Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Keywords = equilibration process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3905 KiB  
Article
Stability of Ultrafast Laser-Induced Stress in Fused Silica and Ultra-Low Expansion Glass
by Carolyn C. Hokin and Brandon D. Chalifoux
Photonics 2025, 12(8), 778; https://doi.org/10.3390/photonics12080778 (registering DOI) - 1 Aug 2025
Abstract
Stress fields imparted with an ultrafast laser can correct low spatial frequency surface figure error of mirrors through ultrafast laser stress figuring (ULSF): the formation of nanograting structures within the bulk substrate generates localized stress, creating bending moments that equilibrize via wafer deformation. [...] Read more.
Stress fields imparted with an ultrafast laser can correct low spatial frequency surface figure error of mirrors through ultrafast laser stress figuring (ULSF): the formation of nanograting structures within the bulk substrate generates localized stress, creating bending moments that equilibrize via wafer deformation. For ULSF to be used as an optical figuring process, the ultrafast laser generated stress must be effectively permanent or risk unwanted figure drift. Two isochronal annealing experiments were performed to measure ultrafast laser-generated stress stability in fused silica and Corning ultra-low expansion (ULE) wafers. The first experiment tracked changes to induced astigmatism up to 1000 °C on 25.4 mm-diameter wafers. Only small changes were measured after each thermal cycle up to 500 °C for both materials, but significant changes were observed at higher temperatures. The second experiment tracked stress changes in fused silica and ULE up to 500 °C but with 4 to 16× higher signal-to-noise ratio. Change in trefoil on 100 mm-diameter wafers was measured, and the induced stress in fused silica and ULE was found to be stable after thermal cycling up to 300 °C and 200 °C, respectively, with larger changes at higher temperatures. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

13 pages, 1895 KiB  
Article
Class-Dependent Solar Flare Effects on Mars’ Upper Atmosphere: MAVEN NGIMS Observations of X8.2 and M6.0 from September 2017
by Junaid Haleem and Shican Qiu
Universe 2025, 11(8), 245; https://doi.org/10.3390/universe11080245 - 25 Jul 2025
Viewed by 179
Abstract
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on [...] Read more.
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on 10 September 2017 and M6.0 on 17 September 2017. This study shows nonlinear, class-dependent effects, compositional changes, and recovery processes not recorded in previous investigations. Species-specific responses deviated significantly from irradiance proportionality, even though the soft X-ray flux in the X8.2 flare was 13 times greater. Argon (Ar) concentrations rose 3.28× (compared to 1.13× for M6.0), and radiative cooling led CO2 heating to approach a halt at ΔT = +40 K (X8.2) against +19 K (M6.0) at exobase altitudes (196–259 km). N2 showed the largest class difference, where temperatures rose by +126 K (X8.2) instead of +19 K (M6.0), therefore displaying flare-magnitude dependent thermal sensitivity. The 1.95× increase in O concentrations during X8.2 and the subsequent decrease following M6.0 (−39 K cooling) illustrate the contradiction between photochemical production and radiative loss. The O/CO2 ratio at 225 km dropped 46% during X8.2, revealing compositional gradients boosted by flares. Recovery timeframes varied by class; CO2 quickly re-equilibrated because of effective cooling, whereas inert species (Ar, N2) stabilized within 1–2 orbits after M6.0 but needed >10 orbits of the MAVEN satellite after the X8.2 flare. The observations of the X8.2 flare came from the western limb of the Sun, but the M6.0 flare happened on the far side. The CME shock was the primary driver of Mars’ EUV reaction. These findings provide additional information on atmospheric loss and planetary habitability by indicating that Mars’ thermosphere has a saturation threshold where strong flares induce nonlinear energy partitioning that encourages the departure of lighter species. Full article
Show Figures

