Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = epidrug

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1666 KiB  
Review
Molecular Insights into Neurological Regression with a Focus on Rett Syndrome—A Narrative Review
by Jatinder Singh and Paramala Santosh
Int. J. Mol. Sci. 2025, 26(11), 5361; https://doi.org/10.3390/ijms26115361 - 3 Jun 2025
Viewed by 683
Abstract
Rett syndrome (RTT) is a multisystem neurological disorder. Pathogenic changes in the MECP2 gene that codes for methyl-CpG-binding protein 2 (MeCP2) in RTT lead to a loss of previously established motor and cognitive skills. Unravelling the mechanisms of neurological regression in RTT is [...] Read more.
Rett syndrome (RTT) is a multisystem neurological disorder. Pathogenic changes in the MECP2 gene that codes for methyl-CpG-binding protein 2 (MeCP2) in RTT lead to a loss of previously established motor and cognitive skills. Unravelling the mechanisms of neurological regression in RTT is complex, due to multiple components of the neural epigenome being affected. Most evidence has primarily focused on deciphering the complexity of transcriptional machinery at the molecular level. Little attention has been paid to how epigenetic changes across the neural epigenome in RTT lead to neurological regression. In this narrative review, we examine how pathogenic changes in MECP2 can disrupt the balance of the RTT neural epigenome and lead to neurological regression. Environmental and genetic factors can disturb the balance of the neural epigenome in RTT, modifying the onset of neurological regression. Methylation changes across the RTT neural epigenome and the consequent genotoxic stress cause neurons to regress into a senescent state. These changes influence the brain as it matures and lead to the emergence of specific symptoms at different developmental periods. Future work could focus on epidrugs or epi-editing approaches that may theoretically help to restore the epigenetic imbalance and thereby minimise the impact of genotoxic stress on the RTT neural epigenome. Full article
Show Figures

Figure 1

34 pages, 1707 KiB  
Review
Natural Bioproducts with Epigenetic Properties for Treating Cardiovascular Disorders
by Olaia Martínez-Iglesias, Vinogran Naidoo, Iván Carrera, Lola Corzo and Ramón Cacabelos
Genes 2025, 16(5), 566; https://doi.org/10.3390/genes16050566 - 10 May 2025
Cited by 1 | Viewed by 716
Abstract
Cardiovascular disorders (CVDs) are the leading cause of mortality worldwide, highlighting an urgent need for innovative therapeutic strategies. Recent advancements highlight the potential of naturally derived bioproducts with epigenetic properties to offer protection against CVDs. These compounds act on key epigenetic mechanisms, DNA [...] Read more.
Cardiovascular disorders (CVDs) are the leading cause of mortality worldwide, highlighting an urgent need for innovative therapeutic strategies. Recent advancements highlight the potential of naturally derived bioproducts with epigenetic properties to offer protection against CVDs. These compounds act on key epigenetic mechanisms, DNA methylation, histone modifications, and non-coding RNA regulation to modulate gene expression essential for cardiovascular health. This review explores the effects of various bioproducts, such as polyphenols, flavonoids, and other natural extracts, on these epigenetic modifications and their potential benefits in preventing and managing CVDs. We discuss recent discoveries and clinical applications, providing insights into the epigenetic regulatory mechanisms of these compounds as potential epidrugs, naturally derived agents with promising therapeutic prospects in epigenetic therapy for CVDs. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

