-disc configuration was employed, featuring steel pins with laser-etched micro-dimples that slid against a sapphire disc, allowing for thermal imaging of the contact zone. A dual-bandpass filter infrared thermography technique was developed and rigorously calibrated to distinguish between the temperatures of the steel surface and the lubricant film. Friction measurements and laser-induced fluorescence were used in parallel to assess contact conditions and the behavior of the lubricant film. The results show that surface textures can alter local frictional heating and contribute to non-uniform temperature distributions, particularly in parallel contact geometries. Lubricant temperature was consistently higher than the surface temperature, highlighting the role of shear heating within the fluid film. However, within the tested parameter range, no unambiguous viscosity-wedge signature was identified beyond the dominant temperature-driven viscosity reduction captured by the in situ correction. The method provides a novel means of experimentally resolving temperature fields in sliding textured contacts, offering a valuable foundation for validating thermo-hydrodynamic models in lubricated tribological systems. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology, 2nd Edition)
Show Figures

Figure 1

15 pages, 2105 KB  
Article
Optimization of Slurry Preparation and Sintering Atmosphere for High-Density, Plasma-Resistant Alumina Ceramics
by Seung Joon Yoo, Ji Su Kim, Jung Hoon Choi, Jin Ho Kim, Kyu Sung Han and Ung Soo Kim
Ceramics 2026, 9(2), 14; https://doi.org/10.3390/ceramics9020014 - 26 Jan 2026
Viewed by 195
Abstract
Alumina ceramics used in semiconductor plasma environments require high densification, microstructural homogeneity, and stable performance under increasingly aggressive processing conditions. However, systematic studies linking slurry processing parameters to the plasma resistance of alumina ceramics remain limited. In this study, the effects of slurry [...] Read more.
Alumina ceramics used in semiconductor plasma environments require high densification, microstructural homogeneity, and stable performance under increasingly aggressive processing conditions. However, systematic studies linking slurry processing parameters to the plasma resistance of alumina ceramics remain limited. In this study, the effects of slurry preparation parameters—specifically milling and aging—and sintering atmosphere on the densification, mechanical strength, and plasma etching resistance of slip-cast alumina ceramics were systematically investigated. Optimal dispersion stability was achieved under 12 h milling and 12–24 h aging conditions, resulting in homogenized green body packing and a high relative sintered density exceeding 99%. Mechanical strength and plasma resistance were strongly influenced by slurry aging and sintering atmosphere. Specimens aged for 48 h and sintered under a low oxygen partial pressure (N2 at 1.0 L/min) exhibited the highest flexural strength and significantly improved resistance to SF6/Ar plasma etching, with reduced etch depth and suppressed surface roughening. These results demonstrate that coordinated slurry processing and sintering atmosphere control is an effective strategy for designing high-reliability, plasma-resistant alumina ceramics for high-demand semiconductor manufacturing environments. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

24 pages, 9461 KB  
Article
A Pore-Scale Experimental Study on the Gas-Trapping Mechanisms of Reservoirs Under Water Encroachment
by Qijun Huang, Junqing Lu, Yuqin Zhao, Xiangyu Zhang, Yinman Ma and Junjian Li
Processes 2026, 14(3), 397; https://doi.org/10.3390/pr14030397 - 23 Jan 2026
Viewed by 172
Abstract
Low gas recovery in the Sebei-2 gas field is linked to residual gas trapping under water encroachment. This study investigates the pore-scale trapping behaviour of residual gas in three types of layer: conventional, low-resistivity, and low-acoustic high-resistivity. High-fidelity pore structures were reconstructed by [...] Read more.
Low gas recovery in the Sebei-2 gas field is linked to residual gas trapping under water encroachment. This study investigates the pore-scale trapping behaviour of residual gas in three types of layer: conventional, low-resistivity, and low-acoustic high-resistivity. High-fidelity pore structures were reconstructed by integrating mercury intrusion porosimetry with thin-section data and microfluidic models were designed using the Quartet Structure Generation Set method and fabricated by wet etching. Visualized displacement experiments were performed under different wettability conditions and water invasion rates, and image analysis was used to quantify the distribution of trapped gas. Results show that the low-resistivity gas layer exhibits the highest residual gas saturation (30.57%), followed by the low-acoustic high-resistivity gas layer (20.20%), while the conventional gas layer has the lowest (15.29%). These values correspond to apparent pore-scale gas recoveries of about 48.95%, 65.01%, and 72.14% for the low-resistivity, low-acoustic high-resistivity and conventional gas layers, respectively. In hydrophilic systems, wetting-film thickening and flow diversion are the main trapping processes, whereas in hydrophobic systems, flow diversion dominates and residual gas decreases markedly. Increasing the water invasion rate reduces trapped gas in the conventional and low-resistivity layers, whereas in the strongly heterogeneous low-acoustic high-resistivity layer, higher invasion intensity strengthens preferential channelling/viscous fingering, leading to a non-monotonic residual gas response. These findings clarify the differentiated pore-scale trapping mechanisms of gas under water encroachment and highlight that mitigating water film-controlled trapping in low-resistivity layers and flow diversion trapping in low-acoustic high-resistivity layers is essential for mobilizing trapped gas, improving dynamic reserves, and ultimately enhancing the economic recovery of water-bearing gas reservoirs similar to the Sebei-2 gas field. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

