Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,535)

Search Parameters:
Keywords = error bounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 825 KiB  
Article
Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
by Cheng Shen and Yuewei Liu
Mathematics 2025, 13(15), 2430; https://doi.org/10.3390/math13152430 - 28 Jul 2025
Abstract
Detection of surface defects can significantly elongate mechanical service time and mitigate potential risks during safety management. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Some machine learning algorithms and artificial intelligence models for [...] Read more.
Detection of surface defects can significantly elongate mechanical service time and mitigate potential risks during safety management. Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Some machine learning algorithms and artificial intelligence models for defect detection, such as Convolutional Neural Networks (CNNs), present outstanding performance, but they are often data-dependent and cannot provide guarantees for new test samples. To this end, we construct a detection model by combining Mask R-CNN, selected for its strong baseline performance in pixel-level segmentation, with Conformal Risk Control. The former evaluates the distribution that discriminates defects from all samples based on probability. The detection model is improved by retraining with calibration data that is assumed to be independent and identically distributed (i.i.d) with the test data. The latter constructs a prediction set on which a given guarantee for detection will be obtained. First, we define a loss function for each calibration sample to quantify detection error rates. Subsequently, we derive a statistically rigorous threshold by optimization of error rates and a given guarantee significance as the risk level. With the threshold, defective pixels with high probability in test images are extracted to construct prediction sets. This methodology ensures that the expected error rate on the test set remains strictly bounded by the predefined risk level. Furthermore, our model shows robust and efficient control over the expected test set error rate when calibration-to-test partitioning ratios vary. Full article
Show Figures

Figure 1

16 pages, 2137 KiB  
Article
Constellation-Optimized IM-OFDM: Joint Subcarrier Activation and Mapping via Deep Learning for Low-PAPR ISAC
by Li Li, Jiying Lin, Jianguo Li and Xiangyuan Bu
Electronics 2025, 14(15), 3007; https://doi.org/10.3390/electronics14153007 - 28 Jul 2025
Abstract
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is [...] Read more.
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is limited. Against this background, this paper proposes a constellation-optimized index-modulated OFDM (CO-IM-OFDM) framework that leverages neural networks to design a constellation suitable for subcarrier activation patterns. A correlation model between index modulation and constellation is established, enabling adaptive constellation mapping in IM-OFDM. Then, Adam optimizer is employed to train the constellation tailored for ISAC, enhancing spectral efficiency under PN and PAPR constraints. Furthermore, a weighting factor is defined to characterize the joint communication–sensing performance, thus optimizing the overall system performance. Simulation results demonstrate that the proposed method can achieve improvements in bit error rate (BER) by over 4 dB and in Cramér–Rao bound (CRB) by 2% to 8% compared to traditional IM-OFDM constellation mapping. It overcomes fixed constellation constraints of conventional IM-OFDM systems, offering theoretical innovation waveform design for low-power communication–sensing systems in highly dynamic environments. Full article
(This article belongs to the Special Issue Integrated Sensing and Communications for 6G)
Show Figures

Figure 1

24 pages, 988 KiB  
Article
Consistency-Oriented SLAM Approach: Theoretical Proof and Numerical Validation
by Zhan Wang, Alain Lambert, Yuwei Meng, Rongdong Yu, Jin Wang and Wei Wang
Electronics 2025, 14(15), 2966; https://doi.org/10.3390/electronics14152966 - 24 Jul 2025
Viewed by 164
Abstract
Simultaneous Localization and Mapping (SLAM) has long been a fundamental and challenging task in robotics literature, where safety and reliability are the critical issues for successfully autonomous applications of robots. Classically, the SLAM problem is tackled via probabilistic or optimization methods (such as [...] Read more.
Simultaneous Localization and Mapping (SLAM) has long been a fundamental and challenging task in robotics literature, where safety and reliability are the critical issues for successfully autonomous applications of robots. Classically, the SLAM problem is tackled via probabilistic or optimization methods (such as EKF-SLAM, Fast-SLAM, and Graph-SLAM). Despite their strong performance in real-world scenarios, these methods may exhibit inconsistency, which is caused by the inherent characteristic of model linearization or Gaussian noise assumption. In this paper, we propose an alternative monocular SLAM algorithm which theoretically relies on interval analysis (iMonoSLAM), to pursue guaranteed rather than probabilistically defined solutions. We consistently modeled and initialized the SLAM problem with a bounded-error parametric model. The state estimation process is then cast into an Interval Constraint Satisfaction Problem (ICSP) and resolved through interval constraint propagation techniques without any linearization or Gaussian noise assumption. Furthermore, we theoretically prove the obtained consistency and propose a versatile method for numerical validation. To the best of our knowledge, this is the first time such a proof has been proposed. A plethora of numerical experiments are carried to validate the consistency, and a preliminary comparison with classical EKF-SLAM in different noisy situations is also presented. Our proposed iMonoSLAM shows outstanding performance in obtaining reliable solutions, highlighting the potential application prospect in safety-critical scenarios of mobile robots. Full article
(This article belongs to the Special Issue Simultaneous Localization and Mapping (SLAM) of Mobile Robots)
Show Figures