23 pages, 1739 KiB  
Article
Impact of Tyrosine Kinase Inhibitors on the Expression Pattern of Epigenetic Regulators
by Klaudia Tóth and Zsuzsanna Gaál
Cancers 2025, 17(8), 1282; https://doi.org/10.3390/cancers17081282 - 10 Apr 2025
Viewed by 622
Abstract
Background: Advances in molecular genetic diagnostics and emerging opportunities for targeted treatment have opened new horizons in precision oncology. Tyrosine kinase inhibitors (TKI) are the subgroup of these agents with which the most clinical experience has been gathered so far. However, little data [...] Read more.
Background: Advances in molecular genetic diagnostics and emerging opportunities for targeted treatment have opened new horizons in precision oncology. Tyrosine kinase inhibitors (TKI) are the subgroup of these agents with which the most clinical experience has been gathered so far. However, little data is available on the effect of TKI agents on the expression levels of molecules responsible for epigenetic regulation. Methods: In this study, we investigated the effect of in vitro and in vivo treatment with tyrosine kinase inhibitor agents on the expression of epigenetic regulators in hematological malignancies and solid tumors, based on data included in the functional genomics repository Gene Expression Omnibus. Results: Statistical analysis of datasets and series of gene expression patterns revealed numerous significant changes in the levels of epigenetic writers, erasers, microRNAs and members of chromatin-remodeling complexes following TKI treatment. Previously published data about the role of these epigenetic modifiers in malignant diseases has also been summarized. Conclusions: Our results may contribute to the establishment of novel treatment strategies aiming at the combinatorial administration of TKI and epidrugs in cancer, leading to less toxic therapy with further improved results. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

31 pages, 2564 KiB  
Review
Epigenetic Alterations in Cancer: The Therapeutic Potential of Epigenetic Drugs in Cancer Therapy
by Preeti Gupta
Drugs Drug Candidates 2025, 4(2), 15; https://doi.org/10.3390/ddc4020015 - 5 Apr 2025
Viewed by 2886
Abstract
To date, numerous studies have emerged that indicate the possible role of epigenetic modulation in the development and progression of several diseases, including cancer. Epigenetic alterations participate in various steps of carcinogenesis. They play important regulatory roles in processes like cell division, proliferation, [...] Read more.
To date, numerous studies have emerged that indicate the possible role of epigenetic modulation in the development and progression of several diseases, including cancer. Epigenetic alterations participate in various steps of carcinogenesis. They play important regulatory roles in processes like cell division, proliferation, angiogenesis, and metastasis. Thus, epigenetic modifications such as DNA methylation, histone modifications, and non-coding RNAs serve as attractive and promising targets for cancer prevention and anti-cancer therapy. Epigenetic drugs or epi-drugs possess the ability to reverse many such epigenetic alterations and thus can help manage the clinical manifestations of cancer. Epigenetic drugs broadly target epigenetic modifications, including DNA methylation and histone post-translational modifications, to manifest their effects. Several naturally occurring as well as chemically synthesized compounds have been recognized as epigenetic drugs. Some of them are clinically approved, while many are in their preclinical and clinical trials. In this review, we aim to present a broad overview of the epigenetic modifications implicated in carcinogenesis. The review also compiles various epigenetic drugs that are approved for clinical practice, as well as those that are in the preclinical and clinical stages of investigation for anti-cancer therapy. Full article
Show Figures

Graphical abstract

33 pages, 1731 KiB  
Review
Decoding the Epigenome of Breast Cancer
by Elisa Cortellesi, Isabella Savini, Matteo Veneziano, Alessandra Gambacurta, Maria Valeria Catani and Valeria Gasperi
Int. J. Mol. Sci. 2025, 26(6), 2605; https://doi.org/10.3390/ijms26062605 - 13 Mar 2025
Cited by 2 | Viewed by 1388
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, characterized by extensive heterogeneity stemming from molecular and genetic alterations. This review explores the intricate epigenetic landscape of BC, highlighting the significant role of epigenetic modifications—particularly DNA methylation, histone modifications, and the influence [...] Read more.
Breast cancer (BC) is the most prevalent malignancy among women, characterized by extensive heterogeneity stemming from molecular and genetic alterations. This review explores the intricate epigenetic landscape of BC, highlighting the significant role of epigenetic modifications—particularly DNA methylation, histone modifications, and the influence of non-coding RNAs—in the initiation, progression, and prognosis of the disease. Epigenetic alterations drive crucial processes, including gene expression regulation, cell differentiation, and tumor microenvironment interactions, contributing to tumorigenesis and metastatic potential. Notably, aberrations in DNA methylation patterns, including global hypomethylation and hypermethylation of CpG islands, have been associated with distinct BC subtypes, with implications for early detection and risk assessment. Furthermore, histone modifications, such as acetylation and methylation, affect cancer cell plasticity and aggressiveness by profoundly influencing chromatin dynamics and gene transcription. Finally, non-coding RNAs contribute by modulating epigenetic machinery and gene expression. Despite advances in our knowledge, clinical application of epigenetic therapies in BC is still challenging, often yielding limited efficacy when used alone. However, combining epi-drugs with established treatments shows promise for enhancing therapeutic outcomes. This review underscores the importance of integrating epigenetic insights into personalized BC treatment strategies, emphasizing the potential of epigenetic biomarkers for improving diagnosis, prognosis, and therapeutic response in affected patients. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