16 pages, 13695 KB  
Article
InGaN Laser Diode with Spin-on-Glass Isolation Fabricated by Planarization and Etch-Back Process
by Katarzyna Piotrowska-Wolińska, Szymon Grzanka, Łucja Marona, Krzysztof Gibasiewicz, Anna Kafar and Piotr Perlin
Micromachines 2026, 17(2), 142; https://doi.org/10.3390/mi17020142 - 23 Jan 2026
Viewed by 215
Abstract
We report on the fabrication and characterization of InGaN-based ridge-waveguide laser diodes employing spin-on-glass (SOG) as the insulation and planarization layer. In contrast to conventional silicon dioxide (SiO2) isolation deposited by PECVD, the SOG approach provides improved surface planarity, reduced processing [...] Read more.
We report on the fabrication and characterization of InGaN-based ridge-waveguide laser diodes employing spin-on-glass (SOG) as the insulation and planarization layer. In contrast to conventional silicon dioxide (SiO2) isolation deposited by PECVD, the SOG approach provides improved surface planarity, reduced processing complexity, and lower fabrication cost. The laser structures were grown on GaN substrates by MOCVD, with the active region consisting of In0.11Ga0.89N quantum wells. Following ridge formation and SOG deposition, an etch-back process was used to form the electrical contacts. We have demonstrated the formation of high-quality insulating surfaces with strong adhesion to the ridge sidewalls. When using a Ni protective layer, the fabricated devices exhibited favorable electrical and optical characteristics and achieved stable laser operation under both pulsed and continuous-wave conditions. These results indicate that the SOG-based insulation process represents a promising alternative for the scalable and cost-effective fabrication of InGaN laser diodes targeting advanced photonic applications. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

12 pages, 1928 KB  
Article
Feature Comparison and Process Optimization of Multiple Dry Etching Techniques Applied in Inner Spacer Cavity Formation of GAA NSFET
by Meng Wang, Xinlong Guo, Ziqiang Huang, Meicheng Liao, Tao Liu and Min Xu
Nanomaterials 2026, 16(2), 145; https://doi.org/10.3390/nano16020145 - 21 Jan 2026
Viewed by 278
Abstract
The inner spacer module, which profoundly affects the final performance of a device, is a critical component in GAA NSFET (Gate-all-around Nanosheet Field Effect Transistor) manufacturing and necessitates systematic optimization and fundamental innovation. This work aims to develop an advanced SiGe etching process [...] Read more.
The inner spacer module, which profoundly affects the final performance of a device, is a critical component in GAA NSFET (Gate-all-around Nanosheet Field Effect Transistor) manufacturing and necessitates systematic optimization and fundamental innovation. This work aims to develop an advanced SiGe etching process with high selectivity, uniformity and low damage to achieve an ideal inner spacer structure for logic GAA NSFETs. For three distinct dry etching technologies, ICP (Inductively Coupled Plasma Technology), RPS (Remote Plasma Source) and Gas Etching, we evaluated their potential and comparative advantages for inner spacer cavity etching under the same experimental conditions. The experimental results demonstrated that Gas Etching technology possesses the uniquely high selectivity of the SiGe sacrificial layer, making it the most suitable approach for inner spacer cavity etching to reduce Si nanosheet damage. Based on the results, in the stacked structures, the SiGe/Si selectivity ratio exhibited in Gas Etching is ~9 times higher than ICP and ~2 times higher than RPS. Through systematic optimization of pre-clean conditions, temperature and chamber pressure control, we successfully achieved a remarkable performance target of cavity etching: the average SiGe/Si etching selectivity is ~56, the inner spacer shape index is 0.92 and the local etching distance variation is only 0.65 nm across different layers. These findings provide valuable guidance for equipment selection in highly selective SiGe etching and offer critical insights into key process module development for GAA NSFETs. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

