Synergistic Solvent Extraction of Lanthanoids with Traditional Ligands (4-Acylpyrazolone and Bidentate Nitrogen Bases) in a Nontraditional Diluent Confirmed by Slope Analysis and NMR
Abstract
1. Introduction
2. Results and Discussion
2.1. Solvent Extraction of La(III), Eu(III) and Lu(III) Ions with HL Alone and Two Synergistic Mixtures HL–1,10-Phen or HL–2,2′-Bipy
2.2. Chemical Modeling of Solvent Extraction Processes by NMR Analysis
2.3. Solvent Extraction, Synergism and Selectivity Across the Periodic Table
- (1)
- Unextractable metal ions, % E < 1: Li+, Na+, Tl+, Ca2+, Mg2+, Ba2+, Sr2+, Al3+, Cr3+. At the same time 4f ions could not be extracted with S2 compound used alone. It can be said that the process is ineffective for K+ and Pb2+ ions.
- (2)
- Overall extraction, % E ≥ 90: Cu2+, Ni2+, Co2+, Bi3+, Ag+; while Hg2+ only with S1. As a matter of fact, both Bi3+ and Ag+ ions could be extracted with pure IL without the need for any complexing agent. The same can be said for iron, based on the data obtained: Fe3+: ≤17%.
3. Materials and Methods
3.1. Materials
3.2. Extraction Procedure
3.3. Nuclear Magnetic Resonance (NMR) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Nadi, Y.A. Lanthanum and neodymium from Egyptian monazite: Synergistic extractive separation using organophosphorus reagents. Hydrometallurgy 2012, 119–120, 23–29. [Google Scholar] [CrossRef]
- Zou, D.; Li, H.; Chen, J.; Li, D. Recovery of scandium from spent sulfuric acid solution in titanium dioxide production using synergistic solvent extraction with D2EHPA and primary amine N1923. Hydrometallurgy 2020, 197, 105463. [Google Scholar] [CrossRef]
- Krea, M.; Khalaf, H. Liquid–liquid extraction of uranium and lanthanides from phosphoric acid using a synergistic DOPPA–TOPO mixture. Hydrometallurgy 2000, 58, 215–225. [Google Scholar] [CrossRef]
- Turanov, A.; Karandashev, V.; Khvostikov, V.; Artyushin, O.; Bondarenko, N. Extraction of rare earth elements(III) with mixtures of some new tridentate carbamoylmethylphosphine oxides and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one from hydrochloric acid solutions. Russ. J. General Chem. 2021, 91, 383–388. [Google Scholar] [CrossRef]
- Petrova, M. The Crucial Performance of Mutual Solubility Among Water and Ionic Liquids in the Time of Liquid-Liquid Extraction of Metallic Species; Academic Solutions: Sofia, Bulgaria, 2020. [Google Scholar]
- Nakamura, S.; Suzuki, N. Adduct formation constant in the synergic extraction of several rare earth elements with acetylacetone and 1,10-phenanthroline in nonpolar organic solvents. J. Radional. Nucl. Chem. Artic. 1986, 99, 145–152. [Google Scholar] [CrossRef]
- Nakamura, S.; Suzuki, N. Effect of an acidic chelating agent in the synergic extraction systems of rare earths(III)-β-diketones-2,2′-bipyridine. Inorg. Chim. Acta 1986, 114, 101–107. [Google Scholar] [CrossRef]
- Nakamura, S.; Suzuki, N. A new trend in the synergistic extraction of rare-earth(III) complexes with various β-diketones and 1,10-phenanthroline. Polyhedron 1986, 5, 1805–1813. [Google Scholar] [CrossRef]