26 pages, 1546 KiB  
Review
Cellular Epigenetic Targets and Epidrugs in Breast Cancer Therapy: Mechanisms, Challenges, and Future Perspectives
by Ibrahim S. Alalhareth, Saleh M. Alyami, Ali H. Alshareef, Ahmed O. Ajeibi, Manea F. Al Munjem, Ahmad A. Elfifi, Meshal M. Alsharif, Seham A. Alzahrani, Mohammed A. Alqaad, Marwa B. Bakir and Basel A. Abdel-Wahab
Pharmaceuticals 2025, 18(2), 207; https://doi.org/10.3390/ph18020207 - 3 Feb 2025
Cited by 1 | Viewed by 2869
Abstract
Breast cancer is the most common malignancy affecting women, manifesting as a heterogeneous disease with diverse molecular characteristics and clinical presentations. Recent studies have elucidated the role of epigenetic modifications in the pathogenesis of breast cancer, including drug resistance and efflux characteristics, offering [...] Read more.
Breast cancer is the most common malignancy affecting women, manifesting as a heterogeneous disease with diverse molecular characteristics and clinical presentations. Recent studies have elucidated the role of epigenetic modifications in the pathogenesis of breast cancer, including drug resistance and efflux characteristics, offering potential new diagnostic and prognostic markers, treatment efficacy predictors, and therapeutic agents. Key modifications include DNA cytosine methylation and the covalent modification of histone proteins. Unlike genetic mutations, reprogramming the epigenetic landscape of the cancer epigenome is a promising targeted therapy for the treatment and reversal of drug resistance. Epidrugs, which target DNA methylation and histone modifications, can provide novel options for the treatment of breast cancer by reversing the acquired resistance to treatment. Currently, the most promising approach involves combination therapies consisting of epidrugs with immune checkpoint inhibitors. This review examines the aberrant epigenetic regulation of breast cancer initiation and progression, focusing on modifications related to estrogen signaling, drug resistance, cancer progression, and the epithelial–mesenchymal transition (EMT). It examines existing epigenetic drugs for treating breast cancer, including agents that modify DNA, inhibitors of histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone demethyltransferases. It also delves into ongoing studies on combining epidrugs with other therapies and addresses the upcoming obstacles in this field. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

29 pages, 4588 KiB  
Review
Resolution of Chronic Inflammation, Restoration of Epigenetic Disturbances and Correction of Dysbiosis as an Adjunctive Approach to the Treatment of Atopic Dermatitis
by Gregory Livshits and Alexander Kalinkovich
Cells 2024, 13(22), 1899; https://doi.org/10.3390/cells13221899 - 18 Nov 2024
Viewed by 2348
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with multifactorial and unclear pathogenesis. Its development is characterized by two key elements: epigenetic dysregulation of molecular pathways involved in AD pathogenesis and disrupted skin and gut microbiota (dysbiosis) that jointly trigger and maintain [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease with multifactorial and unclear pathogenesis. Its development is characterized by two key elements: epigenetic dysregulation of molecular pathways involved in AD pathogenesis and disrupted skin and gut microbiota (dysbiosis) that jointly trigger and maintain chronic inflammation, a core AD characteristic. Current data suggest that failed inflammation resolution is the main pathogenic mechanism underlying AD development. Inflammation resolution is provided by specialized pro-resolving mediators (SPMs) derived from dietary polyunsaturated fatty acids acting through cognate receptors. SPM levels are reduced in AD patients. Administration of SPMs or their stable, small-molecule mimetics and receptor agonists, as well as supplementation with probiotics/prebiotics, demonstrate beneficial effects in AD animal models. Epidrugs, compounds capable of restoring disrupted epigenetic mechanisms associated with the disease, improve impaired skin barrier function in AD models. Based on these findings, we propose a novel, multilevel AD treatment strategy aimed at resolving chronic inflammation by application of SPM mimetics and receptor agonists, probiotics/prebiotics, and epi-drugs. This approach can be used in conjunction with current AD therapy, resulting in AD alleviation. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