20 pages, 16874 KB  
Article
A Pilot Study for “In Vitro” Testing the Surface Conditioning Effects on CAD/CAM Hybrid Nanoceramic Adhesion
by Georgi Veselinov Iliev, Lucian Toma Ciocan, Vlad Gabriel Vasilescu, Gaudențiu Vărzaru, Florin Miculescu, Ana Maria Cristina Țâncu, Marina Imre and Silviu Mirel Pițuru
Dent. J. 2026, 14(1), 36; https://doi.org/10.3390/dj14010036 - 6 Jan 2026
Viewed by 247
Abstract
Background/Objectives: The clinical application of CAD/CAM restorative materials continues to evolve due to increasing demand for aesthetic, durable, and minimally invasive indirect restorations. Hybrid nanoceramics, such as Grandio disc (VOCO GmbH, Cuxhaven, Germany), are increasingly used in indirect restorative dentistry due to [...] Read more.
Background/Objectives: The clinical application of CAD/CAM restorative materials continues to evolve due to increasing demand for aesthetic, durable, and minimally invasive indirect restorations. Hybrid nanoceramics, such as Grandio disc (VOCO GmbH, Cuxhaven, Germany), are increasingly used in indirect restorative dentistry due to their favourable combination of mechanical strength, polishability, wear resistance, and bonding potential. One challenge associated with adhesive protocols for CAD/CAM materials lies in achieving durable bonds with resin cements. Extensive post-polymerization during fabrication reduces the number of unreacted monomers available for chemical interaction, thereby limiting the effectiveness of traditional adhesive strategies and necessitating specific surface conditioning approaches. This study aimed to evaluate, in a preliminary, non-inferential manner, the influence of several combined conditioning protocols on surface micromorphology, elemental composition, and descriptive SBS trends of a CAD/CAM hybrid nanoceramic. This work was designed as a preliminary pilot feasibility study. Due to the limited number of specimens (two discs per protocol, each providing two independent enamel bonding measurements), all bond strength outcomes were interpreted descriptively, without inferential statistical testing. This in vitro study investigated the effects of various surface conditioning protocols on the adhesive performance of CAD/CAM hybrid nanoceramics (Grandio disc, VOCO GmbH, Cuxhaven, Germany) to dental enamel. Hydrofluoric acid (HF) etching was performed to improve adhesion to indirect resin-based materials using two commercially available gels: 9.5% Porcelain Etchant (Bisco, Inc., Schaumburg, IL, USA) and 4.5% IPS Ceramic Etching Gel (Ivoclar Vivadent, Schaan, Liechtenstein), in combination with airborne-particle abrasion (APA), silanization, and universal adhesive application. HF may selectively dissolve the inorganic phase, while APA increases surface texture and micromechanical retention. However, existing literature reports inconsistent results regarding the optimal conditioning method for hybrid composites and nanoceramics, and the relationship between micromorphology, elemental surface changes, and adhesion remains insufficiently clarified. Methods: A total of ten composite specimens were subjected to five conditioning protocols combining airborne-particle abrasion with varying hydrofluoric acid (HF) concentrations and etching times. Bonding was performed using a dual-cure resin cement (BiFix QM) and evaluated by shear bond strength (SBS) testing. Surface morphology was examined through environmental scanning electron microscopy (ESEM), and elemental composition was analyzed via energy-dispersive X-ray spectroscopy (EDS). Results: indicated that dual treatment with HF and sandblasting showed descriptively higher SBS, with values ranging from 5.01 to 6.14 MPa, compared to 1.85 MPa in the sandblasting-only group. ESEM revealed that higher HF concentrations (10%) created more porous and irregular surfaces, while EDS indicated an increased fluorine presence trend and silicon reduction, indicating deeper chemical activation. However, extending HF exposure beyond 20 s did not further improve bonding, suggesting the importance of protocol optimization. Conclusions: The preliminary observations suggest a synergistic effect of mechanical and chemical conditioning on hybrid ceramic adhesion, but values should be interpreted qualitatively due to the pilot nature of the study. Manufacturer-recommended air abrasion alone may provide limited adhesion under high-stress conditions, although this requires confirmation in studies with larger sample sizes and ageing simulations. Future studies should address long-term durability and extend the comparison to other hybrid CAD/CAM materials and to other etching protocols. Full article
(This article belongs to the Special Issue Dental Materials Design and Application)
Show Figures

