Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = epidermal cell differentiation and proliferation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4624 KiB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 226
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

24 pages, 6634 KiB  
Article
Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications
by Yasmin M. Heikal, Amal M. Albahi, Amal A. Alyamani, Hala M. Abdelmigid, Samia A. Haroun and Hoda M. Soliman
Cells 2025, 14(14), 1055; https://doi.org/10.3390/cells14141055 - 10 Jul 2025
Viewed by 405
Abstract
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy [...] Read more.
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy of salicylic acid (SA), humic acid (HA), and zinc oxide nanoparticles (ZnO-NPs) as control and inducer agents. FW infection resulted in notable structural alterations, including decreased leaf blade and mesophyll thickness and increased Adaxial epidermal cell wall thickness, thereby disrupting the leaf structure. Also, it caused severe chloroplast damage, such as membrane detachment and a reduced count of starch granules, which could impair photosynthetic efficiency. The different treatments exhibited significant effectiveness in reversing these adverse effects, leading to increased thickness of the leaf blade, mesophyll, palisade, and spongy tissues and enhanced structural integrity. Furthermore, ultrastructural improvements included activated mitochondria, compact chloroplasts with increased numbers, and proliferation of plastoglobuli, indicating adaptive metabolic changes. Principal component analysis (PCA-biplot) highlighted the significant parameters distinguishing treatment groups, providing insights into trait-based differentiation. This study concluded the potential of SA, HA, and ZnO-NPs as sustainable solutions for managing Fusarium wilt and enhancing tomato plant resilience, thereby contributing to improved agricultural practices and food security. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Graphical abstract

26 pages, 6703 KiB  
Article
Proneurogenic Actions of FSH During Directed Differentiation of Neural Stem and Progenitor Cells from Ovarian Cortical Cells Towards the Dopaminergic Pathway
by Alfredo González-Gil, Concepción Rojo, Esther Ramírez, Ricardo Martín, Alberto Samuel Suárez-Pinilla, Susana Ovalle, Ricardo Ramos-Ruiz and Rosa Ana Picazo
Biomedicines 2025, 13(7), 1560; https://doi.org/10.3390/biomedicines13071560 - 26 Jun 2025
Viewed by 693
Abstract
Exploring the neurogenic potential of extraneural stem cells under the actions of proneurogenic biomolecules may enhance the success of autologous cell therapy for neurodegenerative diseases such as Parkinson’s. Neural stem and progenitor cells (NSPCs) from extraneural tissues have emerged as potential sources of [...] Read more.
Exploring the neurogenic potential of extraneural stem cells under the actions of proneurogenic biomolecules may enhance the success of autologous cell therapy for neurodegenerative diseases such as Parkinson’s. Neural stem and progenitor cells (NSPCs) from extraneural tissues have emerged as potential sources of functional dopaminergic (DA) neurons. Background/Objectives: This study aimed to generate DA neurons from ovarian cortical cells (OCC)-derived NSPCs to elucidate whether follicle-stimulating hormone (FSH) can enhance this process and to evaluate the electrophysiological functionality of differentiated neural cells using the patch-clamp technique. Methods: OCC-NSPCs were differentiated towards the DA pathway during the neurosphere (NS) assay after two culture periods for cell expansion (CEP-1, CEP-2) with one of these media: M1 (positive control with epidermal growth factor, EGF, and fibroblast growth factor2, FGF2), M2 (control), and M3 (M2 with FSH, 50 ng/mL). Image analysis, morphometric evaluation, cell proliferation assays, and gene expression analysis of NSPC-specific transcripts were performed. After CEP-2, NS cells were cultured for 30 days in a serum-free medium containing Sonic-Hedgehog, FGF2, FGF8, and brain-derived neurotrophic factor (BDNF) for differentiation. At the end of culture, expression, and immunolocalization of GFAP, Olig2, NeuN, and tyrosine hydroxylase (TH) were analyzed in cells, along with patch-clamp recordings in differentiated neurons. Results: Cell proliferation and NS development were larger in OCC-NSPCs from groups M1 and M3 than in M2. Expression of NSPC-related transcripts was higher in M2; however, M1 and M3 cultures showed greater expression of differentiation markers NeuN, GFAP, Olig2, and TH. NeuN, GFAP, and TH were immunolocalized in differentiated cells and NS that were generated during differentiation. TH was localized in neural precursor cells, some neurons, core cells of small-, medium-, and large-sized NS, and in cells close to the outer cell layer of large NS, with greatest immunolocalization percentages in NS primed with FSH during CEP-1/2 (M3). Electrophysiological recordings revealed a major incidence of plateau potentials and a significant proportion of complete action potentials, reflecting successful functional neuronal differentiation. Conclusions: DA precursors and functional neurons can be successfully obtained after OCC-NSPCs-directed differentiation. FSH priming during the expansion period enhances the neurogenic potential of these cells towards the DA pathway. Future research will explore the eventual therapeutic use of these findings for neurodegenerative diseases. Full article
(This article belongs to the Special Issue Human Stem Cells in Disease Modelling and Treatment)
Show Figures