39 pages, 1421 KiB  
Review
The Role of HDAC6 in Glioblastoma Multiforme: A New Avenue to Therapeutic Interventions?
by Francesco Spallotta and Barbara Illi
Biomedicines 2024, 12(11), 2631; https://doi.org/10.3390/biomedicines12112631 - 17 Nov 2024
Cited by 2 | Viewed by 2114
Abstract
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15–18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The [...] Read more.
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15–18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The effort the scientific community is lavishing on the never-ending battle against GBM is reflected by the huge number of clinical trials launched, about 2003 on 10 September 2024. However, we are still far from both an in-depth comprehension of the biological and molecular processes leading to GBM onset and progression and, importantly, a cure. GBM is provided with high intratumoral heterogeneity, immunosuppressive capacity, and infiltrative ability due to neoangiogenesis. These features impact both tumour aggressiveness and therapeutic vulnerability, which is further limited by the presence in the tumour core of niches of glioblastoma stem cells (GSCs) that are responsible for the relapse of this brain neoplasm. Epigenetic alterations may both drive and develop along GBM progression and also rely on changes in the expression of the genes encoding histone-modifying enzymes, including histone deacetylases (HDACs). Among them, HDAC6—a cytoplasmic HDAC—has recently gained attention because of its role in modulating several biological aspects of GBM, including DNA repair ability, massive growth, radio- and chemoresistance, and de-differentiation through primary cilia disruption. In this review article, the available information related to HDAC6 function in GBM will be presented, with the aim of proposing its inhibition as a valuable therapeutic route for this deadly brain tumour. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Treatment of CNS Tumors)
Show Figures

Figure 1

15 pages, 1076 KiB  
Review
Epigenetics of Conjunctival Melanoma: Current Knowledge and Future Directions
by Kaylea M. Flick, Hakan Demirci and F. Yesim Demirci
Cancers 2024, 16(21), 3687; https://doi.org/10.3390/cancers16213687 - 31 Oct 2024
Cited by 1 | Viewed by 1598
Abstract
The purpose of this article is to provide a literature review of the epigenetic understanding of conjunctival melanoma (CM), with a primary focus on current gaps in knowledge and future directions in research. CM is a rare aggressive cancer that predominantly affects older [...] Read more.
The purpose of this article is to provide a literature review of the epigenetic understanding of conjunctival melanoma (CM), with a primary focus on current gaps in knowledge and future directions in research. CM is a rare aggressive cancer that predominantly affects older adults. Local recurrences and distant metastases commonly occur in CM patients; however, their prediction and management remain challenging. Hence, there is currently an unmet need for useful biomarkers and more effective treatments to improve the clinical outcomes of these patients. Like other cancers, CM occurrence and prognosis are believed to be influenced by multiple genetic and epigenetic factors that contribute to tumor development/progression/recurrence/spread, immune evasion, and primary/acquired resistance to therapies. Epigenetic alterations may involve changes in chromatin conformation/accessibility, post-translational histone modifications or the use of histone variants, changes in DNA methylation, alterations in levels/functions of short (small) or long non-coding RNAs (ncRNAs), or RNA modifications. While recent years have witnessed a rapid increase in available epigenetic technologies and epigenetic modulation-based treatment options, which has enabled the development/implementation of various epi-drugs in the cancer field, the epigenetic understanding of CM remains limited due to a relatively small number of epigenetic studies published to date. These studies primarily investigated DNA methylation, ncRNA (e.g., miRNA or circRNA) expression, or RNA methylation. While these initial epigenetic investigations have revealed some potential biomarkers and/or therapeutic targets, they had various limitations, and their findings warrant replication in independent and larger studies/samples. In summary, an in-depth understanding of CM epigenetics remains largely incomplete but essential for advancing our molecular knowledge and improving clinical management/outcomes of this aggressive disease. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Cancers)
Show Figures

