Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,406)

Search Parameters:
Keywords = error measures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2315 KiB  
Communication
Accurate Wideband RCS Estimation from Limited Field Data Using Infinitesimal Dipole Modeling with Compressive Sensing
by Jeong-Wan Lee, Ye Chan Jung and Sung-Jun Yang
Sensors 2025, 25(15), 4771; https://doi.org/10.3390/s25154771 (registering DOI) - 2 Aug 2025
Abstract
This communication presents an accurate and computationally efficient approach for wideband radar cross-section (RCS) estimation and scattering point reconstruction using infinitesimal dipole modeling (IDM) with compressive sensing. The proposed method eliminates the need for field sampling at numerous frequency points across the wideband [...] Read more.
This communication presents an accurate and computationally efficient approach for wideband radar cross-section (RCS) estimation and scattering point reconstruction using infinitesimal dipole modeling (IDM) with compressive sensing. The proposed method eliminates the need for field sampling at numerous frequency points across the wideband range through Green’s function adjustment. Additionally, compressive sensing is employed for induced current calculation to reduce both frequency and angular sampling requirements. Numerical validation demonstrates that the method achieves a 50% reduction in field sample data and an 82.3% reduction in IDM processing time while maintaining comparable accuracy through Green’s function adjustment. Furthermore, compared to approaches without compressive sensing, the method shows a 55.1% and a 75.5% reduction in error in averaged RCS for VV-pol and HH-pol, respectively. The proposed method facilitates efficient wideband RCS estimation of various targets while significantly reducing measurement complexity and computational cost. Full article
(This article belongs to the Section Sensing and Imaging)
24 pages, 1593 KiB  
Article
Robust Adaptive Multiple Backtracking VBKF for In-Motion Alignment of Low-Cost SINS/GNSS
by Weiwei Lyu, Yingli Wang, Shuanggen Jin, Haocai Huang, Xiaojuan Tian and Jinling Wang
Remote Sens. 2025, 17(15), 2680; https://doi.org/10.3390/rs17152680 (registering DOI) - 2 Aug 2025
Abstract
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To [...] Read more.
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To address the issue that low-cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex environments that contain noise and external interference, an adaptive multiple backtracking robust alignment method is proposed. The sliding window that constructs observation and reference vectors is established, which effectively avoids the accumulation of sensor errors during the full integration process. A new observation vector based on the magnitude matching is then constructed to effectively reduce the effect of outliers on the alignment process. An adaptive multiple backtracking method is designed in which the window size can be dynamically adjusted based on the innovation gradient; thus, the alignment time can be significantly shortened. Furthermore, the modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the measurement noise covariance matrix is proposed, and the Expectation–Maximization (EM) algorithm is employed to refine the prior parameter of the predicted error covariance matrix. Simulation and experimental results demonstrate that the proposed method significantly reduces alignment time and improves alignment accuracy. Taking heading error as the critical evaluation indicator, the proposed method achieves rapid alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an improvement of over 63% compared to the backtracking-based Kalman filter (BKF) method and over 57% compared to the fuzzy adaptive KF (FAKF) method. Full article
(This article belongs to the Section Urban Remote Sensing)
15 pages, 1721 KiB  
Article
A Novel Integrated Inertial Navigation System with a Single-Axis Cold Atom Interferometer Gyroscope Based on Numerical Studies
by Zihao Chen, Fangjun Qin, Sibin Lu, Runbing Li, Min Jiang, Yihao Wang, Jiahao Fu and Chuan Sun
Micromachines 2025, 16(8), 905; https://doi.org/10.3390/mi16080905 (registering DOI) - 2 Aug 2025
Abstract
Inertial navigation systems (INSs) exhibit distinctive characteristics, such as long-duration operation, full autonomy, and exceptional covertness compared to other navigation systems. However, errors are accumulated over time due to operational principles and the limitations of sensors. To address this problem, this study theoretically [...] Read more.
Inertial navigation systems (INSs) exhibit distinctive characteristics, such as long-duration operation, full autonomy, and exceptional covertness compared to other navigation systems. However, errors are accumulated over time due to operational principles and the limitations of sensors. To address this problem, this study theoretically explores a numerically simulated integrated inertial navigation system consisting of a single-axis cold atom interferometer gyroscope (CAIG) and a conventional inertial measurement unit (IMU). The system leverages the low bias and drift of the CAIG and the high sampling rate of the conventional IMU to obtain more accurate navigation information. Furthermore, an adaptive gradient ascent (AGA) method is proposed to estimate the variance of the measurement noise online for the Kalman filter. It was found that errors of latitude, longitude, and positioning are reduced by 43.9%, 32.6%, and 32.3% compared with the conventional IMU over 24 h. On this basis, errors from inertial sensor drift could be further reduced by the online Kalman filter. Full article
15 pages, 2466 KiB  
Article
A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime
by Yuheng Zheng, Dailiang Xie, Zhengcheng Qin, Zhengwei Huang, Ya Xu, Da Wang and Hong Zheng
Appl. Sci. 2025, 15(15), 8593; https://doi.org/10.3390/app15158593 (registering DOI) - 2 Aug 2025
Abstract
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a [...] Read more.
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a broad measurement range. Nevertheless, due to the low measurement accuracy under micro gas flow caused by nonlinear errors and a relatively complex structure, traditional laminar flow measurement devices exhibit limitations in micro gas flow measurement scenarios. This study proposes a novel micro gas flow measurement method based on a single capillary laminar flow element, which simplifies the structure and enhances applicability in the field of micro gas flow. Through structural optimization with precise control of the capillary length–diameter ratios and theoretical error correction based on computational analysis, nonlinear errors were effectively reduced while improving the measurement accuracy in the field of micro gas flow. The proposed methodology was systematically validated through computational fluid dynamics simulations (ANSYS Fluent 2021 R1) and experimental investigations using a dedicated test platform. The experimental results show that the relative error of the measurement system within the full measurement range is less than ±0.6% (1–10 cm3/min; cm3/min means cubic centimeter per minute), and its accuracy is superior to 1% of reading (1% Rd) or 1.5% of reading (1.5% Rd) of conventional laminar flowmeters. The fitting curve of the flow rate versus the pressure difference derived from the measurement results maintains an excellent linear correlation (R2 > 0.99), thus confirming that this method has practical application value in the field of micro gas flow measurement. Full article
Show Figures