Figure 1

17 pages, 889 KiB  
Review
Functions of Intrinsically Disordered Regions
by Linhu Xiao and Kun Xia
Biology 2025, 14(7), 810; https://doi.org/10.3390/biology14070810 - 4 Jul 2025
Viewed by 513
Abstract
Intrinsically disordered regions (IDRs), defined as protein segments lacking stable tertiary structures, are ubiquitously present in the human proteome and enriched with disease-associated mutations. IDRs harbor molecular recognition features (MoRFs) and post-translational modification sites (e.g., phosphorylation), enabling dynamic intermolecular interactions through conformational plasticity. [...] Read more.
Intrinsically disordered regions (IDRs), defined as protein segments lacking stable tertiary structures, are ubiquitously present in the human proteome and enriched with disease-associated mutations. IDRs harbor molecular recognition features (MoRFs) and post-translational modification sites (e.g., phosphorylation), enabling dynamic intermolecular interactions through conformational plasticity. Furthermore, IDRs drive liquid–liquid phase separation (LLPS) of biomacromolecules via multivalent interactions such as electrostatic attraction and pi–pi interactions, generating biomolecular condensates that are essential throughout the cellular lifecycle. These condensates separate intracellular space, forming a physical barrier to avoid interference between other molecules, thereby improving reaction specificity and efficiency. As a dynamically equilibrated process, LLPS formation and maintenance are regulated by multiple factors, endowing the condensates with rapid responsiveness to environmental cues and functional versatility in modulating diverse signaling cascades. Consequently, disruption of LLPS homeostasis can derail its associated biological processes, ultimately contributing to disease pathogenesis. Moreover, precisely because liquid–liquid phase separation (LLPS) is co-regulated by multiple factors, it may provide novel insights into the pathogenic mechanisms of disorders such as autism spectrum disorder (ASD), which result from the cumulative effects of multiple etiological factors. Full article
Show Figures

Figure 1

19 pages, 7336 KiB  
Article
Impacts of Structural Impurities and Solution pH on Hausmannite Transformation to Birnessite: Environmental Implications for Metal Solubility and Sequestration
by Boyoung Song, Mohammad M. Rashid, Evert J. Elzinga and Bojeong Kim
Minerals 2025, 15(7), 697; https://doi.org/10.3390/min15070697 - 29 Jun 2025
Viewed by 520
Abstract
Spinel-structured hausmannite (Mn(II)Mn(III)2O4) is a vital intermediate in Mn mineralogy and a key player in redox chemistry in the environment. Its transformation into other Mn oxides is a critical factor in controlling its environmental occurrence and reactivity. Yet structural [...] Read more.
Spinel-structured hausmannite (Mn(II)Mn(III)2O4) is a vital intermediate in Mn mineralogy and a key player in redox chemistry in the environment. Its transformation into other Mn oxides is a critical factor in controlling its environmental occurrence and reactivity. Yet structural impurities and solution pH, as well as the fate of impurities during transformation, which influence hausmannite transformation processes and products, remain largely unknown. In the present work, we address this knowledge gap by investigating pristine and metal-substituted hausmannite, specifically nickel (Ni) or cobalt (Co), equilibrated at two time periods (8 h and 30 days) and three different pH levels (4, 5, and 7). Solution chemistry data revealed that both the equilibration period and pH had a significant impact on hausmannite dissolution rates and the concomitant repartitioning of Ni or Co. Hausmannite with Ni or Co substitution exhibited lower dissolution rates than pristine mineral under acidic conditions. Mineralogy and crystal chemistry data indicated that hausmannite was the major host phase after 30-day equilibration, followed by minor transformed products, including birnessite and manganite. Although minor, birnessite became more abundant than manganite at low pHs. Analytical high-resolution transmission electron microscopy (HRTEM) analyses revealed a poorly crystalline, nano-scaled MnO2 formed from hausmannite and the majority of metal impurities remaining in the host hausmannite. Yet Co was associated with both hausmannite and the newly formed birnessite, whereas Ni was only found with hausmannite, indicating the strong sequestration of Co by Mn(II/III) and Mn(IV) mineral phases. This study highlights the significant impacts of metal impurities and pH on the stability of hausmannite and its transformation into birnessite, as well as the control of Mn-oxide minerals on the solubility and sequestration of transition metals in the environment. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

