Impacts of Structural Impurities and Solution pH on Hausmannite Transformation to Birnessite: Environmental Implications for Metal Solubility and Sequestration
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mineral Synthesis and Preparation
2.3. Mineral Characterization
3. Results and Discussion
3.1. Dissolution Reaction at Selected pHs
3.2. Mineralogy of Aged Hausmannite Minerals
3.3. Crystal Chemistry of Aged Hausmannite Minerals
3.3.1. Mn K-Edge XANES Analysis
3.3.2. Ni or Co K-Edge XANES Analysis
3.3.3. Mn K-Edge EXAFS Analysis
3.3.4. Linear Combination Fitting (LCF) of the Mn K-Edge XAS Data
3.4. Morphology and Crystal Chemistry of Aged Hausmannite Minerals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauman, A.J. Desert varnish and marine ferromanganese oxide nodules: Congeneric phenomena. Nature 1976, 259, 387–388. [Google Scholar] [CrossRef]
- Chapnick, S.D.; Moore, W.S.; Nealson, K.H. Microbially mediated manganese oxidation in a freshwater lake. Limnol. Oceanogr. 1982, 27, 1004–1014. [Google Scholar] [CrossRef]
- Chukhrov, F.V.; Gorshkov, A.I.; Rudnitskaya, E.S.; Beresovskaya, V.V.; Sivtsov, A.V. Manganese minerals in clays: A review. Clays Clay Miner. 1980, 28, 346–354. [Google Scholar] [CrossRef]
- Haack, E.A.; Warren, L.A. Biofilm hydrous manganese oxyhydroxides and metal dynamics in acid rock drainage. Environ. Sci. Technol. 2003, 37, 4138–4147. [Google Scholar] [CrossRef]
- Lee, S.; Xu, H. XRD and TEM studies on nanophase manganese oxides in freshwater ferromanganese nodules from Green Bay, Lake Michigan. Clays Clay Miner. 2016, 64, 523–536. [Google Scholar] [CrossRef]
- Lu, A.; Li, Y.; Ding, H.; Xu, X.; Li, Y.; Ren, G.; Liang, J.; Liu, Y.; Hong, H.; Chen, N.; et al. Photoelectric conversion on Earth’s surface via widespread Fe-and Mn-mineral coatings. Proc. Natl. Acad. Sci. USA 2019, 116, 9741–9746. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Tan, W.; Suib, S.L.; Qiu, G.; Liu, F. Dissolution and phase transformation processes of hausmannite in acidic aqueous systems under anoxic conditions. Chem. Geol. 2018, 487, 54–62. [Google Scholar] [CrossRef]
- Maynard, J.B. The chemistry of manganese ores through time: A signal of increasing diversity of earth-surface environments. Econ. Geol. 2010, 105, 535–552. [Google Scholar] [CrossRef]
- Murray, J.W.; Balistrieri, L.S.; Paul, B. The oxidation state of manganese in marine sediments and ferromanganese nodules. Geochim. Cosmochim. Acta 1984, 48, 1237–1247. [Google Scholar] [CrossRef]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef]
- Post, J.E. Crystal Structures of Manganese Oxide Minerals. In Biomineralization: Processes of Iron and Manganese: Modern and Ancient Environments; Skinner, H.C.W., Fitzpatrick, R.W., Eds.; Catena Verlag: Cremlingen-Destedt, Germany, 1992; pp. 51–73. [Google Scholar]
- Schindler, M.; Dorn, R.I. Coatings on rocks and minerals: The interface between the lithosphere and the biosphere, hydrosphere, and atmosphere. Elem. Int. Mag. Mineral. Geochem. Petrol. 2017, 13, 155–158. [Google Scholar] [CrossRef]
- Johnson, J.E.; Webb, S.M.; Ma, C.; Fischer, W.W. Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim. Cosmochim. Acta 2016, 173, 210–231. [Google Scholar] [CrossRef]
- Elzinga, E.J. Reductive transformation of birnessite by aqueous Mn (II). Environ. Sci. Technol. 2011, 45, 6366–6372. [Google Scholar] [CrossRef] [PubMed]
- Green, W.J.; Stage, B.R.; Bratina, B.J.; Wagers, S.; Preston, A.; O’bryan, K.; Shacat, J.; Newell, S. Nickel, copper, zinc and cadmium cycling with manganese in Lake Vanda (Wright Valley, Antarctica). Aquat. Geochem. 2004, 10, 303–323. [Google Scholar] [CrossRef]
- Greene, A.C.; Madgwick, J.C. Microbial formation of manganese oxides. Appl. Environ. Microbiol. 1991, 57, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Hem, J.D. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem. Geol. 1978, 21, 199–218. [Google Scholar] [CrossRef]
- Lefkowitz, J.P.; Elzinga, E.J. Impacts of aqueous Mn(II) on the sorption of Zn (II) by hexagonal birnessite. Environ. Sci. Technol. 2015, 49, 4886–4893. [Google Scholar] [CrossRef]
- McKenzie, R.M. The sorption of some heavy metals by the lower oxides of manganese. Geoderma 1972, 8, 29–35. [Google Scholar] [CrossRef]
- Pardee, J.T. Manganese-Bearing Deposits near Lake Crescent and Humptulips; US Geological Survey: Washington, DC, USA, 1927; No. 795-A; pp. 1–24.