Figure 1

14 pages, 654 KiB  
Article
A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast
by Andrew Prahl
Sensors 2025, 25(15), 4766; https://doi.org/10.3390/s25154766 (registering DOI) - 2 Aug 2025
Abstract
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition–Context–Contrast (CCC) [...] Read more.
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition–Context–Contrast (CCC) conceptual framework to explain the trust and acceptance of AI-enabled sensors. First, we map cognition, comprising the expectations and stereotypes that humans have about machines. Second, we integrate task context by situating sensor applications along an intellective-to-judgmental continuum and showing how demonstrability predicts tolerance for sensor uncertainty and/or errors. Third, we analyze contrast effects that arise when automated sensing displaces familiar human routines, heightening scrutiny and accelerating rejection if roll-out is abrupt. We then derive practical implications such as enhancing interpretability, tailoring data presentations to task demonstrability, and implementing transitional introduction phases. The framework offers researchers, engineers, and clinicians a structured conceptual framework for designing and implementing the next generation of AI biosensors. Full article
(This article belongs to the Special Issue AI in Sensor-Based E-Health, Wearables and Assisted Technologies)
Show Figures

Figure 1

23 pages, 3817 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 (registering DOI) - 1 Aug 2025
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
20 pages, 5077 KiB  
Article
Ventilation Modeling of a Hen House with Outdoor Access
by Hojae Yi, Eileen Fabian-Wheeler, Michael Lee Hile, Angela Nguyen and John Michael Cimbala
Animals 2025, 15(15), 2263; https://doi.org/10.3390/ani15152263 (registering DOI) - 1 Aug 2025
Abstract
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor [...] Read more.
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor environment, including properly planned ventilation. Moreover, complaints exist that hens do not use the holes to access the outdoor environment due to the strong incoming airflow through the outdoor access, as they behave as uncontrolled air inlets in a negative pressure ventilation system. As the egg industry transitions to cage-free systems, there is an urgent need for validated computational fluid dynamics (CFD) models to optimize ventilation strategies that balance animal welfare, environmental control, and production efficiency. We developed and validated CFD models of a cage-free hen house with outdoor access by specifying real-world conditions, including two exhaust fans, sidewall ventilation inlets, wire-meshed pens, outdoor access, and plenum inlets. The simulations of four ventilation scenarios predict the measured air flow velocity with an error of less than 50% for three of the scenarios, and the simulations predict temperature with an error of less than 6% for all scenarios. Plenum-based systems outperformed sidewall systems by up to 136.3 air changes per hour, while positive pressure ventilation effectively mitigated disruptions to outdoor access. We expect that knowledge of improved ventilation strategy will help the egg industry improve the welfare of hens cost-effectively. Full article
25 pages, 8312 KiB  
Article
Quantitative Assessment of Woven Fabric Surface Changes During Martindale Abrasion Using Contactless Optical Profilometry
by Małgorzata Matusiak and Gabriela Kosiuk
Materials 2025, 18(15), 3636; https://doi.org/10.3390/ma18153636 (registering DOI) - 1 Aug 2025
Abstract
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of [...] Read more.
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of the three methods. The method is based on organoleptic assessment of fabric breakage. The method is time-consuming, and results may be subject to error resulting from the subjective nature of the assessment. The aim of the presented work was to check the possibility of the application of contactless 3D surface geometry measurement using an optical profilometer in an assessment of changes in fabrics’ surface due to the abrasion process. The obtained results confirmed that some parameters of the geometric structure of fabric surfaces, such as the highest height of the roughness profile Rz, the height of the highest pick of the roughness profile Rp, the depth of the lowest valley of the roughness profile Rv, the depth of the total height of the roughness profile Rt, and the kurtosis Rku, can be used to assess the abrasion resistance of fabrics. It is also stated that using the non-contact optical measurement of fabric surface geometry allows for an assessment of the directionality of surface texture. For this purpose, the autocorrelation function and angle distribution function can be applied. Full article