16 pages, 2411 KiB  
Article
Process Performance and Biogas Output: Impact of Fluctuating Acetate Concentrations on Methanogenesis in Horizontal Anaerobic Reactors
by Jovale Vincent Tongco, Md Abu Hanifa Jannat, Sangmin Kim, Sang Hyeok Park and Seokhwan Hwang
Energies 2025, 18(12), 3120; https://doi.org/10.3390/en18123120 - 13 Jun 2025
Viewed by 495
Abstract
The influence of introducing fluctuations in acetate feeding concentrations on the process stability of a lab-scale horizontal anaerobic reactor (HAR) was investigated to ascertain its effects on acetoclastic methanogenesis. Acetate concentrations were randomized at 85 g COD/L ± 20% and discontinuously fed in [...] Read more.
The influence of introducing fluctuations in acetate feeding concentrations on the process stability of a lab-scale horizontal anaerobic reactor (HAR) was investigated to ascertain its effects on acetoclastic methanogenesis. Acetate concentrations were randomized at 85 g COD/L ± 20% and discontinuously fed in the duplicate HARs for five days per week (giving the system time to rest and equilibrate for two days). The reactors were monitored daily with respect to performance indicators (physicochemical variables). The residual acetate concentration was observed to fluctuate at the initial stages, followed by a converging trend (decrease in variance) until the end of operation. Furthermore, letting the system self-neutralize and equilibrate during rest days resulted in improved process performance. The daily acetate degradation efficiency at ~90% and methane concentration at ~60% were attained after operating the reactors for 80 days. The results divulged that introducing fluctuations in acetate feeding concentrations does not affect the stability of biogas production and methane concentration. The acclimatization of the methanogenic population (predominantly Methanosaeta, then shifting to Methanosarcina) was also observed. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

24 pages, 4388 KiB  
Article
Closed-System Magma Degassing and Disproportionation of SO2 Revealed by Changes in the Concentration and δ34S Value of H2S(g) in the Solfatara Fluids (Campi Flegrei, Italy)
by Luigi Marini, Claudia Principe and Matteo Lelli
Geosciences 2025, 15(5), 162; https://doi.org/10.3390/geosciences15050162 - 1 May 2025
Cited by 1 | Viewed by 554
Abstract
The use of a conceptual model of reference and modelling of relevant processes is mandatory to correctly interpret chemical and isotopic data. Adopting these basic guidelines, we have interpretated the unprecedented increase in the H2S(g) concentration and the concurrent unexpected [...] Read more.
The use of a conceptual model of reference and modelling of relevant processes is mandatory to correctly interpret chemical and isotopic data. Adopting these basic guidelines, we have interpretated the unprecedented increase in the H2S(g) concentration and the concurrent unexpected decrease in the δ34S value of H2S(g) recorded since 2018 in the fumarolic effluents of the Bocca Grande fumarolic vent at Solfatara, Campi Flegrei caldera, in the framework of our conceptual model of the Solfatara magmatic–hydrothermal system. Assuming that the magma chamber situated at depths ≥ 8 km was filled at the end of the 1982–1984 bradyseismic crisis and no refilling episodes took place afterwards, as suggested by gas geochemistry, the concentration and the δ34S value of H2S(g) of the Bocca Grande fumarolic effluents are controlled by closed-system degassing of the melt at depths ≥ 8 km and disproportionation of SO2 in the deep hydrothermal reservoir (6.5–7.5 km depth) hosted in carbonate rocks where H2S equilibrates. These processes have been active during the last 40 years, but 41.1% (±6.4%) of the sulfur initially stored in the melt (2200 mg/kg) was lost in the 4-year period of April 2018–April 2022. This marked loss of S from the melt in 2018–2022 might be due to the high solubility of sulfur in the melt, which caused its preferential separation during the late degassing stages. These findings are of utmost importance for the surveillance of the Solfatara magmatic–hydrothermal system during the ongoing bradyseismic crisis. Full article
(This article belongs to the Special Issue Geochemistry in the Development of Geothermal Resources)
Show Figures