Figure 1

17 pages, 2031 KiB  
Review
Protein Kinase CK2 Inhibition Represents a Pharmacological Chance for the Treatment of Skin Diseases
by Michele Scuruchi, Desirèe Speranza, Giuseppe Bruschetta, Federico Vaccaro, Mariarosaria Galeano, Giovanni Pallio, Mario Vaccaro, Francesco Borgia, Federica Li Pomi, Massimo Collino and Natasha Irrera
Int. J. Mol. Sci. 2025, 26(11), 5404; https://doi.org/10.3390/ijms26115404 - 4 Jun 2025
Viewed by 632
Abstract
Protein kinase CK2 has emerged as a pivotal regulator of cellular processes involved in skin homeostasis, including cell proliferation, differentiation and inflammatory response regulation. In fact, CK2 activity dysregulation is implicated in the pathogenesis of different skin diseases, such as psoriasis, cancer and [...] Read more.
Protein kinase CK2 has emerged as a pivotal regulator of cellular processes involved in skin homeostasis, including cell proliferation, differentiation and inflammatory response regulation. In fact, CK2 activity dysregulation is implicated in the pathogenesis of different skin diseases, such as psoriasis, cancer and inflammatory dermatoses. CK2 overactivation fosters keratinocyte proliferation and pro-inflammatory cytokine production through the STAT3 and Akt pathways in psoriasis, thus contributing to epidermal hyperplasia and inflammation. In the realm of oncology, CK2 overexpression correlates with tumor progression, facilitating cell survival and metastasis in melanoma and non-melanoma skin cancers. Pharmacological inhibition of CK2 has demonstrated therapeutic potential, with CX-4945 (Silmitasertib) as the most studied adenosine triphosphate-competitive inhibitor (ATP-competitive inhibitor). Preclinical models reveal that CK2 inhibitors effectively mitigate pathological features of psoriasis, regulate keratinocyte differentiation, and suppress tumor growth in skin cancers. These inhibitors also potentiate the efficacy of conventional chemotherapeutics and exhibit anti-inflammatory effects in dermatological conditions. Future research will aim to enhance the specificity and delivery of CK2-targeting therapies, including topical formulations, to minimize systemic side effects. Combination therapies integrating CK2 inhibitors with other agents might offer synergistic benefits in managing skin diseases. This review underscores CK2’s critical role in skin and its therapeutic potential as a pharmacological target, advocating for innovative approaches to harness CK2 inhibition in dermatology. Full article
(This article belongs to the Special Issue The Role of Protein Kinase in Health and Diseases)
Show Figures