Show Figures

Figure 1

19 pages, 1107 KiB  
Article
A Novel Harmonic Clocking Scheme for Concurrent N-Path Reception in Wireless and GNSS Applications
by Dina Ibrahim, Mohamed Helaoui, Naser El-Sheimy and Fadhel Ghannouchi
Electronics 2025, 14(15), 3091; https://doi.org/10.3390/electronics14153091 (registering DOI) - 1 Aug 2025
Abstract
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, [...] Read more.
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, enabling simultaneous downconversion without modification of the passive mixer topology. The receiver employs a 4-path passive mixer configuration to enhance harmonic selectivity and provide flexible frequency planning.The architecture is implemented on a printed circuit board (PCB) and validated through comprehensive simulation and experimental measurements under continuous wave and modulated signal conditions. Measured results demonstrate a sensitivity of 55dBm and a conversion gain varying from 2.5dB to 9dB depending on the selected harmonic pair. The receiver’s performance is further corroborated by concurrent (dual band) reception of real-world signals, including a GPS signal centered at 1575 MHz and an LTE signal at 1179 MHz, both downconverted using a single 393 MHz LO. Signal fidelity is assessed via Normalized Mean Square Error (NMSE) and Error Vector Magnitude (EVM), confirming the proposed architecture’s effectiveness in maintaining high-quality signal reception under concurrent multiband operation. The results highlight the potential of harmonic-selective clocking to simplify multiband receiver design for wireless communication and global navigation satellite system (GNSS) applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
14 pages, 3905 KiB  
Article
Stability of Ultrafast Laser-Induced Stress in Fused Silica and Ultra-Low Expansion Glass
by Carolyn C. Hokin and Brandon D. Chalifoux
Photonics 2025, 12(8), 778; https://doi.org/10.3390/photonics12080778 (registering DOI) - 1 Aug 2025
Abstract
Stress fields imparted with an ultrafast laser can correct low spatial frequency surface figure error of mirrors through ultrafast laser stress figuring (ULSF): the formation of nanograting structures within the bulk substrate generates localized stress, creating bending moments that equilibrize via wafer deformation. [...] Read more.
Stress fields imparted with an ultrafast laser can correct low spatial frequency surface figure error of mirrors through ultrafast laser stress figuring (ULSF): the formation of nanograting structures within the bulk substrate generates localized stress, creating bending moments that equilibrize via wafer deformation. For ULSF to be used as an optical figuring process, the ultrafast laser generated stress must be effectively permanent or risk unwanted figure drift. Two isochronal annealing experiments were performed to measure ultrafast laser-generated stress stability in fused silica and Corning ultra-low expansion (ULE) wafers. The first experiment tracked changes to induced astigmatism up to 1000 °C on 25.4 mm-diameter wafers. Only small changes were measured after each thermal cycle up to 500 °C for both materials, but significant changes were observed at higher temperatures. The second experiment tracked stress changes in fused silica and ULE up to 500 °C but with 4 to 16× higher signal-to-noise ratio. Change in trefoil on 100 mm-diameter wafers was measured, and the induced stress in fused silica and ULE was found to be stable after thermal cycling up to 300 °C and 200 °C, respectively, with larger changes at higher temperatures. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 (registering DOI) - 1 Aug 2025
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