Figure 1

17 pages, 2533 KiB  
Article
Unveiling the Dynamics of NO3 at the Air–Water Interface and in Bulk Water: A Comparative Study with Cl and ClO
by Yongxia Hu, Ying Zhou, Mohammad Hassan Hadizadeh and Fei Xu
Molecules 2025, 30(8), 1724; https://doi.org/10.3390/molecules30081724 - 11 Apr 2025
Cited by 1 | Viewed by 510
Abstract
The interaction of nitrate radicals (NO3) with the air–water interface is a critical aspect of atmospheric chemistry, influencing processes such as secondary organic aerosol (SOA) formation, pollutant transformation, and nighttime oxidation. This study investigates the behavior of NO3 radicals at [...] Read more.
The interaction of nitrate radicals (NO3) with the air–water interface is a critical aspect of atmospheric chemistry, influencing processes such as secondary organic aerosol (SOA) formation, pollutant transformation, and nighttime oxidation. This study investigates the behavior of NO3 radicals at the air–water interface and in bulk water environments through ab initio molecular dynamics simulations, directly comparing them with Cl and ClO radicals. Three distinct configurations of NO3 in water droplets were analyzed: surface-parallel, surface-perpendicular, and bulk-phase. The results reveal environment-dependent dynamics, with surface-localized NO3 radicals exhibiting fewer but more flexible hydrogen bonds compared to bulk-solvated radicals. Analysis of radial distribution functions, coordination numbers, and population distributions demonstrates that NO3 radicals maintain distinct interfacial and bulk-phase preferences, with rapid equilibration in both environments. Electronic structure analysis shows significant modulation of spin density and molecular orbital distributions between surface and bulk environments. The comparative analysis with Cl and ClO radicals highlights how the unique planar geometry and delocalized π-system of NO3 influence its hydration patterns and interfacial activity. These results offer fundamental molecular-level insights into NO3 radical behavior at the air–water interface and in aqueous environments, enhancing our understanding of their role in heterogeneous atmospheric processes and nocturnal chemistry. Full article
Show Figures

Figure 1

17 pages, 2774 KiB  
Article
Synergistic Solvent Extraction of Lanthanoids with Traditional Ligands (4-Acylpyrazolone and Bidentate Nitrogen Bases) in a Nontraditional Diluent Confirmed by Slope Analysis and NMR
by Maria Atanassova, Nina Todorova and Svetlana Simova
Molecules 2025, 30(4), 786; https://doi.org/10.3390/molecules30040786 - 8 Feb 2025
Viewed by 651
Abstract
The synergistic solvent extraction of La(III), Eu(III) and Lu(III) with a chelating extractant, 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (HL), and neutral bidentate heterocyclic amines, such as 1,10-phenanthroline (S1 (phen)) or 2,2′-bipyridine (S2 (bipy)) in an ionic liquid of the imidazolium family [C1C4im+ [...] Read more.
The synergistic solvent extraction of La(III), Eu(III) and Lu(III) with a chelating extractant, 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (HL), and neutral bidentate heterocyclic amines, such as 1,10-phenanthroline (S1 (phen)) or 2,2′-bipyridine (S2 (bipy)) in an ionic liquid of the imidazolium family [C1C4im+][Tf2N] was investigated. Synergistic effects have been observed to result from the formation of a ternary complex in the organic phase, particularly in cases where the ligand S is a neutral synergistic agent. Examples include La(L)2(S2)2, Eu(L)3(S2) and Lu(L)x(S2)2, as well as La(L)3(S1)2, Eu(L)2(S1) and Lu(L)3(S1)x). The parameters of the solvent extraction process were determined and the influence of the synergistic agent on the extraction process was discussed. Additionally, the synergistic increase and separation factors were determined. The equilibrated organic phases were analyzed using 1H NMR spectroscopy to elucidate the synergism in an extraction mechanism. The role of the ionic diluent in complexation processes and selectivity was investigated with the employment of the two synergistic agents for various metal s-, p-, d- and f-cations in the periodic table, with almost 22 metal ions. Full article
Show Figures

Figure 1

20 pages, 6743 KiB  
Article
Establishing a General Atomistic Model for the Stratum Corneum Lipid Matrix Based on Experimental Data for Skin Permeation Studies
by Navaneethan Radhakrishnan, Sunil C. Kaul, Renu Wadhwa, Lee-Wei Yang and Durai Sundar
Int. J. Mol. Sci. 2025, 26(2), 674; https://doi.org/10.3390/ijms26020674 - 15 Jan 2025
Viewed by 1616
Abstract
Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model [...] Read more.
Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies. The model was built using ceramides in extended conformation as the backbone along with free fatty acids and cholesterol. The properties of the equilibrated model were in agreement with the neutron scattering data and hydration behavior previously reported in the literature. The permeability of molecules, such as water, benzene and estradiol, and the molecular mechanism of action of permeation enhancers, such as eucalyptol and limonene, were evaluated using the model. The new model can be reliably used for studying the permeation of small molecules and for gaining mechanistic insights into the action of permeation enhancers. Full article
(This article belongs to the Collection Feature Papers in Molecular Informatics)
Show Figures