- Tebo, B.M.; Bargar, J.R.; Clement, B.G.; Dick, G.J.; Murray, K.J.; Parker, D.; Verity, R.; Webb, S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N. Mineralogy and geochemistry of manganese: A review of publications. Eurasian Soil Sci. 2009, 42, 1170–1178. [Google Scholar] [CrossRef]
- Wang, H.; Adeleye, A.S.; Huang, Y.; Li, F.; Keller, A.A. Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv. Colloid Interface Sci. 2015, 226, 24–36. [Google Scholar] [CrossRef]
- Birkner, N.; Navrotsky, A. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration. Proc. Natl. Acad. Sci. USA 2014, 111, 6209–6214. [Google Scholar] [CrossRef] [PubMed]
- Antao, S.M.; Cruickshank, L.A.; Hazrah, K.S. Structural trends and solid-solutions based on the crystal chemistry of two hausmannite (Mn3O4) samples from the kalahari manganese field. Minerals 2019, 9, 343. [Google Scholar] [CrossRef]
- Shacat, J.A.; Green, W.J.; Decarlo, E.H.; Newell, S. The geochemistry of Lake Joyce, McMurdo Dry Valleys, Antarctica. Aquat. Geochem. 2004, 10, 325–352. [Google Scholar] [CrossRef]
- Song, B.; Cerkez, E.B.; Elzinga, E.J.; Kim, B. Effects of structural cobalt on the stability and reactivity of hausmannite and manganite: Cobalt coordination chemistry and arsenite oxidation. Chem. Geol. 2021, 583, 120453. [Google Scholar] [CrossRef]
- Song, B.; Cerkez, E.B.; Elzinga, E.J.; Kim, B. Effects of Ni incorporation on the reactivity and stability of hausmannite (Mn3O4): Environmental implications for Mn, Ni, and As solubility and cycling. Chem. Geol. 2020, 558, 119862. [Google Scholar] [CrossRef]
- Hem, J.D. Rates of manganese oxidation in aqueous systems. Geochim. Cosmochim. Acta 1981, 45, 1369–1374. [Google Scholar] [CrossRef]
- Hem, J.D.; Roberson, C.E.; Fournier, R.B. Stability of β-MnOOH and manganese oxide deposition from springwater. Water Resour. Res. 1982, 18, 563–570. [Google Scholar] [CrossRef]
- Junta, J.L.; Hochella, M.F., Jr. Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study. Geochim. Cosmochim. Acta 1994, 58, 4985–4999. [Google Scholar] [CrossRef]
- Lind, C.J. Hausmannite (Mn3O4) conversion to manganite (γ-MnOOH) in dilute oxalate solution. Environ. Sci. Technol. 1988, 22, 62–70. [Google Scholar] [CrossRef]
- Murray, J.W.; Dillard, J.G.; Giovanoli, R.; Moers, H.; Stumm, W. Oxidation of Mn (II): Initial mineralogy, oxidation state and ageing. Geochim. Cosmochim. Acta 1985, 49, 463–470. [Google Scholar] [CrossRef]
- Peña, J.; Duckworth, O.W.; Bargar, J.R.; Sposito, G. Dissolution of hausmannite (Mn3O4) in the presence of the trihydroxamate siderophore desferrioxamine B. Geochim. Cosmochim. Acta 2007, 71, 5661–5671. [Google Scholar] [CrossRef]
- Lefkowitz, J.P.; Rouff, A.A.; Elzinga, E.J. Influence of pH on the reductive transformation of birnessite by aqueous Mn(II). Environ. Sci. Technol. 2013, 47, 10364–10371. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Zhu, M. Effects of metal cations on coupled birnessite structural transformation and natural organic matter adsorption and oxidation. Geochim. Cosmochim. Acta 2019, 250, 292–310. [Google Scholar] [CrossRef]