29 pages, 5505 KiB  
Article
Triaxial Response and Elastoplastic Constitutive Model for Artificially Cemented Granular Materials
by Xiaochun Yu, Yuchen Ye, Anyu Yang and Jie Yang
Buildings 2025, 15(15), 2721; https://doi.org/10.3390/buildings15152721 (registering DOI) - 1 Aug 2025
Abstract
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton [...] Read more.
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton is often obtained directly from on-site or nearby excavation spoil, endowing the material with a markedly lower embodied carbon footprint and strong alignment with current low-carbon, green-construction objectives. Yet, such heterogeneity makes a single material-specific constitutive model inadequate for predicting the mechanical behavior of other ACG variants, thereby constraining broader applications in dam construction and foundation reinforcement. This study systematically summarizes and analyzes the stress–strain and volumetric strain–axial strain characteristics of ACG materials under conventional triaxial conditions. Generalized hyperbolic and parabolic equations are employed to describe these two families of curves, and closed-form expressions are proposed for key mechanical indices—peak strength, elastic modulus, and shear dilation behavior. Building on generalized plasticity theory, we derive the plastic flow direction vector, loading direction vector, and plastic modulus, and develop a concise, transferable elastoplastic model suitable for the full spectrum of ACG materials. Validation against triaxial data for rock-fill materials, LCSG, and cemented coal–gangue backfill shows that the model reproduces the stress and deformation paths of each material class with high accuracy. Quantitative evaluation of the peak values indicates that the proposed constitutive model predicts peak deviatoric stress with an error of 1.36% and peak volumetric strain with an error of 3.78%. The corresponding coefficients of determination R2 between the predicted and measured values are 0.997 for peak stress and 0.987 for peak volumetric strain, demonstrating the excellent engineering accuracy of the proposed model. The results provide a unified theoretical basis for deploying ACG—particularly its low-cement, locally sourced variants—in low-carbon dam construction, foundation rehabilitation, and other sustainable civil engineering projects. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