Figure 1

12 pages, 692 KiB  
Article
The Adducts Lipid Peroxidation Products with 2′-DeoxyNucleosides: A Theoretical Approach of Ionisation Potential
by Boleslaw T. Karwowski
Appl. Sci. 2025, 15(1), 437; https://doi.org/10.3390/app15010437 - 5 Jan 2025
Viewed by 1432
Abstract
The human body contains ~1014 cells—each of which is separated by a lipid bilayer, along with its organeller. Unsaturated fatty acids are located on the external layer and, as a result, are particularly exposed to harmful factors, including xenobiotics and ionising radiation. [...] Read more.
The human body contains ~1014 cells—each of which is separated by a lipid bilayer, along with its organeller. Unsaturated fatty acids are located on the external layer and, as a result, are particularly exposed to harmful factors, including xenobiotics and ionising radiation. During this activity, lipid peroxidation products are generated, e.g., 4-hydroxy-2-nonenal (HNA), 4-oxo-2(E)-nonenal (ONE), and malondialdehyde (MDA). The mentioned aldehydes can react with cytosolic 2′-deoxynucleosides via Michael addition. In this paper, the following adducts have been taken into theoretical consideration: ε-dCyt, H-ε-dAde, ε-dCyt, H-ε-dAde, H-ε-dGua, R/S-OH-PdGua, N2,3-ε-dGua, M1-dGua, N1-ε-dGua, and HNE-dGua. The presence of the above molecules can alter a cell’s antioxidant pool. With this in mind, the adiabatic ionisation potential (AIP) and vertical ionisation potential (VIP), as well as the spin and charge distributions, are discussed. For this purpose, DFT studies were performed at the M06-2x/6-31++G** level of theory in the aqueous phase (both non-equilibrated (NE) and equilibrated (EQ) solvent–solute interaction modes), together with a Hirshfeld charge and spin distribution analysis. The obtained results indicate that the AIPs of all the investigated molecules fell within a range of 5.72 and 5.98 eV, which is consistent with the reference value of 7,8-dihydro-8-oxo-2′-deoxyguanosine (OXOdGua), 5.78 eV. N2,3-ε-dGua and M1-dGua were the only exceptions, whose VIP and AIP were noted as higher. The electronic properties analysis of 2′-deoxynucleoside adducts with lipid peroxidation products reveals their potential influence on the cells’ antioxidant pool, whereby they can affect the communication process between proteins, lipids, and nucleotides. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

17 pages, 2558 KiB  
Article
Influencing Factors and Calibration of the Direct Vapor Equilibration Method for Measuring Soil Water Isotopes
by Zhenguo Xing, Ruimin He, Jie Fang, Lu Bai, Xuejia Li, Xiaoqing Liu, Gang Liu and Mingjing Zhou
Water 2025, 17(1), 116; https://doi.org/10.3390/w17010116 - 4 Jan 2025
Viewed by 883
Abstract
The direct vapor equilibration-laser spectroscopy (DVE-LS) method can be used to measure the stable isotopes of soil water (δ2H and δ18O), a technique that is easier to operate and quicker for sampling compared to the traditional cryogenic vacuum distillation [...] Read more.
The direct vapor equilibration-laser spectroscopy (DVE-LS) method can be used to measure the stable isotopes of soil water (δ2H and δ18O), a technique that is easier to operate and quicker for sampling compared to the traditional cryogenic vacuum distillation (CVD) method. However, the soil water isotope values thus obtained often deviate from the true value, which is affected by the equilibrium temperature during the measurement process. Therefore, this study conducted an indoor experiment on five soil samples of varying textures. The dry soil was wetted by reference water samples to four different soil water content (SWC) values and then equilibrated at five different temperatures. The soil water isotope deviation value (SWIDV) of the DVE-LS method was determined by building a correction equation between SWIDV and the influencing factors (equilibrium temperature, soil clay content (SCC), and SWC, after which the correction equation values were compared to those calculated by the CVD method for the field-collected soil samples to check the accuracy. The results shows that the Δδ2H value increased with increasing equilibrium temperature and soil clay content, but decreased with increasing SWC. The multi-factor variance analysis shows that equilibrium temperature, SCC, and SWC significantly affected the Δδ2H values and deviation values with the DVE-LS method, but insignificantly affected the Δδ18O values and deviation values. The correction equations (3) was built at different equilibrium temperatures, and the RMSE decreased from 4.07‰ to 1.24‰ and from 8.99‰ to 4.14‰, respectively, as calibrated by the isotope values of soil samples collected in Changwu and Suide counties. The correction equations under various equilibrium temperatures increased the accuracy of the DVE-LS method in obtaining soil water isotope values and promoted the application of the DVE-LS method in soil water isotope analysis. Full article
Show Figures