Figure 1

19 pages, 736 KiB  
Article
Improved Adaptive Practical Tracking Control for Nonlinear Systems with Nontriangular Structured Uncertain Terms
by Liang Liu, Gang Sun and Rulan Bai
Actuators 2025, 14(8), 367; https://doi.org/10.3390/act14080367 - 24 Jul 2025
Viewed by 82
Abstract
This paper studies the adaptive practical tracking control (PTC) problem for a class of uncertain nonlinear systems (UNSs) with nontriangular structured uncertain terms and unknown parameters, where the boundary of nontriangular structured uncertain terms depends on all state variables. Based on the improved [...] Read more.
This paper studies the adaptive practical tracking control (PTC) problem for a class of uncertain nonlinear systems (UNSs) with nontriangular structured uncertain terms and unknown parameters, where the boundary of nontriangular structured uncertain terms depends on all state variables. Based on the improved adaptive backstepping technique, the state feedback tracking controller and update laws are first constructed. Then, by seeking the linear relationship between the state vector and the error vector, and by utilizing the comparison principle, it is verified that the developed adaptive PTC scheme can ensure that all signals of the closed-loop system are bounded and the tracking error converges to a bounded region. Finally, two examples, including a numerical example and the dual-motor drive servo system, are provided to show the effectiveness of this control method. Full article
(This article belongs to the Special Issue Analysis and Design of Linear/Nonlinear Control System)
Show Figures

Figure 1

18 pages, 495 KiB  
Article
Performance Analysis of Maximum Likelihood Detection in Cooperative DF MIMO Systems with One-Bit ADCs
by Tae-Kyoung Kim
Mathematics 2025, 13(15), 2361; https://doi.org/10.3390/math13152361 - 23 Jul 2025
Viewed by 174
Abstract
This paper investigates the error performance of cooperative decode-and-forward (DF) multiple-input multiple-output (MIMO) systems employing one-bit analog-to-digital converters (ADCs) over Rayleigh fading channels. In cooperative DF MIMO systems, detection errors at the relay may propagate to the destination, thereby degrading overall detection performance. [...] Read more.
This paper investigates the error performance of cooperative decode-and-forward (DF) multiple-input multiple-output (MIMO) systems employing one-bit analog-to-digital converters (ADCs) over Rayleigh fading channels. In cooperative DF MIMO systems, detection errors at the relay may propagate to the destination, thereby degrading overall detection performance. Although joint maximum likelihood detection can efficiently mitigate error propagation by leveraging probabilistic information from a source-to-relay link, its computational complexity is impractical. To address this issue, an approximate maximum likelihood (AML) detection scheme is introduced, which significantly reduces complexity while maintaining reliable performance. However, its analysis under one-bit ADCs is challenging because of its nonlinearity. The main contributions of this paper are summarized as follows: (1) a tractable upper bound on the pairwise error probability (PEP) of the AML detector is derived using Jensen’s inequality and the Chernoff bound, (2) the asymptotic behavior of the PEP is analyzed to reveal the achievable diversity gain, (3) the analysis shows that full diversity is attained only when symbol pairs in the PEP satisfy a sign-inverted condition and the relay correctly decodes the source symbol, and (4) the simulation results verify the accuracy of the theoretical analysis and demonstrate the effectiveness of the proposed analysis. Full article
(This article belongs to the Special Issue Computational Methods in Wireless Communication)
Show Figures