Graphical abstract

20 pages, 5270 KB  
Article
Er:YAG Laser Versus Sandblasting for Build-Up Conditioning in Adhesive Cementation: A Retrospective Study of 187 Posterior Indirect Restorations
by Ilaria Giovannacci, Giuseppe Pedrazzi, Beatrice Spaggiari and Paolo Vescovi
Dent. J. 2026, 14(1), 34; https://doi.org/10.3390/dj14010034 - 5 Jan 2026
Viewed by 335
Abstract
Background: Adhesive indirect restorations have become increasingly common in daily clinical routine in most dental practices. Before etching and adhesive application, a sandblasting procedure is essential to clean and increase the microporosity of the surface. Air abrasion with aluminum oxide particles significantly [...] Read more.
Background: Adhesive indirect restorations have become increasingly common in daily clinical routine in most dental practices. Before etching and adhesive application, a sandblasting procedure is essential to clean and increase the microporosity of the surface. Air abrasion with aluminum oxide particles significantly improves the bond strength. However, this procedure may have some limitations, such as the presence of powder particles. Recently, the Er:YAG laser in QSP mode has been proposed for conditioning build-ups prior to adhesive cementation. The aim of this study was a retrospective analysis of adhesive indirect restoration in which build-up was conditioned or using a traditional sandblaster with alumina powder or using the Er:YAG laser in QSP mode. Methods: 187 posterior indirect adhesive restorations were cemented using two different conditioning techniques: in 96 cases (51.34%) build-up conditioning was performed using an intraoral sandblaster with alumina oxide (Microetcher CD, Kavo, Biberach, Germany); in 91 cases (48.66%) build-up conditioning was performed using the Er:YAG laser (Fotona LighWalker®, Ljubljana, Slovenia) in QSP modality (1 W, 10 Hz, 100 mJ). The clinical efficacy of the two techniques was evaluated and compared, assessing the occurrence of complications such as debonding, fracture, secondary leakage, and hypersensitivity over time. Results: The frequency of secondary complications was very low in both groups. Only one case of debonding and one case of restoration cracking was observed in the sandblasting group, with none in the laser group (p = 0.329). Secondary caries occurred in both groups. A difference was observed in postoperative hypersensitivity: 6% in the sandblasting group and 1% in the laser group (p = 0.064). The Kaplan–Meier curves of the two conditioning techniques showed comparable survival over time (Log-rank test χ2 = 2.4864/p = 0.1148). The mean follow-up was 30 months. Conclusions: The success rates of these restorations are very high if adhesive cementation steps are properly followed. Conditioning the build-up before etching is essential. Among these, the Er:YAG laser in QSP mode seems to provide excellent results in the absence of dust and smear layer. Recurrence rates of complications such as decementation, leakage, and cracking resulted in less than 1%. Furthermore, it is interesting to note that using the laser to condition the build-up appears to reduce the recurrence of post-cementation hypersensitivity. These data require confirmation through prospective clinical trials. Full article
(This article belongs to the Special Issue Laser Dentistry: The Current Status and Developments)
Show Figures