25 pages, 3362 KiB  
Article
The Double Laplace–Adomian Method for Solving Certain Nonlinear Problems in Applied Mathematics
by Oswaldo González-Gaxiola
AppliedMath 2025, 5(3), 98; https://doi.org/10.3390/appliedmath5030098 (registering DOI) - 1 Aug 2025
Abstract
The objective of this investigation is to obtain numerical solutions for a variety of mathematical models in a wide range of disciplines, such as chemical kinetics, neurosciences, nonlinear optics, metallurgical separation/alloying processes, and asset dynamics in mathematical finance. This research features numerical simulations [...] Read more.
The objective of this investigation is to obtain numerical solutions for a variety of mathematical models in a wide range of disciplines, such as chemical kinetics, neurosciences, nonlinear optics, metallurgical separation/alloying processes, and asset dynamics in mathematical finance. This research features numerical simulations conducted with a remarkably low error measure, providing a visual representation of the examined models in these areas. The proposed method is the double Laplace–Adomian decomposition method, which facilitates the numerical acquisition and analysis of solutions. This paper presents the first report of numerical simulations employing this innovative methodology to address these problems. The findings are expected to benefit the natural sciences, mathematical modeling, and their practical applications, representing the innovative aspect of this article. Additionally, this method can analyze many classes of partial differential equations, whether linear or nonlinear, without the need for linearization or discretization. Full article
Show Figures

Figure 1

20 pages, 5647 KiB  
Article
Research on the Improved ICP Algorithm for LiDAR Point Cloud Registration
by Honglei Yuan, Guangyun Li, Li Wang and Xiangfei Li
Sensors 2025, 25(15), 4748; https://doi.org/10.3390/s25154748 (registering DOI) - 1 Aug 2025
Abstract
Over three decades of research has been undertaken on point cloud registration algorithms, resulting in mature theoretical frameworks and methodologies. However, among the numerous registration techniques used, the impact of point cloud scanning quality on registration outcomes has rarely been addressed. In most [...] Read more.
Over three decades of research has been undertaken on point cloud registration algorithms, resulting in mature theoretical frameworks and methodologies. However, among the numerous registration techniques used, the impact of point cloud scanning quality on registration outcomes has rarely been addressed. In most engineering and industrial measurement applications, the accuracy and density of LiDAR point clouds are highly dependent on laser scanners, leading to significant variability that critically affects registration quality. Key factors influencing point cloud accuracy include scanning distance, incidence angle, and the surface characteristics of the target. Notably, in short-range scanning scenarios, incidence angle emerges as the dominant error source. Building on this insight, this study systematically investigates the relationship between scanning incidence angles and point cloud quality. We propose an incident-angle-dependent weighting function for point cloud observations, and further develop an improved weighted Iterative Closest Point (ICP) registration algorithm. Experimental results demonstrate that the proposed method achieves approximately 30% higher registration accuracy compared to traditional ICP algorithms and a 10% improvement over Faro SCENE’s proprietary solution. Full article
Show Figures

Figure 1

15 pages, 2400 KiB  
Article
Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm
by Kimberly L. Branan, Rachel Kurian, Justin P. McMurray, Madhav Erraguntla, Ricardo Gutierrez-Osuna and Gerard L. Coté
Biosensors 2025, 15(8), 493; https://doi.org/10.3390/bios15080493 (registering DOI) - 1 Aug 2025
Abstract
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides [...] Read more.
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides robust estimates of cardiorespiratory variables by combining three physiological signals from the upper arm: multiwavelength PPG, single-sided electrocardiography (SS-ECG), and bioimpedance plethysmography (BioZ), along with an inertial measurement unit (IMU) providing 3-axis accelerometry and gyroscope information. We evaluated the multimodal device on 16 subjects by its ability to estimate heart rate (HR) and breathing rate (BR) in the presence of various static and dynamic noise sources (e.g., skin tone and motion). We proposed a hierarchical approach that considers the subject’s skin tone and signal quality to select the optimal sensing modality for estimating HR and BR. Our results indicate that, when estimating HR, there is a trade-off between accuracy and robustness, with SS-ECG providing the highest accuracy (low mean absolute error; MAE) but low reliability (higher rates of sensor failure), and PPG/BioZ having lower accuracy but higher reliability. When estimating BR, we find that fusing estimates from multiple modalities via ensemble bagged tree regression outperforms single-modality estimates. These results indicate that multimodal approaches to cardiorespiratory monitoring can overcome the accuracy–robustness trade-off that occurs when using single-modality approaches. Full article
(This article belongs to the Special Issue Wearable Biosensors for Health Monitoring)
Show Figures

Figure 1

Back to TopTop