Figure 1

28 pages, 8337 KiB  
Article
Collision Detection Algorithms for Autonomous Loading Operations of LHD-Truck Systems in Unstructured Underground Mining Environments
by Mingyu Lei, Pingan Peng, Liguan Wang, Yongchun Liu, Ru Lei, Chaowei Zhang, Yongqing Zhang and Ya Liu
Mathematics 2025, 13(15), 2359; https://doi.org/10.3390/math13152359 - 23 Jul 2025
Viewed by 161
Abstract
This study addresses collision detection in the unmanned loading of ore from load-haul-dump (LHD) machines into mining trucks in underground metal mines. Such environments present challenges like heavy dust, confined spaces, sensor occlusions, and poor lighting. This work identifies two primary collision risks [...] Read more.
This study addresses collision detection in the unmanned loading of ore from load-haul-dump (LHD) machines into mining trucks in underground metal mines. Such environments present challenges like heavy dust, confined spaces, sensor occlusions, and poor lighting. This work identifies two primary collision risks and proposes corresponding detection strategies. First, for collisions between the bucket and tunnel walls, LiDAR is used to collect 3D point cloud data. The point cloud is processed through filtering, downsampling, clustering, and segmentation to isolate the bucket and tunnel wall. A KD-tree algorithm is then used to compute distances to assess collision risk. Second, for collisions between the bucket and the mining truck, a kinematic model of the LHD’s working device is established using the Denavit–Hartenberg (DH) method. Combined with inclination sensor data and geometric parameters, a formula is derived to calculate the pose of the bucket’s tip. Key points from the bucket and truck are then extracted to perform collision detection using the oriented bounding box (OBB) and the separating axis theorem (SAT). Simulation results confirm that the derived pose estimation formula yields a maximum error of 0.0252 m, and both collision detection algorithms demonstrate robust performance. Full article
(This article belongs to the Special Issue Mathematical Modeling and Analysis in Mining Engineering)
Show Figures

Figure 1

26 pages, 663 KiB  
Article
An Information-Theoretic Framework for Retrieval-Augmented Generation Systems
by Semih Yumuşak
Electronics 2025, 14(15), 2925; https://doi.org/10.3390/electronics14152925 - 22 Jul 2025
Viewed by 203
Abstract
Retrieval-Augmented Generation (RAG) systems have emerged as a critical approach for enhancing large language models with external knowledge, yet the field lacks systematic theoretical analysis for understanding their fundamental characteristics and optimization principles. A novel information-theoretic approach for analyzing and optimizing RAG systems [...] Read more.
Retrieval-Augmented Generation (RAG) systems have emerged as a critical approach for enhancing large language models with external knowledge, yet the field lacks systematic theoretical analysis for understanding their fundamental characteristics and optimization principles. A novel information-theoretic approach for analyzing and optimizing RAG systems is introduced in this paper by modeling them as cascading information channel systems where each component (query encoding, retrieval, context integration, and generation) functions as a distinct information-theoretic channel with measurable capacity. Following established practices in information theory research, theoretical insights are evaluated through systematic experimentation on controlled synthetic datasets that enable precise manipulation of schema entropy and isolation of information flow dynamics. Through this controlled experimental approach, the following key theoretical insights are supported: (1) RAG performance is bounded by the minimum capacity across constituent channels, (2) the retrieval channel represents the primary information bottleneck, (3) errors propagate through channel-dependent mechanisms with specific interaction patterns, and (4) retrieval capacity is fundamentally limited by the minimum of embedding dimension and schema entropy. Both quantitative metrics for evaluating RAG systems and practical design principles for optimization are provided by the proposed approach. Retrieval improvements yield 58–85% performance gains and generation improvements yield 58–110% gains, substantially higher than context integration improvements (∼9%) and query encoding modifications, as shown by experimental results on controlled synthetic environments, supporting the theoretical approach. A systematic theoretical analysis for understanding RAG system dynamics is provided by this work, with real-world validation and practical implementation refinements representing natural next phases for this research. Full article
(This article belongs to the Special Issue Advanced Natural Language Processing Technology and Applications)
Show Figures