Graphical abstract

25 pages, 10702 KB  
Article
Addressing Challenges in Porous Silicon Fabrication for Manufacturing Multi-Layered Optical Filters
by Noha Gaber, Diaa Khalil and Amr Shaarawi
Nanomanufacturing 2026, 6(1), 2; https://doi.org/10.3390/nanomanufacturing6010002 - 5 Jan 2026
Viewed by 243
Abstract
The motivation for this work is to study the cause and present mitigation for some challenges faced in preparing porous silicon. This enables benefiting from the appealing benefits of porous silicon that offers a wide range, simple technique for varying the refractive index. [...] Read more.
The motivation for this work is to study the cause and present mitigation for some challenges faced in preparing porous silicon. This enables benefiting from the appealing benefits of porous silicon that offers a wide range, simple technique for varying the refractive index. Such challenges include the refractive index values, sensitivity to oxidation, some fabrication parameters, and other factors. Additionally, highly doped p-type silicon is preferred to form porous silicon, but it causes high losses, which necessitates its detachment. We investigate some possible causes of refractive index change, especially after detaching the fabricated layers from the silicon substrate. Thereby, we could recommend simple but essential precautions during fabrication to avoid such a change. For example, the native oxide formed in the pores has a role in changing the porosity upon following some fabrication sequence. Oppositely, intrinsic stress doesn’t have a significant role. On another aspect, the effect of differing etching/break times on the filter’s responses has been studied, along with other subtle details that may affect the lateral and depth homogeneity, and thereby the process success. Solving such homogeneity issues allowed reaching thick layers not suffering from the gradient index. It is worth highlighting that several approaches have been reported; unlike these, our method doesn’t require sophisticated equipment that might not be available in every lab. To well characterize the thin films, it has been found essential that freestanding monolayers are used for this purpose. From which, the wavelength-dependent refractive index and absorption coefficient have been determined in the near infrared region (1000–2500 nm) for different fabricated conditions. Excellent fitting with the measured interference pattern has been achieved, indicating the accurate parameter extraction, even without any ellipsometry measurements. This also demonstrates the refractive index homogeneity of the fabricated layer, even with a large thickness of over 16 µm. Subsequently, multilayer structures have been fabricated and tested, showing the successful nano-manufacturing methodology. Full article
Show Figures

Figure 1

14 pages, 1597 KB  
Article
Impact of Zirconia and Titanium Implant Surfaces of Different Roughness on Oral Epithelial Cells
by Marco Aoqi Rausch, Zhiwei Tian, Vera Maierhofer, Christian Behm, Christian Ulm, Erwin Jonke, Raphael S. Wagner, Benjamin E. Pippenger, Bin Shi, Xiaohui Rausch-Fan and Oleh Andrukhov
Dent. J. 2026, 14(1), 30; https://doi.org/10.3390/dj14010030 - 4 Jan 2026
Viewed by 446
Abstract
Background/Objectives: Formation of tight contacts between oral soft tissue and dental implants is a significant challenge in contemporary implantology. An essential role in this process is played by oral epithelial cells. In the present study, we investigated how titanium and zirconia surfaces [...] Read more.
Background/Objectives: Formation of tight contacts between oral soft tissue and dental implants is a significant challenge in contemporary implantology. An essential role in this process is played by oral epithelial cells. In the present study, we investigated how titanium and zirconia surfaces with different roughness influence various parameters of oral epithelial cells in vitro. Methods: We used the human oral squamous carcinoma Ca9-22 cell line and cultured them on the following surfaces: machined smooth titanium (TiM) and zirconia (ZrM) surfaces, as well as sandblasted and acid-etched titanium moderately rough (SLA) and zirconia (ZLA) surfaces. Cell proliferation/viability was measured by CCK-8 assay, and cell morphology was analyzed by fluorescent microscopy. The gene expression of interleukin (IL)-8, intercellular adhesion molecule (ICAM)-1, E-cadherin, integrin (ITG)-α6, and ITG-β4 was measured by qPCR, and the content of IL-8 in conditioned media by ELISA. Results: At the initial culture phase, cell proliferation was promoted by rougher surfaces. Differences in cell attachment were observed between machined and moderately rough surfaces. Machined surfaces were associated with slightly higher IL-8 levels (p < 0.05). Furthermore, both ZLA and SLA surfaces promoted the expression of (ITG)-α, ITG-β4, and ICAM-1 in Ca9-22 cells (p < 0.05). Surface material had no impact on the investigated parameters. Conclusions: Under the limitations of this in vitro study, some properties of oral epithelial cells, particularly the immunological and barrier function, are moderately modified by roughness but not by material. Hence, the roughness of the implant surface might play a role in the quality of the peri-implant epithelium. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