Graphical abstract

12 pages, 2686 KiB  
Article
Single-Cell Transcriptomics Unveils the Mechanistic Role of FOSL1 in Cutaneous Wound Healing
by Jingbi Meng, Ge Zheng, Yinli Luo, Ling Ge, Zhiqing Liu, Wenhua Huang, Meitong Jin, Yanli Kong, Shanhua Xu, Zhehu Jin and Longquan Pi
Biomedicines 2025, 13(6), 1330; https://doi.org/10.3390/biomedicines13061330 - 29 May 2025
Viewed by 621
Abstract
Background: The skin, a complex organ vital for protecting the body against environmental challenges, undergoes a multifaceted wound healing process involving hemostasis, inflammation, proliferation, and remodeling. The transcription factor FOSL1 has been implicated in various cellular processes crucial for wound healing, including cell [...] Read more.
Background: The skin, a complex organ vital for protecting the body against environmental challenges, undergoes a multifaceted wound healing process involving hemostasis, inflammation, proliferation, and remodeling. The transcription factor FOSL1 has been implicated in various cellular processes crucial for wound healing, including cell cycle regulation, differentiation, and apoptosis. We hypothesize that FOSL1 is a key regulator of wound healing processes. Objective: The objective of this study was to investigate the role of FOSL1 in cutaneous wound healing, identify the core signaling pathways involved, and assess FOSL1′s potential as a therapeutic target. Method: We utilized datasets from the Gene Expression Omnibus (GEO) and applied the ‘limma’ package to discern differentially expressed genes (DEGs). We intersected these DEGs with transcription factor-associated genes from the TRRUST database. Subsequently, we constructed Protein–Protein Interaction (PPI) networks via the STRING database. Machine learning algorithms were instrumental in identifying pivotal genes, a finding corroborated through animal modeling and Western blot analysis of tissue samples. To elucidate biological pathway activities from gene expression data, we deployed the ‘PROGENy’ package, complemented by machine learning for precise pathway identification. Furthermore, Gene Set Variation Analysis (GSVA) was executed across Hallmark, biological process (BP), molecular function (MF), and cellular component (CC) categories to deepen our understanding of the wound healing process. Results: Our analysis revealed that FOSL1 is significantly upregulated in wounded skin. The Mitogen-Activated Protein Kinase (MAPK) and Epidermal Growth Factor Receptor (EGFR) pathways were identified as significantly associated with FOSL1. GSVA identifies critical changes in wound healing processes like ‘apical junction’ and ‘epithelial–mesenchymal transition.’ The upregulation of ‘cytoplasm organization’ and ‘response to gravity’ suggests roles in cellular adaptation. Molecular function analysis indicates alterations in ‘cytokeratin filaments’ and ‘growth factor binding,’ which are key for tissue repair. Cellular component shifts in ‘postsynaptic cytosol’ and ‘endoplasmic reticulum’ suggest changes in communication and protein processing. Conclusions: Our study identifies FOSL1 as a potential regulator of cutaneous wound healing through its modulation of cellular signaling pathways, offering novel insights into the molecular control of tissue repair. These findings highlight FOSL1 as a promising therapeutic target to accelerate healing in chronic or impaired wounds. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

30 pages, 3388 KiB  
Article
Bicomponent Cutaneous Cell Therapy for Early Burn Care: Manufacturing Homogeneity and Epidermis-Structuring Functions of Clinical Grade FE002-SK2 Allogeneic Dermal Progenitor Fibroblasts
by Xi Chen, Nathalie Hirt-Burri, Corinne Scaletta, Alexis E. Laurent and Lee Ann Applegate
Pharmaceutics 2025, 17(6), 692; https://doi.org/10.3390/pharmaceutics17060692 - 24 May 2025
Viewed by 548
Abstract
Background: The extracellular matrix (ECM), primarily composed of collagen and elastin synthesized by dermal fibroblasts, is critical for mesenchymal tissue integrity. Fibroblast phenotypes vary significantly with the anatomical location and developmental stage. Fetal skin, particularly prior to 14 weeks of gestation, exhibits a [...] Read more.
Background: The extracellular matrix (ECM), primarily composed of collagen and elastin synthesized by dermal fibroblasts, is critical for mesenchymal tissue integrity. Fibroblast phenotypes vary significantly with the anatomical location and developmental stage. Fetal skin, particularly prior to 14 weeks of gestation, exhibits a simplified structure compared to adult skin, characterized by a thin, loose dermal matrix and a single-layered epithelium. Objectives: This study aimed to characterize and functionally compare homogenous progenitor fetal fibroblast (PFF) populations derived from 14-week-old fetal skin with fibroblasts isolated from adult burn patients. Methods: We evaluated the proliferative capacity, collagen synthesis, and differentiation potential (adipogenesis and osteogenesis) of PFF and adult burn patient fibroblasts. Furthermore, we assessed their ability to support skin regeneration using a de-epidermized dermis (DED) model seeded with both PFF and patient-derived keratinocytes. The stability of PFF characteristics was monitored across multiple passages (P5–P12). Results: PFF demonstrated a 2–4-fold increase in proliferation rate and a 30–50% enhancement in collagen production in vitro compared to adult fibroblasts. Notably, PFF exhibited a consistent lack of adipogenic and osteogenic differentiation, an attribute distinct from adult fibroblasts. In the DED model, PFF, even at a low fibroblast-to-keratinocyte ratio (1:5), effectively facilitated the formation of well-organized skin structures, including rete ridges, surpassing the performance of adult fibroblasts and adipose-derived cells. These properties remained stable over multiple passages. Conclusions: The unique attributes of PFF, likely attributable to the simplified microenvironment (i.e., collagen organization) of developing fetal tissue, positions them as a promising source for cell-based therapies. Their inherent high collagen synthesis capacity is particularly advantageous for wound healing applications. Consequently, PFF represent a consistent and readily available resource for developing “off-the-freezer” cutaneous cell therapies, potentially enabling accelerated and improved treatment of severe burn injuries. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