Figure 1

12 pages, 556 KiB  
Review
Epigenetic Therapies in Triple-Negative Breast Cancer: Concepts, Visions, and Challenges
by Ulrich Lehmann
Cancers 2024, 16(12), 2164; https://doi.org/10.3390/cancers16122164 - 7 Jun 2024
Cited by 5 | Viewed by 2831
Abstract
Breast cancer, the most frequent malignancy in women worldwide, is a molecularly and clinically very heterogeneous disease. Triple-negative breast cancer is defined by the absence of hormone receptor and growth factor receptor ERBB2/HER2 expression. It is characterized by a more aggressive course of [...] Read more.
Breast cancer, the most frequent malignancy in women worldwide, is a molecularly and clinically very heterogeneous disease. Triple-negative breast cancer is defined by the absence of hormone receptor and growth factor receptor ERBB2/HER2 expression. It is characterized by a more aggressive course of disease and a shortage of effective therapeutic approaches. Hallmarks of cancer cells are not only genetic alterations, but also epigenetic aberrations. The most studied and best understood alterations are methylation of the DNA base cytosine and the covalent modification of histone proteins. The reversibility of these covalent modifications make them attractive targets for therapeutic intervention, as documented in numerous ongoing clinical trials. Epidrugs, targeting DNA methylation and histone modifications, might offer attractive new options in treating triple-negative breast cancer. Currently, the most promising options are combination therapies in which the epidrug increases the efficiency of immuncheckpoint inhibitors. This review focusses exclusively on DNA methylation and histone modifications. In reviewing the knowledge about epigenetic therapies in breast cancer, and especially triple-negative breast cancer, the focus is on explaining concepts and raising awareness of what is not yet known and what has to be clarified in the future. Full article
Show Figures

Figure 1

21 pages, 869 KiB  
Review
Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship
by Alina-Teodora Nicu, Ileana Paula Ionel, Ileana Stoica, Liliana Burlibasa and Viorel Jinga
Biomedicines 2024, 12(5), 1041; https://doi.org/10.3390/biomedicines12051041 - 8 May 2024
Cited by 3 | Viewed by 2449
Abstract
Testicular germ cell tumors (TGCTs) are the most common type of testicular cancer, with a particularly high incidence in the 15–45-year age category. Although highly treatable, resistance to therapy sometimes occurs, with devastating consequences for the patients. Additionally, the young age at diagnosis [...] Read more.
Testicular germ cell tumors (TGCTs) are the most common type of testicular cancer, with a particularly high incidence in the 15–45-year age category. Although highly treatable, resistance to therapy sometimes occurs, with devastating consequences for the patients. Additionally, the young age at diagnosis and the treatment itself pose a great threat to patients’ fertility. Despite extensive research concerning genetic and environmental risk factors, little is known about TGCT etiology. However, epigenetics has recently come into the spotlight as a major factor in TGCT initiation, progression, and even resistance to treatment. As such, recent studies have been focusing on epigenetic mechanisms, which have revealed their potential in the development of novel, non-invasive biomarkers. As the most studied epigenetic mechanism, DNA methylation was the first revelation in this particular field, and it continues to be a main target of investigations as research into its association with TGCT has contributed to a better understanding of this type of cancer and constantly reveals novel aspects that can be exploited through clinical applications. In addition to biomarker development, DNA methylation holds potential for developing novel treatments based on DNA methyltransferase inhibitors (DNMTis) and may even be of interest for fertility management in cancer survivors. This manuscript is structured as a literature review, which comprehensively explores the pivotal role of DNA methylation in the pathogenesis, progression, and treatment resistance of TGCTs. Full article
Show Figures