15 pages, 1958 KB  
Article
Enhancing the Quality of Diamond Film Growth Through the Synergistic Addition of Nitrogen and Carbon Dioxide
by Zhanpeng Sheng, Xuejian Cui, Lei Zhao, Yihan Lv, Rongchen Zhang, Defang Kon, Nan Jiang, Jian Yi and Lingxia Zheng
Materials 2026, 19(1), 183; https://doi.org/10.3390/ma19010183 - 4 Jan 2026
Viewed by 336
Abstract
This study investigates the synergistic effects of co-doping with ultralow-concentration nitrogen and trace carbon dioxide on the growth of polycrystalline diamond films via microwave plasma chemical vapor deposition (MPCVD). The films were characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and photoluminescence [...] Read more.
This study investigates the synergistic effects of co-doping with ultralow-concentration nitrogen and trace carbon dioxide on the growth of polycrystalline diamond films via microwave plasma chemical vapor deposition (MPCVD). The films were characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and photoluminescence spectroscopy. Results indicate that trace nitrogen effectively promotes <111> oriented growth and enhances the deposition rate, whereas excessive nitrogen leads to the formation of defects such as pores and microcracks. The introduction of CO2 suppresses the formation of nitrogen-vacancy-related defects through a selective etching mechanism. Under co-doping conditions, diamond films with high growth rates, strong <111> texture, and superior thermal conductivity (up to 1863.94 W·m−1·K−1) were successfully synthesized, demonstrating significant potential for thermal management applications in high-power integrated circuits. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