Figure 1

20 pages, 594 KiB  
Article
Solution of a Nonlinear Integral Equation Arising in the Moment Approximation of Spatial Logistic Dynamics
by Mikhail Nikolaev, Alexey Nikitin and Ulf Dieckmann
Mathematics 2024, 12(24), 4033; https://doi.org/10.3390/math12244033 - 23 Dec 2024
Viewed by 796
Abstract
We investigate a nonlinear integral equation derived through moment approximation from the individual-based representation of spatial logistic dynamics. The equation describes how the densities of pairs of individuals represented by points in continuous space are expected to equilibrate under spatially explicit birth–death processes [...] Read more.
We investigate a nonlinear integral equation derived through moment approximation from the individual-based representation of spatial logistic dynamics. The equation describes how the densities of pairs of individuals represented by points in continuous space are expected to equilibrate under spatially explicit birth–death processes characterized by constant fecundity with local natal dispersal and variable mortality determined by local competition. The equation is derived from a moment hierarchy truncated by a moment closure expressing the densities of triplets as a function of the densities of pairs. Focusing on results for individuals inhabiting two-dimensional habitats, we explore the solvability of the equation by introducing a dedicated space of functions that are integrable up to a constant. Using this function space, we establish sufficient conditions for the existence of solutions of the equation within a zero-centered ball. For illustration and further insights, we complement our analytical findings with numerical results. Full article
(This article belongs to the Collection Theoretical and Mathematical Ecology)
Show Figures

Figure 1

16 pages, 6035 KiB  
Article
CO2 Emission from Caves by Temperature-Driven Air Circulation—Insights from Samograd Cave, Croatia
by Nenad Buzjak, Franci Gabrovšek, Aurel Perșoiu, Christos Pennos, Dalibor Paar and Neven Bočić
Climate 2024, 12(12), 199; https://doi.org/10.3390/cli12120199 - 26 Nov 2024
Viewed by 2001
Abstract
Opposite to atmospheric CO2 concentrations, which reach a minimum during the vegetation season (e.g., June–August in the Northern Hemisphere), soil CO2 reaches a maximum in the same period due to the root respiration. In karst areas, characterized by high rock porosity, [...] Read more.
Opposite to atmospheric CO2 concentrations, which reach a minimum during the vegetation season (e.g., June–August in the Northern Hemisphere), soil CO2 reaches a maximum in the same period due to the root respiration. In karst areas, characterized by high rock porosity, this excess CO2 seeps inside caves, locally increasing pCO2 values above 1%. To better understand the role of karst areas in the carbon cycle, it is essential to understand the mechanisms of CO2 dynamics in such regions. In this study, we present and discuss the spatial and temporal variability of air temperature and CO2 concentrations in Samograd Cave, Croatia, based on three years of monthly spot measurements. The cave consists of a single descending passage, resulting in a characteristic bimodal climate, with stable conditions during summer (i.e., stagnant air inside the cave) and a strong convective cell bringing in cold air during winter. This bimodality is reflected in both CO2 concentrations and air temperatures. In summer, the exchange of air through the cave’s main entrance is negligible, allowing the temperature and CO2 concentration to equilibrate with the surrounding rocks, resulting in high in-cave CO2 concentrations, sourced from enhanced root respiration. During cold periods, CO2 concentrations are low due to frequent intrusions of fresh external air, which effectively flush out CO2 from the cave. Both parameters show distinct spatial variability, highlighting the role of cave morphology in their dynamics. The CO2 concentrations and temperatures have increased over the observation period, in line with external changes. Our results highlight the role of caves in transferring large amounts of CO2 from soil to the atmosphere via caves, a process that could have a large impact on the global atmospheric CO2 budget, and thus, call for a more in-depth study of these mechanisms. Full article
Show Figures