Figure 1

14 pages, 2858 KiB  
Article
A Computational Approach for the Discovery of Novel DNA Methyltransferase Inhibitors
by Eftichia Kritsi, Paris Christodoulou, Thalia Tsiaka, Panagiotis Georgiadis and Maria Zervou
Curr. Issues Mol. Biol. 2024, 46(4), 3394-3407; https://doi.org/10.3390/cimb46040213 - 16 Apr 2024
Cited by 4 | Viewed by 2028
Abstract
Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today’s pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied [...] Read more.
Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today’s pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied as inhibition targets for cancer treatment. The increasing clinical interest in DNMTs has led to advanced experimental and computational strategies in the search for novel DNMT inhibitors. Considering the importance of epigenetic targets as a novel and promising pharmaceutical trend, the present study attempted to discover novel inhibitors of natural origin against DNMTs using a combination of structure and ligand-based computational approaches. Particularly, a pharmacophore-based virtual screening was performed, followed by molecular docking and molecular dynamics simulations in order to establish an accurate and robust selection methodology. Our screening protocol prioritized five natural-derived compounds, derivatives of coumarins, flavones, chalcones, benzoic acids, and phenazine, bearing completely diverse chemical scaffolds from FDA-approved “Epi-drugs”. Their total DNMT inhibitory activity was evaluated, revealing promising results for the derived hits with an inhibitory activity ranging within 30–45% at 100 µM of the tested compounds. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products)
Show Figures

Figure 1

27 pages, 816 KiB  
Review
Gastric Cancer in the Era of Epigenetics
by Grigorios Christodoulidis, Konstantinos-Eleftherios Koumarelas, Marina-Nektaria Kouliou, Eleni Thodou and Maria Samara
Int. J. Mol. Sci. 2024, 25(6), 3381; https://doi.org/10.3390/ijms25063381 - 16 Mar 2024
Cited by 17 | Viewed by 6017
Abstract
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant [...] Read more.
Gastric cancer (GC) remains a significant contributor to cancer-related mortality. Novel high-throughput techniques have enlightened the epigenetic mechanisms governing gene-expression regulation. Epigenetic characteristics contribute to molecular taxonomy and give rise to cancer-specific epigenetic patterns. Helicobacter pylori (Hp) infection has an impact on aberrant DNA methylation either through its pathogenic CagA protein or by inducing chronic inflammation. The hypomethylation of specific repetitive elements generates an epigenetic field effect early in tumorigenesis. Epstein–Barr virus (EBV) infection triggers DNA methylation by dysregulating DNA methyltransferases (DNMT) enzyme activity, while persistent Hp-EBV co-infection leads to aggressive tumor behavior. Distinct histone modifications are also responsible for oncogene upregulation and tumor-suppressor gene silencing in gastric carcinomas. While histone methylation and acetylation processes have been extensively studied, other less prevalent alterations contribute to the development and migration of gastric cancer via a complex network of interactions. Enzymes, such as Nicotinamide N-methyltransferase (NNMT), which is involved in tumor’s metabolic reprogramming, interact with methyltransferases and modify gene expression. Non-coding RNA molecules, including long non-coding RNAs, circular RNAs, and miRNAs serve as epigenetic regulators contributing to GC development, metastasis, poor outcomes and therapy resistance. Serum RNA molecules hold the potential to serve as non-invasive biomarkers for diagnostic, prognostic or therapeutic applications. Gastric fluids represent a valuable source to identify potential biomarkers with diagnostic use in terms of liquid biopsy. Ongoing clinical trials are currently evaluating the efficacy of next-generation epigenetic drugs, displaying promising outcomes. Various approaches including multiple miRNA inhibitors or targeted nanoparticles carrying epigenetic drugs are being designed to enhance existing treatment efficacy and overcome treatment resistance. Full article
(This article belongs to the Special Issue Oncogenes in Gastrointestinal Cancer)
Show Figures