- Matsubayshi, I.; Hasegawa, Y. Thermodynamic consideration for solvent effects in the synergistic extraction of europium(III) with pivaloyltrifluoroacetone and 1,10-phenanthrolone. Anal. Sci. 2001, 17, 221–223. [Google Scholar] [CrossRef]
- Kassierer, E.; Kertes, A. Synergic extraction of some lanthanides and transition metals by two bidentate chelating agents. J. Inorg. Nucl. Chem. 1972, 34, 3221–3231. [Google Scholar] [CrossRef]
- Kassierer, E.; Kertes, A. Thermodynamics of solvent extraction processes. Synergic adducts of copper and zinc diketonates with bidentate nitrogen bases. J. Inorg. Nucl. Chem. 1972, 34, 3209–3214. [Google Scholar] [CrossRef]
- Bhatti, M.; Desreux, J.; Duyckaerts, G. Behaviour of bidentate amines in the synergic extraction of lanthanides by thenoyltrifluoroacetone. J. Inorg. Nucl. Chem. 1980, 42, 767–770. [Google Scholar] [CrossRef]
- Kikuta, Y.; Watarai, H.; Suzuki, N. Synergic effect of some heterocyclic bidentate amines on the extraction of zinc with 2-thenoyltrifluoroacetone. Correlation between formation constants of amine-complex in organic and aqueous phases. Polyhedron 1982, 4, 387–392. [Google Scholar] [CrossRef]
- Nakamura, S.; Imura, H.; Suzuki, N. Synergic extraction of thulium(III) with thenoyltrifluoroacetone and neutral unidentate and bidentate heterocyclic amines. Inorg. Chim. Acta 1985, 110, 101–105. [Google Scholar] [CrossRef]
- Nakamura, S.; Suzuki, N. Synergic extraction of lanthanide(III) ions with 2-thenoyltrifluoroacetone in the presence of 2,2′-bipyridine or pyridine. Polyhedron 1988, 7, 155–159. [Google Scholar] [CrossRef]
- Ishimori, K.; Imura, H.; Ohashi, K. Effect of 1,10-phenantroline on the extraction and separation of lithium(I), sodium(I) and potassium with thenoyltrifluoroacetone. Anal. Chim. Acta 2002, 454, 241–247. [Google Scholar] [CrossRef]
- Nakamura, S.; Takai, S.; Akiba, K. Synergic extraction of lanthanoids by mixtures of LIX 54 (High molecular weight β-diketone) and bidentate neutral amines. Anal. Sci. 2002, 18, 319–323. [Google Scholar] [CrossRef]
- Roy, A.; Nag, K. Investigation on the lanthanoid chelates of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone. An examination of the phenomenon of hypersensitivity. Bull. Chem. Soc. Jpn. 1978, 51, 1525–1529. [Google Scholar] [CrossRef]
- Bencini, A.; Lippolis, V. 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord. Chem. Rev. 2010, 254, 2096–2180. [Google Scholar] [CrossRef]
- Tsutsui, N.; Ban, Y.; Suzuki, H.; Nakase, M.; Ito, S.; Inaba, Y.; Matsumura, T.; Takeshita, K. Effects of diluents on the separation of minor actinides from lanthanides with tatradodecyl-1,10-phenanthroline-2,9-diamide from nitric acid medium. Anal. Sci. 2020, 36, 241–246. [Google Scholar] [CrossRef]
- Yamashita, T.; Nishiyama, Y.; Morita, K.; Nagatani, H.; Imura, H. Synergistic ion-pair extraction and separation of trivalent lanthanoid ions with 4-isopropyltropolone and 1,10-phenanthroline into o-dichlorobenzene. Anal. Sci. 2020, 36, 479–484. [Google Scholar] [CrossRef]
- Turanov, A.; Karandashev, V.; Artyushin, O.; Sharova, E. Effect of 1-Alkyl-3-methylimidazolium di-2-ethylhexylsulfosuccinate on the extraction of lanthanides(III) with 1,3-bis[(diphenylphosphorylacetamido)methyl]benzene from nitric acid solutions. Rus. J. General Chem. 2023, 93, 2805–2812. [Google Scholar] [CrossRef]