20 pages, 2266 KB  
Article
Investigation of the Acid Generation Pattern and Flow-Reaction Behavior of Solid Retarded Acid
by Jianye Mou, Jia Cui, Kai Chen, Lufeng Zhang, Xiaowei Li, Yunhui Zhang and Budong Gao
Processes 2026, 14(1), 124; https://doi.org/10.3390/pr14010124 - 29 Dec 2025
Viewed by 216
Abstract
The carbonate reservoir of the Shunbei oilfield is characterized by deep burial depth and high temperature. During acid fracturing, the reaction rate between conventional acid systems and the rock is relatively fast, leading to a limited effective acid penetration distance. To extend the [...] Read more.
The carbonate reservoir of the Shunbei oilfield is characterized by deep burial depth and high temperature. During acid fracturing, the reaction rate between conventional acid systems and the rock is relatively fast, leading to a limited effective acid penetration distance. To extend the acid penetration distance, a combination of solid retarded acid and conventional acid was used in field operations. The effectiveness of the solid retarded acid depends on its acid generation pattern, making it necessary to study the acid generation behavior of the solid retarded acid. This paper establishes a frame for evaluating the solid retarded acid, including tests for solid retarded acid solubility, acid concentration, and acid-etched fracture conductivity. Based on the test results, the acid generation pattern of solid retarded acid was analyzed, its slow-generation performance was evaluated, and an acid generation model was established. Finally, by integrating the acid generation model with the existing acid fracturing model, the effective distance of solid retarded acid was predicted. The study shows that the solubility of acid-generating materials is influenced by both temperature and solid retarded acid concentration. When the concentration of solid retarded acid exceeds 25%, it does not completely dissolve at room temperature, but can fully dissolve after 40 min at 120 °C. The acid concentration is significantly affected by temperature, with an acid concentration of about 1.6 mol/L at room temperature and up to 3.1 mol/L at high temperatures, comparable to a 12% hydrochloric acid concentration. Solid retarded acid exhibits good slow-generation performance, with a comprehensive reaction rate approximately one-third of that of cross-linked acid. When the acid-rock contact time is around 3 h, the acid-etched fracture conductivity of solid retarded acid can remain above 5 D·cm under a closure pressure of 60 MPa. The predicted effective acid penetration distance of solid retarded acid can reach over 150 m, under typical conditions of Shunbei oilfield. The findings of this study can serve as a reference for the design and optimization of solid retarded acid fracturing. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 2747 KB  
Article
Comparison of the Bond Strength to Titanium of Resin-Based Materials Fabricated by Additive and Subtractive Manufacturing Methods
by Asiye Yavşan and Recep Türken
Polymers 2026, 18(1), 56; https://doi.org/10.3390/polym18010056 - 24 Dec 2025
Viewed by 526
Abstract
This in vitro study investigated the shear bond strength (SBS) between titanium abutments and resin-based CAD/CAM restorative materials fabricated using additive (3D printing) and subtractive (milling) methods. The aim was to assess how different surface treatments—primer only, phosphoric acid etching with primer, and [...] Read more.
This in vitro study investigated the shear bond strength (SBS) between titanium abutments and resin-based CAD/CAM restorative materials fabricated using additive (3D printing) and subtractive (milling) methods. The aim was to assess how different surface treatments—primer only, phosphoric acid etching with primer, and sandblasting with primer—affect bonding performance. A total of 120 cylindrical specimens were prepared using four CAD/CAM materials and bonded to titanium disks using dual-cure resin cement. SBS was measured following ISO 10477:2020 guidelines, and surface morphology was analyzed via scanning electron microscopy (SEM). Two-way ANOVA revealed that both the material type and surface treatment had statistically significant effects on SBS (p < 0.001), with a notable interaction between them. Additively manufactured materials exhibited higher SBS values compared to subtractive ones. The highest bond strength was observed in the sandblasted Saremco Crowntec group, while the lowest was in the primer-only Cerasmart group. SEM images confirmed enhanced surface roughness in sandblasted specimens, and failure mode analysis showed more cohesive and mixed failures in mechanically treated groups. These findings underscore the importance of selecting appropriate surface conditioning protocols tailored to each material type to improve bonding effectiveness in implant-supported restorations. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 920 KB  
Review
Application of Amorphous Nanomaterials in Dentistry: A Comprehensive Review
by Iris Xiaoxue Yin, John Yun Niu, Veena Wenqing Xu, Ollie Yiru Yu, Irene Shuping Zhao and Chun Hung Chu
J. Funct. Biomater. 2026, 17(1), 11; https://doi.org/10.3390/jfb17010011 - 23 Dec 2025
Viewed by 530
Abstract
Conventional dental materials with organised crystal structures exhibit limitations in corrosion resistance, bioactivity, and drug delivery capability. In contrast, amorphous nanomaterials offer potential advantages in overcoming these limitations due to their unique structural properties. They are characterised by a non-crystalline, disordered atomic structure [...] Read more.
Conventional dental materials with organised crystal structures exhibit limitations in corrosion resistance, bioactivity, and drug delivery capability. In contrast, amorphous nanomaterials offer potential advantages in overcoming these limitations due to their unique structural properties. They are characterised by a non-crystalline, disordered atomic structure and are similar to a solidified liquid at the nanoscale. Among the amorphous nanomaterials used in dentistry, there are five major categories: calcium-, silicon-, magnesium-, zirconia-, and polymer-based systems. This study reviewed these amorphous nanomaterials by investigating their synthesis, properties, applications, limitations, and future directions in dentistry. These amorphous nanomaterials are synthesised primarily through low-temperature methods, including sol–gel processes, rapid precipitation, and electrochemical etching, which prevent atomic arrangements into crystalline structures. The resulting disordered atomic configuration confers exceptional properties, including enhanced solubility, superior drug-loading capacity, high surface reactivity, and controlled biodegradability. These characteristics enable diverse dental applications. Calcium-based amorphous nanomaterials, particularly amorphous calcium phosphate, demonstrate the ability to remineralise tooth enamel. Silicon-based amorphous nanomaterials function as carriers that can release antibacterial agents in response to stimuli. Magnesium-based amorphous nanomaterials are antibacterial and support natural bone regeneration. Zirconia-based amorphous nanomaterials strengthen the mechanical properties of restorative materials. Polymer-based amorphous nanomaterials enable controlled release of medications over extended periods. Despite the advances in these amorphous nanomaterials, there are limitations regarding material stability over time, precise control of degradation rates in the oral environment, and the development of reliable large-scale manufacturing processes. Researchers are creating smart materials that respond to specific oral conditions and developing hybrid systems that combine the strengths of different nanomaterials. In summary, amorphous nanomaterials hold great promise for advancing dental treatments through their unique properties and versatile applications. Clinically, these materials could improve the durability, bioactivity, and targeted drug delivery in dental restorations and therapies, leading to better patient outcomes. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

Back to TopTop