- Wu, Z.; Peacock, C.L.; Lanson, B.; Yin, H.; Zheng, L.; Chen, Z.; Tan, W.; Qiu, G.; Liu, F.; Feng, X. Transformation of Co-containing birnessite to todorokite: Effect of Co on the transformation and implications for Co mobility. Geochim. Cosmochim. Acta 2019, 246, 21–40. [Google Scholar] [CrossRef]
- Zhao, S.; González-Valle, Y.A.; Elzinga, E.J.; Saad, E.M.; Tang, Y. Effect of Zn (II) coprecipitation on Mn (II)-induced reductive transformation of birnessite. Chem. Geol. 2018, 492, 12–19. [Google Scholar] [CrossRef]
- Song, B.; Cerkez, E.B.; Grandstaff, D.E.; Goodwin, C.M.; Beebe, T.P., Jr.; Kim, B. Reactivity of binary manganese oxide mixtures towards arsenite removal: Evidence of synergistic effects. Appl. Geochem. 2021, 130, 104939. [Google Scholar] [CrossRef]
- Hu, C.C.; Wu, Y.T.; Chang, K.H. Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals: Determinant influence of oxidants. Chem. Mater. 2008, 20, 2890–2894. [Google Scholar] [CrossRef]
- McKenzie, R.M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral. Mag. 1971, 38, 493–502. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef]
- Bricker, O. Some stability relations in the system Mn-O2-H2O at 25 °C and one atmosphere total pressure. Am. Mineral. J. Earth Planet. Mater. 1965, 50, 1296–1354. [Google Scholar]
- Hem, J.D.; Lind, C.J. Nonequilibrium models for predicting forms of precipitated manganese oxides. Geochim. Cosmochim. Acta 1983, 47, 2037–2046. [Google Scholar] [CrossRef]
- Nealson, K.H.; Tebo, B.M.; Rosson, R.A. Occurrence and mechanisms of microbial oxidation of manganese. In Advances in Applied Microbiology; Laskin, A.I., Ed.; Academic Press: Cambridge, MA, USA, 1988; Volume 33, pp. 279–318. [Google Scholar]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Manceau, A.; Lanson, M.; Geoffroy, N. Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochim. Cosmochim. Acta 2007, 71, 95–128. [Google Scholar] [CrossRef]
- Manceau, A.; Marcus, M.A.; Tamura, N.; Proux, O.; Geoffroy, N.; Lanson, B. Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction. Geochim. Cosmochim. Acta 2004, 68, 2467–2483. [Google Scholar] [CrossRef]
- Manceau, A.; Marcus, M.A.; Tamura, N. Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Rev. Mineral. Geochem. 2002, 49, 341–428. [Google Scholar] [CrossRef]
- Manceau, A.; Combes, J.M. Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS. Phys. Chem. Miner. 1988, 15, 283–295. [Google Scholar] [CrossRef]
- Peña, J.; Kwon, K.D.; Refson, K.; Bargar, J.R.; Sposito, G. Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochim. Cosmochim. Acta 2010, 74, 3076–3089. [Google Scholar] [CrossRef]
- Manceau, A.; Marcus, M.A.; Grangeon, S. Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am. Mineral. 2012, 97, 816–827. [Google Scholar] [CrossRef]