- Turanov, A.; Karandashev, V.; Artyushin, O.; Brel’, V. Extraction of actinides and lanthanides from nitric acid solutions with diphosphine dioxides in the presence of an ionic liquid. Radiochemistry 2023, 65, 530–537. [Google Scholar] [CrossRef]
- Turanov, A.; Karandashev, V.; Baulin, V. Extraction of lanthanides(III) from aqueous nitric acid solutions with tetra(n-octyl)diglycolamide into methyltrioctylammonium bis(trifluoromethanesulfonul)imide ionic liquid and its mixtures with molecular organic diluents. Minerals 2023, 13, 736. [Google Scholar] [CrossRef]
- Rout, A. Separation of plutonium from other actinides and fission products in ionic liquid medium. Sep. Purif. Rev. 2023, 52, 98–122. [Google Scholar] [CrossRef]
- Guo, Z.; Chu, T. Separation of Mo(VI) from U(VI) and other fission elements in synthetic solutions by di-quinolinol chelating ligand in [C4mim][NTf2] ionic liquid. Hydrometallurgy 2023, 215, 105968. [Google Scholar] [CrossRef]
- Mataev, M.; Sarsenbaeva, Z.; Keskin, B.; Nurbekova, M.; Meldeshov, A.; Tusyn, Z.; Seitbekova, K. Synthesis, structure and electrophysical and electrochemical properties of novel composite La0.9MnO3-LaFeO3. Molecules 2025, 30, 132. [Google Scholar] [CrossRef]
- Atanassova, M.; Kurteva, V.; Lubenov, L.; Billard, I. Compering extraction, synergism and separation of lanthanoids using acidic and neutral compounds in chloroform and one ionic liquid: Is the latter always “better”? RSC Adv. 2014, 4, 38820–38829. [Google Scholar] [CrossRef]
- Mathur, J.; Khopkar, P. Extraction of trivalent actinides with some substituted pyrazolones and their synergistic mixtures with trioctylphosphine oxide in chloroform. Polyhedron 1984, 3, 1125–1129. [Google Scholar] [CrossRef]
- Jia, Q.; Liao, W.; Li, D.; Niu, C. Synergistic extraction of lanthanum(III) from chloride medium by mixture of 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 and triisobutylphosphine sulphide. Analytica Chim. Acta 2003, 477, 251–256. [Google Scholar] [CrossRef]
- Arichi, J.; Goetz-Grandmont, G.; Brunette, J.P. Solvent extraction of europium(III) from nitrate medium with 4-acyl-isoxazolo-5-ones and 4-acyl-5-hydroxy-pyrazoloes. Effect of salts and diluents. Hydrometallurgy 2006, 82, 100–109. [Google Scholar] [CrossRef]
- Thakur, P.; Dash, K.; Reddy, M.L.P.; Varma, R.; Ramonohan, T.; Damodaran, A. Crown ethers as synergists in the extraction of trivalent lanthanides by 1-phenyl-3-methyl-4-trifluoroacetyl-pyrazolone-5. Radiochimica Acta 1996, 75, 11–16. [Google Scholar] [CrossRef]
- Kumar, P.; Vincent, T.; Khanna, A. Extraction of UO22+ into ionic liquid using TTA and TBP as extractants. Sep. Sci. Technol. 2015, 50, 2668–2675. [Google Scholar] [CrossRef]
- Rama, R.; Rout, A.; Venkatesan, K.; Antony, M.; Vasudeva Rao, P. Extraction behavior of americium(III) in benzoylpyrazolone dissolved in pyrrolidinium based ionic liquid. Sep. Sci. Technol. 2015, 50, 2164–2169. [Google Scholar] [CrossRef]
- Jensen, M.; Borkowski, M.; Laszak, I.; Beitz, J.; Rickert, P.; Dietz, M. Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid. Sep. Sci. Technol. 2012, 47, 233–243. [Google Scholar] [CrossRef]