19 pages, 3528 KiB  
Article
A Frequency Domain Analysis of the Growth Factor-Driven Extra-Cellular-Regulated Kinase (ERK) Pathway
by Nguyen H. N. Tran, Federico Frascoli and Andrew H. A. Clayton
Biology 2025, 14(4), 374; https://doi.org/10.3390/biology14040374 - 5 Apr 2025
Cited by 1 | Viewed by 464
Abstract
The ERK pathway is an important biochemical cascade and acts as a master regulator of myriad cell processes including cell proliferation, differentiation, and survival. Early biochemical work established that the timing of ERK phosphorylation was an important determinant of PC12 cell fate, with [...] Read more.
The ERK pathway is an important biochemical cascade and acts as a master regulator of myriad cell processes including cell proliferation, differentiation, and survival. Early biochemical work established that the timing of ERK phosphorylation was an important determinant of PC12 cell fate, with extended phosphorylation (with nerve growth factor treatment) linked to differentiation but rapid on–off ERK phosphorylation kinetics (with epidermal growth factor treatment) linked to cell proliferation. Recent work from several laboratories has revealed that periodic forcing the phosphorylation of ERK with growth factors, light (optogenetics) or electronically can switch cell fate from proliferative to differentiated depending on type of stimulus (amplitude and frequency). Here, we take an ERK model and analyze it from the frequency domain perspective. The key is the transfer function, which provides a compact description of input (growth factor)–output (ERK activation) behavior over a range of input frequencies, allowing an understanding of system dynamics in terms of amplitude modulations, phase shifts, and signaling bandwidths. Our analysis of transfer functions indicates that, at normal receptor levels, the ERK pathway acts as a negative feedback amplifier to growth factor fluctuations, amplifying them at low receptor occupancy but suppressing them at high receptor occupancy. The frequency dependence is best described as a resonant low pass filter, which selectively filters out high frequency input oscillations. We use the transfer function to predict how different growth factor input dynamics shape ERK activation. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

16 pages, 5528 KiB  
Article
IL-17 Ligand and Receptor Family Members Are Differentially Expressed by Keratinocyte Subpopulations and Modulate Their Differentiation and Inflammatory Phenotype
by Elisabetta Palazzo, Roberta Lotti, Marika Quadri, Carlo Pincelli and Alessandra Marconi
Int. J. Mol. Sci. 2025, 26(7), 2989; https://doi.org/10.3390/ijms26072989 - 25 Mar 2025
Viewed by 835
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by dysregulation of the interleukin 17 (IL-17) signaling axis. Given that psoriasis development depends on keratinocyte stem cells and early progenitors’ sensitivity to differentiation, we analyzed IL-17 ligands and the expression and function of in [...] Read more.
Psoriasis is a chronic inflammatory skin disease characterized by dysregulation of the interleukin 17 (IL-17) signaling axis. Given that psoriasis development depends on keratinocyte stem cells and early progenitors’ sensitivity to differentiation, we analyzed IL-17 ligands and the expression and function of in a novel subset of keratinocyte subpopulations: keratinocyte stem cells (KSC) and early and late Transit Amplifying (ETA or LTA, respectively) cells. We found that all subpopulations expressed all IL-17 variants, predominantly in ETA and LTA. Conversely, IL-17 receptor expression resulted in more heterogeneity, with IL-17RA, -C, and -E being the most differentially regulated. Stimulus with IL-17A, IL-17-F, IL-17-A/F, and IL-17C promotes the upregulation of CXCL1, CXCL8, and DEFB4 mRNAs expression in both KSC and ETA. Moreover, IL-17A and IL-17A/F mainly decrease KSC proliferation and promote cell cycle block. Globally, IL-17A and IL-17A/F modulated the expression of proliferation, differentiation, and psoriasis-associated markers. Furthermore, KSC- and ETA-derived 3D reconstructions displayed increased epidermal thickness and upregulated KRT16 expression after treatment with IL-17A or IL-17A/F. Therefore, our data demonstrated that IL-17 family members perform distinctive functions in a specific keratinocyte subpopulation and define IL-17 signaling as a critical modulator of KSC behavior, proving its role in epidermal homeostasis dysregulation of psoriasis. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Skin Diseases (Second Edition))
Show Figures