Figure 1

20 pages, 661 KiB  
Article
Novel Green Strategy to Recover Bioactive Compounds with Different Polarities from Horned Melon Peel
by Teodora Cvanić, Mirjana Sulejmanović, Milica Perović, Jelena Vulić, Lato Pezo, Gordana Ćetković and Vanja Travičić
Foods 2024, 13(18), 2880; https://doi.org/10.3390/foods13182880 - 11 Sep 2024
Cited by 1 | Viewed by 1273
Abstract
Around 20–30% of the horned melon’s weight is peel. This peel is often discarded or underutilized despite containing valuable bioactive compounds. Conventional methods for extracting polyphenols and carotenoids from horned melon peel are typically inefficient, environmentally harmful, or require significant time and energy. [...] Read more.
Around 20–30% of the horned melon’s weight is peel. This peel is often discarded or underutilized despite containing valuable bioactive compounds. Conventional methods for extracting polyphenols and carotenoids from horned melon peel are typically inefficient, environmentally harmful, or require significant time and energy. The potential of green cloud point extraction (CPE) or green surfactant-based extraction for recovering bioactives with different polarities from this kind of by-product has not been thoroughly investigated. Therefore, this study focused on optimizing CPE process parameters using a one-variable-at-a-time (OVAT) approach. Optimal CPE demonstrated superior yields compared to conventional, ultrasound, microwave, ultrasound-assisted CPE, and microwave-assisted CPE methods. Further, a Plackett–Burman design identified key factors influencing optimal CPE conditions, while artificial neural network (ANN) analysis assessed each input variable’s impact on outcomes. Maximum extraction efficiency for total phenolics (352.49 mg GAE/100 g), total carotenoids (16.59 mg β-carotene/100 g), and antioxidant activity (989.02 μmol TE/100 g) was achieved under conditions of: surfactant type = Tween 80, surfactant concentration = 2%; solid:liquid ratio = 1:100; pH = 6612; equilibration temperature = 35 °C; equilibration time = 60 min; salt type = NaCl; salt concentration = 16.4%; centrifugation speed = 7906× g ; centrifugation time = 13.358 min; and No. of CPE steps = Step 1. This comprehensive approach aimed to enhance the understanding and optimization of CPE for maximizing the recovery of bioactives from the horned melon peel, addressing the inefficiencies of traditional extraction methods. Full article
Show Figures

Figure 1

17 pages, 12531 KiB  
Article
Phase Equilibria Study of the MgO–CaO–SiO2 Slag System with Ferronickel Alloy, Solid Carbon, and Al2O3 Additions
by Nandhya K. P. Prikusuma, Muhammad G. Algifari, Rafiandy A. Harahap, Zulfiadi Zulhan and Taufiq Hidayat
Processes 2024, 12(9), 1946; https://doi.org/10.3390/pr12091946 - 11 Sep 2024
Viewed by 1654
Abstract
Knowledge of the phase equilibria in the MgO–CaO–SiO2–Al2O3 slag system is crucial for the nickel laterite smelting process. The phase equilibria of this slag system were experimentally investigated, focusing on the olivine and tridymite/cristobalite primary phase fields, using [...] Read more.
Knowledge of the phase equilibria in the MgO–CaO–SiO2–Al2O3 slag system is crucial for the nickel laterite smelting process. The phase equilibria of this slag system were experimentally investigated, focusing on the olivine and tridymite/cristobalite primary phase fields, using high-temperature equilibration and quenching methods, followed by Scanning Electron Microscopy–Energy Dispersive X-Ray analysis. The phase equilibria of the MgO–CaO–SiO2 slag system at 1400 °C and 1500 °C were first determined in the absence of ferronickel alloy. The phase equilibria between 1400 °C, 1450 °C, and 1500 °C were then determined under a reducing condition, i.e., at equilibrium with ferronickel alloy and solid carbon. Finally, the effect of Al2O3 addition on the liquidus and solidus compositions in the slag system under the reducing condition was investigated at 1400 °C and 1450 °C. Comparisons between the experimentally constructed diagram, previous data, and FactSage-predicted phase diagrams have been provided and discussed. The present study identified the liquid slag both in the absence and presence of ferronickel alloy and solid carbon, as well as in the presence of Al2O3 impurity, within the formation boundaries of olivine and tridymite/cristobalite solids. Identifying the liquid slag area is essential to ensure that the nickel laterite smelting slag can be tapped from the furnace. Full article
(This article belongs to the Special Issue Phase Equilibrium in Chemical Processes: Experiments and Modeling)
Show Figures

Figure 1

Back to TopTop