- Marcus, Y.; Kertes, A.S. Ion Exchange and Solvent Extraction of Metal Complexes; Willey Interscience: New York, NY, USA, 1969; pp. 815–858. [Google Scholar]
- Atanassova, M. Adduct formation constants in the synergistic solvent extraction of several lanthanoids with two chelating extractants: β-diketone and bidentate nitrogen bases. J. Chem. Eng. Data 2010, 55, 5791–5796. [Google Scholar]
- Atanassova, M.; Kurteva, V.; Dukov, I. The interaction of extractants during synergistic solvent extraction of metals. Is it an important reaction? RSC Adv. 2016, 6, 81250–81265. [Google Scholar] [CrossRef]
- Atanassova, M.; Kukeva, R.; Kurteva, V. New sustainable solvent extraction pathways for rare earth metals via oximes molecules. Molecules 2023, 28, 7467. [Google Scholar] [CrossRef]
- Kurteva, V.; Atanassova, M.; Billard, I. NMR study on the possible interactions between imidazolium based ionic liquids and extractants widely applied in solvent extraction and separation of f-ions. J. Solut. Chem. 2015, 44, 2416–2430. [Google Scholar] [CrossRef]
- Anderegg, G. Pyridin derivate als komplexbildner V. die metallkomplexe von 1,10-phenanthrolin und α, α’-dipyridyl. Helv. Chim. Acta 1963, 46, 2397–2410. [Google Scholar] [CrossRef]
- Hancock, R. The pyridyl group in ligand design for selective metal ion complexation and sensing. Chem. Soc. Rev. 2013, 42, 1500–1524. [Google Scholar] [CrossRef]
- Lewis, F.; Harwood, L.; Hudson, M.; Drew, M.; Desreux, J.; Vidick, G.; Bouslimani, N.; Modolo, G.; Wilden, A.; Sypula, M.; et al. Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J. Am. Chem. Soc. 2011, 133, 13093–13102. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Xing, L.; Nie, Y.; Li, X.; Dong, H.; Gao, H. Removal of aluminium to obtain high purity gadolinium with pyridinium-based ionic liquids. Hydrometallurgy 2022, 213, 105930. [Google Scholar] [CrossRef]
- Ying, Z.; Liu, S.; Li, G.; Wei, Q.; Ren, X. The effect of diluent on the extraction: Amide extracting chromium (VI) as an example. J. Mol. Liq. 2023, 384, 122205. [Google Scholar] [CrossRef]
- Nash, K.; Jensen, M.C. 180 Analytical separations of the lanthanides: Basic chemistry and metods. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K., Eyring, L., Eds.; Elsevier Science B.V.: Amsterdam, the Netherlands, 2000; Volume 28. [Google Scholar]
- Atanassova, M.; Dukov, I. A comparative study of the solvent extraction of the trivalent elements of the lanthanoid series with thenoyltrifluoroacetone and 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one using diphenylsulphoxide as synergistic agent. J. Solution Chem. 2009, 38, 289–301. [Google Scholar] [CrossRef]
- Atanassova, M.; Vassilev, N.; Tashev, E.; Lachkova, V.; Varbanov, S. Coordination chemistry of a para-tert-octylcalix[4]arene fitted with phosphinoyl pendant arms towards 4f-elements: Extraction, synergism, separation. Sep. Sci. Technol. 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Atanassova, M.; Lachkova, V.; Vassilev, N.; Varbanov, S.; Dukov, I. Effect of p-tert-butylcalix[4]arene fitted with phosphinoyl pendant arms as synergistic agent in the solvent extraction and separation of some trivalent lanthanoids with 4-benzoyl-3-methyl-1-phenyl-5-pyrazolone. J. Inclus. Phenom. Macrocycl. Chem. 2007, 58, 173–179. [Google Scholar] [CrossRef]