Figure 1

18 pages, 3566 KiB  
Article
Bulge-Derived Epithelial Cells Isolated from Human Hair Follicles Using Enzymatic Digestion or Explants Result in Comparable Tissue-Engineered Skin
by Bettina Cattier, Rina Guignard, Israël Martel, Christian Martel, Carolyne Simard-Bisson, Danielle Larouche, Béatrice Guiraud, Sandrine Bessou-Touya and Lucie Germain
Int. J. Mol. Sci. 2025, 26(5), 1852; https://doi.org/10.3390/ijms26051852 - 21 Feb 2025
Viewed by 1290
Abstract
Hair follicle stem cells, located in the bulge region of the outer root sheath, are multipotent epithelial stem cells capable of differentiating into epidermal, sebaceous gland, and hair shaft cells. Efficient culturing of these cells is crucial for advancements in dermatology, regenerative medicine, [...] Read more.
Hair follicle stem cells, located in the bulge region of the outer root sheath, are multipotent epithelial stem cells capable of differentiating into epidermal, sebaceous gland, and hair shaft cells. Efficient culturing of these cells is crucial for advancements in dermatology, regenerative medicine, and skin model development. This investigation aimed to develop a protocol for isolating enriched bulge-derived epithelial cells from scalp specimens to produce tissue-engineered substitutes. The epithelium, including hair follicles, was separated from the dermis using thermolysin, followed by microdissection of the bulge region. Epithelial stem cells were isolated using enzymatic dissociation to create a single-cell suspension and compared with the direct explant culture and a benchmark method which isolates cells from the epidermis and pilosebaceous units. After 8 days of culture, the enzymatic digestion of microdissected bulges yielded 5.3 times more epithelial cells compared to explant cultures and proliferated faster than the benchmark method. Cells cultured from all methods exhibited comparable morphology and growth rates. The fully stratified epidermis of tissue-engineered skin was similar, indicating comparable differentiation potential. This enzymatic digestion method improved early-stage cell recovery and expansion while maintaining keratinocyte functionality, offering an efficient hair bulge cell-extraction technique for tissue engineering and regenerative medicine applications. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