- Yoshinaga, T.; Saruyama, M.; Xiong, A.; Ham, Y.; Kuang, Y.; Niishiro, R.; Akiyama, S.; Sakamoto, M.; Hisatomi, T.; Domen, K.; et al. Boosting photocatalytic overall water splitting by Co doping into Mn3O4 nanoparticles as oxygen evolution cocatalysts. Nanoscale 2018, 10, 10420–10427. [Google Scholar] [CrossRef]
- Ching, S.; Petrovay, D.J.; Jorgensen, M.L.; Suib, S.L. Sol-gel synthesis of layered birnessite-type manganese oxides. Inorg. Chem. 1997, 36, 883–890. [Google Scholar] [CrossRef]
- Portehault, D.; Cassaignon, S.; Baudrin, E.; Jolivet, J.P. Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4−/Mn2+ reaction. J. Mater. Chem. 2009, 19, 2407–2416. [Google Scholar] [CrossRef]
- Drits, V.A.; Silvester, E.; Gorshkov, A.I.; Manceau, A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction. Am. Mineral. 1997, 82, 946–961. [Google Scholar] [CrossRef]
- Simanova, A.A.; Peña, J. Time-resolved investigation of cobalt oxidation by Mn(III)-rich δ-MnO2 using quick X-ray absorption spectroscopy. Environ. Sci. Technol. 2015, 49, 10867–10876. [Google Scholar] [CrossRef]
Sample | pH | R-Factor | Haus | Mang | Birn | AOS * |
---|---|---|---|---|---|---|
A-Haus | 4 | 0.0001 | 0.79 (±0.01) | 0.06 (±0.002) | 0.15 (±0.01) | 2.85 |
5 | 0.0001 | 0.90 (±0.01) | 0.04 (±0.002) | 0.05 (±0.01) | 2.71 | |
7 | 0.0000 | 0.93 (±0.003) | 0.02 (±0.001) | 0.04 (±0.004) | 2.69 | |
A-NiHaus | 4 | 0.0001 | 0.80 (±0.01) | 0.05 (±0.01) | 0.15 (±0.003) | 2.85 |
5 | 0.0002 | 0.92 (±0.01) | 0.02 (±0.01) | 0.06 (±0.01) | 2.74 | |
7 | 0.0003 | 0.99 (±0.01) | N/A | 0.01 (±0.003) | 2.68 | |
A-CoHaus | 4 | 0.0002 | 0.78 (±0.01) | 0.07 (±0.01) | 0.15 (±0.002) | 2.85 |
5 | 0.0002 | 0.85 (±0.01) | 0.07 (±0.01) | 0.09 (±0.003) | 2.81 | |
7 | 0.0002 | 0.90 (±0.01) | 0.05 (±0.002) | 0.05 (±0.01) | 2.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, B.; Rashid, M.M.; Elzinga, E.J.; Kim, B. Impacts of Structural Impurities and Solution pH on Hausmannite Transformation to Birnessite: Environmental Implications for Metal Solubility and Sequestration. Minerals 2025, 15, 697. https://doi.org/10.3390/min15070697
Song B, Rashid MM, Elzinga EJ, Kim B. Impacts of Structural Impurities and Solution pH on Hausmannite Transformation to Birnessite: Environmental Implications for Metal Solubility and Sequestration. Minerals. 2025; 15(7):697. https://doi.org/10.3390/min15070697
Chicago/Turabian StyleSong, Boyoung, Mohammad M. Rashid, Evert J. Elzinga, and Bojeong Kim. 2025. "Impacts of Structural Impurities and Solution pH on Hausmannite Transformation to Birnessite: Environmental Implications for Metal Solubility and Sequestration" Minerals 15, no. 7: 697. https://doi.org/10.3390/min15070697
APA StyleSong, B., Rashid, M. M., Elzinga, E. J., & Kim, B. (2025). Impacts of Structural Impurities and Solution pH on Hausmannite Transformation to Birnessite: Environmental Implications for Metal Solubility and Sequestration. Minerals, 15(7), 697. https://doi.org/10.3390/min15070697