- Petrova, M.A.; Dukov, I.L. Effect of crown ethers on the solvent extraction and separation of lanthanoid(III) ions with 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one. Chem. Pap. 2008, 62, 207–214. [Google Scholar] [CrossRef]
- Atanassova, M.; Dukov, I. Synergistic Solvent extraction of trivalent lanthanoids with mixtures of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and crown ethers. Acta Chim. Slov. 2006, 53, 457–463. [Google Scholar]
- Savvin, S.B. Arsenazo III; Atomizdat: Moskva, Russia, 1966. [Google Scholar]
Ln3+ | logSCs | |||||
---|---|---|---|---|---|---|
HL–Bipy | HL–Phen | HPBI–Bipy | HPBI–Phen | HTTA–Bipy | HTTA–Phen | |
La | 0.57 | 0.09 | 1.41 | 3.26 | 2.91 | 4.82 |
Nd | 2.48 | 3.58 | 4.11 | 6.04 | ||
Eu | −0.4 | 0.46 | 2.44 | 3.31 | 4.15 | 5.95 |
Ho | 2.59 | 3.54 | 4.51 | 6.34 | ||
Lu | 2.55 | 3.48 | 4.89 | 6.49 |
System | Eu/La | Eu/Ce | Eu/Lu | Lu/La | Lu/Ce | Lu/Eu |
---|---|---|---|---|---|---|
IL | − | − | − | − | − | − |
HL | 15 | 7.1 | 0.8 | 17.5 | 8.2 | 1.2 |
S1 | 1.4 | 0.7 | 0.7 | 1.8 | 0.9 | 1.3 |
S2 | − | − | − | − | − | − |
HL–S1 | 19.2 | 10.6 | 0.8 | 23.6 | 13.1 | 1.2 |
HL–S2 | 12.5 | 8.9 | 0.8 | 14.7 | 10.5 | 1.2 |
Extractants | Eu/La | Lu/Eu |
---|---|---|
HTTA–1,10-phen | 3.3 × 103 | 11.74 |
HTTA–2,2′-bipy | 4.2 × 103 | 18.62 |
HPBI–2,2′-bipy | 263.02 | 5.62 |
HPBI–1,10-phen | 27.54 | 6.45 |
HL/CHCl3 | 263 | 3.4 |
HL–diphenylsulphoxide [47] | 75 | 13 |
HL–para-tert-octylcalix[4]arene with P=O donor groups [48] | 213 | 5.6 |
HL–para-tert-butylcalix[4]arene with P=O donor groups [49] | 60.2 | 12.6 |
HL–DB18C6–CHCl3 [50] | 251.3 | 54.9 |
HL–B18C6 [50] | 912 | 87 |
HL–18C6 [50] | 371.5 | 147.9 |
HL–DB18C6–C2H4Cl2 [51] | 72.4 | 251 |
HL–DB24C8 [51] | 154.8 | 37.2 |
LIX54–1,10-phen [17] | 2.75 × 103 | 2.95 |
LIX54–2,2′-bipy [17] | 1.6 × 104 | 15.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassova, M.; Todorova, N.; Simova, S. Synergistic Solvent Extraction of Lanthanoids with Traditional Ligands (4-Acylpyrazolone and Bidentate Nitrogen Bases) in a Nontraditional Diluent Confirmed by Slope Analysis and NMR. Molecules 2025, 30, 786. https://doi.org/10.3390/molecules30040786
Atanassova M, Todorova N, Simova S. Synergistic Solvent Extraction of Lanthanoids with Traditional Ligands (4-Acylpyrazolone and Bidentate Nitrogen Bases) in a Nontraditional Diluent Confirmed by Slope Analysis and NMR. Molecules. 2025; 30(4):786. https://doi.org/10.3390/molecules30040786
Chicago/Turabian StyleAtanassova, Maria, Nina Todorova, and Svetlana Simova. 2025. "Synergistic Solvent Extraction of Lanthanoids with Traditional Ligands (4-Acylpyrazolone and Bidentate Nitrogen Bases) in a Nontraditional Diluent Confirmed by Slope Analysis and NMR" Molecules 30, no. 4: 786. https://doi.org/10.3390/molecules30040786
APA StyleAtanassova, M., Todorova, N., & Simova, S. (2025). Synergistic Solvent Extraction of Lanthanoids with Traditional Ligands (4-Acylpyrazolone and Bidentate Nitrogen Bases) in a Nontraditional Diluent Confirmed by Slope Analysis and NMR. Molecules, 30(4), 786. https://doi.org/10.3390/molecules30040786