17 pages, 6304 KiB  
Article
Insights from Tandem Mass Tag (TMT) Proteomic Analysis on Protein Network Modification in Control of Yak Hair Follicle Cycle
by Shijie Li, Yan Cui, Sijiu Yu, Junfeng He, Rui Ma, Bo Liao, Pengfei Zhao, Pengqiang Wei and Niayaler Robert
Int. J. Mol. Sci. 2025, 26(4), 1532; https://doi.org/10.3390/ijms26041532 - 12 Feb 2025
Cited by 1 | Viewed by 862
Abstract
Highland animals have unique hair growth mechanisms to allow them to adapt to harsh living environments. Compared with other species, their hair cycle growth is affected by more environmental factors. Yaks, as highland animals, have obvious periodic hair growth characteristics in a year; [...] Read more.
Highland animals have unique hair growth mechanisms to allow them to adapt to harsh living environments. Compared with other species, their hair cycle growth is affected by more environmental factors. Yaks, as highland animals, have obvious periodic hair growth characteristics in a year; this biological process is regulated by numerous proteins, but the specific molecular regulatory mechanism is still unclear. Here we analyzed the histological characteristics of yak hair follicles (HFs) at each stage and conducted TMT proteomics research. The protein expression network of yak hair at each stage and the mechanism of the yak HF growth cycle were systematically explored, and the candidate proteins Sfrp1 and Ppard were verified. A total of 3176 proteins were quantifiable and 1142 differentially expressed proteins (DEPs) were obtained at five stages of the yak hair cycle. DEPs enriched in complement activation change, tissue development, lipid metabolism, WNT pathway, VEGF pathway, JAK-STAT pathway, and PPAR pathway may promote the growth of yak hair follicles, such as Serpinf1, Ppard, and Stat3. DEPs enriched in complement system, coagulation, cell adhesion, lipid metabolic process, proliferation of epidermal cells, and estrogen pathway may promote the degeneration of yak hair, such as Sfrp1, Eppk1, and Egfr. Using Protein-Protein Interaction (PPI) analysis, we found that core nodes of DEP networks in yak skin are significantly different at three critical time points in hair follicle development, and lipid metabolism proteins are common core DEP nodes during yak HF growth and degeneration. The expression of Sfrp1 and Ppard in yak hair follicles at different periods showed they are related to yak hair cycle control. This study showed that the protein regulatory network of the yak HF growth cycle is complex and dynamically changing and revealed key candidate proteins that may affect yak hair follicle development. These findings provided detailed data for further understanding of the plateau adaptation mechanism of the yak, which is of great significance to make better use of the yak livestock resources and enhance their economic value. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 5203 KiB  
Article
Ligand-Independent Vitamin D Receptor Actions Essential for Keratinocyte Homeostasis in the Skin
by Satoko Kise, Shinichi Morita, Toshiyuki Sakaki, Hiroyuki Kimura, Seigo Kinuya and Kaori Yasuda
Int. J. Mol. Sci. 2025, 26(1), 422; https://doi.org/10.3390/ijms26010422 - 6 Jan 2025
Cited by 2 | Viewed by 1889
Abstract
Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (Vdr-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the [...] Read more.
Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (Vdr-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since Vdr-KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among Vdr-KO, Vdr-R270L/H301Q, and wild-type (WT) rats. While Vdr-R270L/H301Q rats exhibited normal skin formation similar to WT rats, Vdr-KO rats showed remarkable hyperkeratosis and trans-epidermal water loss in the skin. RNA sequencing and proteomic analysis revealed that the gene and protein expression patterns in Vdr-KO rats significantly differed from those in WT and Vdr-R270L/H301Q rats, with a marked decrease in the expression of factors involved in Shh, Wnt, and Bmp signaling pathways, a dramatic reduction in the expression of hair keratins, and a substantial increase in the expression of epidermal keratins. This study clearly demonstrated that non-liganded VDR is significantly involved in the differentiation, proliferation, and cell death of keratinocytes in hair follicles and the epidermis. Full article
(This article belongs to the Special Issue The Role of Vitamin D in Human Health and Diseases 4.0)
Show Figures

Figure 1

16 pages, 10610 KiB  
Article
Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute
by Shiqi Wang, Dinghui Gao, Mingyu Li, Qian Wang, Xuanyu Du and Siming Yuan
Biomedicines 2024, 12(12), 2844; https://doi.org/10.3390/biomedicines12122844 - 13 Dec 2024
Viewed by 4823
Abstract
Background: Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack [...] Read more.
Background: Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack of structural support. Methods: This study explored the combined use of gene transfection and dermal substitutes to improve wound healing. We used the DGTM (genes: DNP63A, GRHL2, TFAP2A, and MYC) factors to transfect adipose-derived stem cells (ADSCs), inducing their differentiation into keratinocytes. These transfected ADSCs were then incorporated into Pelnac® dermal substitutes to enhance vascularization and cellular proliferation for better healing outcomes. Results: Gene transfer using DGTM factors successfully induced keratinocyte differentiation in ADSCs. The application of these differentiated cells with Pelnac® dermal substitute to dermal wounds in mice resulted in the formation of skin tissue with a normal epidermal layer and proper collagen organization. This method alleviates the tediousness of the multiple transfection steps in previous protocols and the safety issues caused by using viral transfection reagents directly on the wound. Additionally, the inclusion of dermal substitutes addressed the lack of collagen and elastic fibers, promoting the formation of tissue resembling healthy skin rather than scar tissue. Conclusion: Integrating DGTM factor-transfected ADSCs with dermal substitutes represents a novel strategy for enhancing the healing of full-thickness wounds. Further research and clinical trials are warranted to optimize and validate this innovative approach for broader clinical applications. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