Figure 1

27 pages, 447 KiB  
Review
Traditional Therapeutics and Potential Epidrugs for CVD: Why Not Both?
by Lauren Rae Gladwell, Chidinma Ahiarah, Shireen Rasheed, Shaikh Mizanoor Rahman and Mahua Choudhury
Life 2024, 14(1), 23; https://doi.org/10.3390/life14010023 - 22 Dec 2023
Cited by 3 | Viewed by 3778
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. In addition to the high mortality rate, people suffering from CVD often endure difficulties with physical activities and productivity that significantly affect their quality of life. The high prevalence of debilitating risk factors [...] Read more.
Cardiovascular disease (CVD) is the leading cause of death worldwide. In addition to the high mortality rate, people suffering from CVD often endure difficulties with physical activities and productivity that significantly affect their quality of life. The high prevalence of debilitating risk factors such as obesity, type 2 diabetes mellitus, smoking, hypertension, and hyperlipidemia only predicts a bleak future. Current traditional CVD interventions offer temporary respite; however, they compound the severe economic strain of health-related expenditures. Furthermore, these therapeutics can be prescribed indefinitely. Recent advances in the field of epigenetics have generated new treatment options by confronting CVD at an epigenetic level. This involves modulating gene expression by altering the organization of our genome rather than altering the DNA sequence itself. Epigenetic changes are heritable, reversible, and influenced by environmental factors such as medications. As CVD is physiologically and pathologically diverse in nature, epigenetic interventions can offer a ray of hope to replace or be combined with traditional therapeutics to provide the prospect of addressing more than just the symptoms of CVD. This review discusses various risk factors contributing to CVD, perspectives of current traditional medications in practice, and a focus on potential epigenetic therapeutics to be used as alternatives. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Graphical abstract

15 pages, 1589 KiB  
Article
Epidrugs as Promising Tools to Eliminate Plasmodium falciparum Artemisinin-Resistant and Quiescent Parasites
by Thibaud Reyser, Lucie Paloque, Michel Nguyen, Jean-Michel Augereau, Matthew John Fuchter, Marie Lopez, Paola B. Arimondo, Storm Hassell-Hart, John Spencer, Luisa Di Stefano and Françoise Benoit-Vical
Pharmaceutics 2023, 15(10), 2440; https://doi.org/10.3390/pharmaceutics15102440 - 10 Oct 2023
Cited by 5 | Viewed by 2322
Abstract
The use of artemisinin and its derivatives has helped reduce the burden of malaria caused by Plasmodium falciparum. However, artemisinin-resistant parasites are able, in the presence of artemisinins, to stop their cell cycles. This quiescent state can alter the activity of artemisinin partner [...] Read more.
The use of artemisinin and its derivatives has helped reduce the burden of malaria caused by Plasmodium falciparum. However, artemisinin-resistant parasites are able, in the presence of artemisinins, to stop their cell cycles. This quiescent state can alter the activity of artemisinin partner drugs leading to a secondary drug resistance and thus threatens malaria eradication strategies. Drugs targeting epigenetic mechanisms (namely epidrugs) are emerging as potential antimalarial drugs. Here, we set out to evaluate a selection of various epidrugs for their activity against quiescent parasites, to explore the possibility of using these compounds to counter artemisinin resistance. The 32 chosen epidrugs were first screened for their antiplasmodial activity and selectivity. We then demonstrated, thanks to the specific Quiescent-stage Survival Assay, that four epidrugs targeting both histone methylation or deacetylation as well as DNA methylation decrease the ability of artemisinin-resistant parasites to recover after artemisinin exposure. In the quest for novel antiplasmodial drugs with new modes of action, these results reinforce the therapeutic potential of epidrugs as antiplasmodial drugs especially in the context of artemisinin resistance. Full article
(This article belongs to the Special Issue Recent Advances in Drug Therapy for Malaria)
Show Figures

Figure 1

Back to TopTop