Figure 1

19 pages, 8896 KiB  
Article
Future Residential Water Use and Management Under Climate Change Using Bayesian Neural Networks
by Young-Ho Seo, Jang Hyun Sung, Joon-Seok Park, Byung-Sik Kim and Junehyeong Park
Water 2025, 17(15), 2179; https://doi.org/10.3390/w17152179 - 22 Jul 2025
Viewed by 136
Abstract
This study projects future Residential Water Use (RWU) under climate change scenarios using a Bayesian Neural Network (BNN) model that quantifies the relationship between observed temperatures and RWU. Eighteen Global Climate Models (GCMs) under the Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) scenario were used [...] Read more.
This study projects future Residential Water Use (RWU) under climate change scenarios using a Bayesian Neural Network (BNN) model that quantifies the relationship between observed temperatures and RWU. Eighteen Global Climate Models (GCMs) under the Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) scenario were used to assess the uncertainties across these models. The findings indicate that RWU in Republic of Korea (ROK) is closely linked to temperature changes, with significant increases projected in the distant future (F3), especially during summer. Under the SSP5–8.5 scenario, RWU is expected to increase by up to 10.3% by the late 21st century (2081–2100) compared to the historical baseline. The model achieved a root mean square error (RMSE) of 11,400 m3/month, demonstrating reliable predictive performance. Unlike conventional deep learning models, the BNN provides probabilistic forecasts with uncertainty bounds, enhancing its suitability for climate-sensitive resource planning. This study also projects inflows to the Paldang Dam, revealing an overall increase in future water availability. However, winter water security may decline due to decreased inflow and minimal changes in RWU. This study suggests enhancing summer precipitation storage while considering downstream flood risks. Demand management strategies are recommended for addressing future winter water security challenges. This research highlights the importance of projecting RWU under climate change scenarios and emphasizes the need for strategic water resource management in ROK. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

18 pages, 1696 KiB  
Article
Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization
by Ming Pi
Appl. Sci. 2025, 15(15), 8126; https://doi.org/10.3390/app15158126 - 22 Jul 2025
Viewed by 185
Abstract
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape [...] Read more.
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape gait trajectory. To eliminate the use of sensors for torque measurement, a disturbance observer was established to estimate the interaction force between the human residual limb and the prosthetic receptacle. The cost function was combined with the interaction force and tracking errors of the joints. We aim to reduce the cost function by minimally changing the control weight of the gait trajectory generated by the Central Pattern Generator (CPG). The control scheme was primarily based on human-in-the-loop optimization to search for a suitable control weight to regenerate the appropriate gait trajectory. To handle the uncertainties and unknown coupling of the motors, an adaptive law was designed to estimate the unknown parameters of the system. Through a stability analysis, the control framework was verified by semi-globally uniformly ultimately bounded stability. Experimental results are discussed, and the effectiveness of the adaptive control framework is demonstrated. In Case 1, the mean error (MEAN) of the tracking performance was 3.6° and 3.3°, respectively. And the minimized mean square errors (MSEs) of the tracking performance were 2.3° and 2.8°, respectively. In Case 2, the mean error (MEAN) of the tracking performance is 2.7° and 3.1°, respectively. And the minimized mean square errors (MSEs) of the tracking performance are 1.8° and 2.4°, respectively. In Case 3, the mean errors (MEANs) of the tracking performance for subject1 and 2 are 2.4°, 2.9°, 3.4°, and 2.2°, 2.8°, 3.1°, respectively. The minimized mean square errors (MSEs) of the tracking performance for subject1 and 2 were 1.6°, 2.3°, 2.6°, and 1.3°, 1.7°, 2.2°, respectively. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

16 pages, 1856 KiB  
Article
Gas in Transition: An ARDL Analysis of Economic and Fuel Drivers in the European Union
by Olena Pavlova, Kostiantyn Pavlov, Oksana Liashenko, Andrzej Jamróz and Sławomir Kopeć
Energies 2025, 18(14), 3876; https://doi.org/10.3390/en18143876 - 21 Jul 2025
Viewed by 430
Abstract
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed [...] Read more.
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed integration orders, allowing valid ARDL estimation. The results reveal a statistically significant long-run relationship (cointegration) between gas consumption and the energy–economic system. In the short run, the use of liquid fuel exerts a strong positive influence on gas demand, while the effects of GDP materialise only after a two-year lag. Solid fuels show a delayed substitutive impact, reflecting the ongoing transition from coal. An error correction model confirms rapid convergence to equilibrium, with 77% of deviations corrected within one period. Recursive residual and CUSUM tests indicate structural stability over time. These findings highlight the responsiveness of EU gas demand to both economic and policy signals, offering valuable insights for energy modelling and strategic planning under the European Green Deal. Full article
Show Figures

Figure 1

25 pages, 1507 KiB  
Article
DARN: Distributed Adaptive Regularized Optimization with Consensus for Non-Convex Non-Smooth Composite Problems
by Cunlin Li and Yinpu Ma
Symmetry 2025, 17(7), 1159; https://doi.org/10.3390/sym17071159 - 20 Jul 2025
Viewed by 170
Abstract
This paper proposes a Distributed Adaptive Regularization Algorithm (DARN) for solving composite non-convex and non-smooth optimization problems in multi-agent systems. The algorithm employs a three-phase iterative framework to achieve efficient collaborative optimization: (1) a local regularized optimization step, which utilizes proximal mappings to [...] Read more.
This paper proposes a Distributed Adaptive Regularization Algorithm (DARN) for solving composite non-convex and non-smooth optimization problems in multi-agent systems. The algorithm employs a three-phase iterative framework to achieve efficient collaborative optimization: (1) a local regularized optimization step, which utilizes proximal mappings to enforce strong convexity of weakly convex objectives and ensure subproblem well-posedness; (2) a consensus update based on doubly stochastic matrices, guaranteeing asymptotic convergence of agent states to a global consensus point; and (3) an innovative adaptive regularization mechanism that dynamically adjusts regularization strength using local function value variations to balance stability and convergence speed. Theoretical analysis demonstrates that the algorithm maintains strict monotonic descent under non-convex and non-smooth conditions by constructing a mixed time-scale Lyapunov function, achieving a sublinear convergence rate. Notably, we prove that the projection-based update rule for regularization parameters preserves lower-bound constraints, while spectral decay properties of consensus errors and perturbations from local updates are globally governed by the Lyapunov function. Numerical experiments validate the algorithm’s superiority in sparse principal component analysis and robust matrix completion tasks, showing a 6.6% improvement in convergence speed and a 51.7% reduction in consensus error compared to fixed-regularization methods. This work provides theoretical guarantees and an efficient framework for distributed non-convex optimization in heterogeneous networks. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

20 pages, 3986 KiB  
Article
Sentinel-2 Satellite-Derived Bathymetry with Data-Efficient Domain Adaptation
by Christos G. E. Anagnostopoulos, Vassilios Papaioannou, Konstantinos Vlachos, Anastasia Moumtzidou, Ilias Gialampoukidis, Stefanos Vrochidis and Ioannis Kompatsiaris
J. Mar. Sci. Eng. 2025, 13(7), 1374; https://doi.org/10.3390/jmse13071374 - 18 Jul 2025
Viewed by 257
Abstract
Satellite-derived bathymetry (SDB) enables the efficient mapping of shallow waters such as coastal zones but typically requires extensive local ground truth data to achieve high accuracy. This study evaluates the effectiveness of transfer learning in reducing this requirement while keeping estimation accuracy at [...] Read more.
Satellite-derived bathymetry (SDB) enables the efficient mapping of shallow waters such as coastal zones but typically requires extensive local ground truth data to achieve high accuracy. This study evaluates the effectiveness of transfer learning in reducing this requirement while keeping estimation accuracy at acceptable levels by adapting a deep learning model pretrained on data from Puck Lagoon (Poland) to a new coastal site in Agia Napa (Cyprus). Leveraging the open MagicBathyNet benchmark dataset and a lightweight U-Net architecture, three scenarios were studied and compared: direct inference to Cyprus, site-specific training in Cyprus, and fine-tuning from Poland to Cyprus with incrementally larger subsets of training data. Results demonstrate that fine-tuning with 15 samples reduces RMSE by over 50% relative to the direct inference baseline. In addition, the domain adaptation approach using 15 samples shows comparable performance to the site-specific model trained on all available data in Cyprus. Depth-stratified error analysis and paired statistical tests confirm that around 15 samples represent a practical lower bound for stable SDB, according to the MagicBathyNet benchmark. The findings of this work provide quantitative evidence on the effectiveness of deploying data-efficient SDB pipelines in settings of limited in situ surveys, as well as a practical lower bound for clear and shallow coastal waters. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

20 pages, 3825 KiB  
Article
Nonlinear Observer-Based Distributed Adaptive Fault-Tolerant Control for Vehicle Platoon with Actuator Faults, Saturation, and External Disturbances
by Anqing Tong, Yiguang Wang, Xiaojie Li, Xiaoyan Zhan, Minghao Yang and Yunpeng Ding
Electronics 2025, 14(14), 2879; https://doi.org/10.3390/electronics14142879 - 18 Jul 2025
Viewed by 177
Abstract
This work studies the issue of distributed fault-tolerant control for a vehicle platoon with actuator faults, saturation, and external disturbances. As the degrees of wear, age, and overcurrent of a vehicle actuator might change during the working process, it is more practical to [...] Read more.
This work studies the issue of distributed fault-tolerant control for a vehicle platoon with actuator faults, saturation, and external disturbances. As the degrees of wear, age, and overcurrent of a vehicle actuator might change during the working process, it is more practical to consider the actuator faults to be time-varying rather than constant. Considering a situation in which actuator faults may cause partial actuator effectiveness loss, a novel adaptive updating mechanism is developed to estimate this loss. A new nonlinear observer is proposed to estimate external disturbances without requiring us to know their upper bounds. Since non-zero initial spacing errors (ISEs) may cause instability of the vehicle platoon, a novel exponential spacing policy (ESP) is devised to mitigate the adverse effects of non-zero ISEs. Based on the developed nonlinear observer, adaptive updating mechanism, radial basis function neural network (RBFNN), and the ESP, a novel nonlinear observer-based distributed adaptive fault-tolerant control strategy is proposed to achieve the objectives of platoon control. Lyapunov theory is utilized to prove the vehicle platoon’s stability. The rightness and effectiveness of the developed control strategy are validated using a numerical example. Full article
Show Figures

Figure 1

22 pages, 14847 KiB  
Article
Formation Control of Underactuated AUVs Using a Fractional-Order Sliding Mode Observer
by Long He, Mengting Xie, Ya Zhang, Shizhong Li, Bo Li, Zehui Yuan and Chenrui Bai
Fractal Fract. 2025, 9(7), 465; https://doi.org/10.3390/fractalfract9070465 - 18 Jul 2025
Viewed by 249
Abstract
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining [...] Read more.
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining fractional calculus and double-power convergence laws to enhance the estimation accuracy of high-frequency disturbances. An adaptive gain mechanism is introduced to avoid dependence on the upper bound of disturbances. Second, a formation cooperative control strategy based on path parameter coordination is proposed. By setting independent reference points for each AUV and exchanging path parameters, formation consistency is achieved with low communication overhead. For the followers’ speed control problem, an error-based expected speed adjustment mechanism is introduced, and a hyperbolic tangent function is used to replace the traditional arctangent function to improve the response speed of the system. Numerical simulation results show that this control method performs well in terms of path-following accuracy, formation maintenance capability, and disturbance suppression, verifying its effectiveness and robustness in complex marine environments. Full article
Show Figures

Figure 1

24 pages, 3235 KiB  
Article
A Cost-Sensitive Small Vessel Detection Method for Maritime Remote Sensing Imagery
by Zhuhua Hu, Wei Wu, Ziqi Yang, Yaochi Zhao, Lewei Xu, Lingkai Kong, Yunpei Chen, Lihang Chen and Gaosheng Liu
Remote Sens. 2025, 17(14), 2471; https://doi.org/10.3390/rs17142471 - 16 Jul 2025
Viewed by 189
Abstract
Vessel detection technology based on marine remote sensing imagery is of great importance. However, it often faces challenges, such as small vessel targets, cloud occlusion, insufficient data volume, and severely imbalanced class distribution in datasets. These issues result in conventional models failing to [...] Read more.
Vessel detection technology based on marine remote sensing imagery is of great importance. However, it often faces challenges, such as small vessel targets, cloud occlusion, insufficient data volume, and severely imbalanced class distribution in datasets. These issues result in conventional models failing to meet the accuracy requirements for practical applications. In this paper, we first construct a novel remote sensing vessel image dataset that includes various complex scenarios and enhance the data volume and diversity through data augmentation techniques. Secondly, we address the class imbalance between foreground (small vessels) and background in remote sensing imagery from two perspectives: the sensitivity of IoU metrics to small object localization errors and the innovative design of a cost-sensitive loss function. Specifically, at the dataset level, we select vessel targets appearing in the original dataset as templates and randomly copy–paste several instances onto arbitrary positions. This enriches the diversity of target samples per image and mitigates the impact of data imbalance on the detection task. At the algorithm level, we introduce the Normalized Wasserstein Distance (NWD) to compute the similarity between bounding boxes. This enhances the importance of small target information during training and strengthens the model’s cost-sensitive learning capabilities. Ablation studies reveal that detection performance is optimal when the weight assigned to the NWD metric in the model’s loss function matches the overall proportion of small objects in the dataset. Comparative experiments show that the proposed NWD-YOLO achieves Precision, Recall, and AP50 scores of 0.967, 0.958, and 0.971, respectively, meeting the accuracy requirements of real-world applications. Full article
Show Figures

Figure 1

Back to TopTop