10 pages, 292 KiB  
Review
HER2-Positive Serous Endometrial Cancer Treatment: Current Clinical Practice and Future Directions
by Dimitrios Papageorgiou, Galateia Liouta, Ioakeim Sapantzoglou, Eleftherios Zachariou, Dimitra Pliakou, Katerina Papakonstantinou, Theofanis Floros and Evangelia Pliakou
Medicina 2024, 60(12), 2012; https://doi.org/10.3390/medicina60122012 - 6 Dec 2024
Cited by 1 | Viewed by 2461
Abstract
The most common histological subtypes of endometrial cancer consist of endometrioid and uterine serous carcinoma, with the latter being more aggressive and accompanied by poor prognosis. Human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor associated with cell proliferation, [...] Read more.
The most common histological subtypes of endometrial cancer consist of endometrioid and uterine serous carcinoma, with the latter being more aggressive and accompanied by poor prognosis. Human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor associated with cell proliferation, differentiation, and survival. HER2 positivity can be diagnosed in many solid tumors. It has been found that approximately one-third of the patients diagnosed with serous carcinoma may overexpress HER2/neu protein and/or show the amplification of the c-erBb2 gene. The prognostic and predictive value of HER2 biomarker is nowadays highlighted and the updates of HER2-directed treatment offer new opportunities for improved efficacy and survival. A number of HER2-targeted therapies have become available in recent years and have had promising results, prompting full drug approvals and additional investigation in many cancer types, among which is endometrial cancer. Data from clinical trials combining classical chemotherapy with anti-HER2 agents, mainly trastuzumab, alone or in combination with pertuzumab, do exist and have been incorporated into international guidelines. Moreover, further research with antibody–drug conjugates and tyrosine kinase inhibitors is being conducted. Acquired resistance remains an important problem, and its underlying mechanisms in endometrial cancer are mostly unknown. Studies exploring earlier use of Her2-directed therapy are also on the way. The purpose of this literature review is to describe the available therapies in the current clinical practice and the most prominent research data regarding the future. In any case, a number of unmet medical needs do exist for HER2-positive serous endometrial cancer, and additional research and studies are warranted to provide further understanding and improved outcomes for this tumor type. Full article
(This article belongs to the Special Issue Updates on Endometrial Cancer Screening and Treatment)
18 pages, 2077 KiB  
Review
Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages
by Leopold Eckhart, Florian Gruber and Supawadee Sukseree
Cells 2024, 13(20), 1675; https://doi.org/10.3390/cells13201675 - 10 Oct 2024
Cited by 3 | Viewed by 1928
Abstract
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of [...] Read more.
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of epithelial cells of the skin, commonly referred to as keratinocytes, involves major remodeling processes that generate metabolically inactive cell remnants serving as building blocks of the epidermal stratum corneum, nail plates and hair shafts. Only sebaceous gland differentiation results in cell disintegration and holocrine secretion. A series of studies performed in the past decade have revealed that the lysosome-dependent intracellular degradation mechanism of autophagy is active during keratinocyte differentiation, and the blockade of autophagy significantly alters the properties of the differentiation products. Here, we present a model for the autophagy-mediated degradation of organelles and cytosolic proteins as an important contributor to cellular remodeling in keratinocyte differentiation. The roles of autophagy are discussed in comparison to alternative intracellular degradation mechanisms and in the context of programmed cell death as an integral end point of epithelial differentiation. Full article
(This article belongs to the Section Autophagy)
Show Figures

Figure 1

16 pages, 2741 KiB  
Article
Modeling Epithelial Homeostasis and Perturbation in Three-Dimensional Human Esophageal Organoids
by Masataka Shimonosono, Masaki Morimoto, Wataru Hirose, Yasuto Tomita, Norihiro Matsuura, Samuel Flashner, Mesra S. Ebadi, Emilea H. Okayasu, Christian Y. Lee, William R. Britton, Cecilia Martin, Beverly R. Wuertz, Anuraag S. Parikh, Uma M. Sachdeva, Frank G. Ondrey, Venkatram R. Atigadda, Craig A. Elmets, Julian A. Abrams, Amanda B. Muir, Andres J. Klein-Szanto, Kenneth I. Weinberg, Fatemeh Momen-Heravi and Hiroshi Nakagawaadd Show full author list remove Hide full author list
Biomolecules 2024, 14(9), 1126; https://doi.org/10.3390/biom14091126 - 5 Sep 2024
Cited by 4 | Viewed by 2215
Abstract
Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco’s Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids [...] Read more.
Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco’s Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize the ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of the proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results: The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ-receptor-mediated signaling. Optimized HOME0 improved normal human esophageal organoid formation. In the HOME0-grown organoids, IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop