Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Antibodies
2.2. Isolation, Culture, and Identification of ADSCs
2.3. Lentiviral Transfection of ADSCs to Characterize Transfection Efficiency and Cellular Properties
2.4. Construction of Dermal Substitute–ADSCsDGTM+ Complexes
2.5. Animal Experimentation
2.6. RT-qPCR
2.7. Western Blot
2.8. Statistical Analysis
3. Results
3.1. ADSCs Displaying Characteristic Surface Markers and Differentiation Potential Were Isolated and Cultured
3.2. Efficient Lentiviral Transfection of ADSCsDGTM+ and Validation of Keratinocyte-Specific Gene Expression
3.3. ADSCsDGTM+ Exhibit Successful Adhesion, Proliferation, and Keratinocyte Differentiation on Pelnac® Dermal Substitutes
3.4. Dermal Substitute–ADSCsDGTM+ Complexes Prove to Be a Highly Efficient Approach for the Restoration of Complete Skin Defect Wounds in Mice
3.4.1. The Entire Skin Defect Wound Can Be Filled with Dermal Substitute–ADSCsDGTM+ Complexes
3.4.2. Dermal Substitute–ADSCsDGTM+ Complex Promotes Angiogenesis and Cell Proliferation in Whole Skin Wounds
3.4.3. ADSCsDGTM+ in the Dermal Substitute–ADSCsDGTM+ Complex Have the Capacity to Transform into Keratin-Forming Cells, Which Are Involved in the Filling of Full-Thickness Skin Wounds
3.5. Dermal Substitute–ADSCsDGTM+ Complex Demonstrates No Detectable Toxicity or Organ Impairment in Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greenhalgh, D.G. Management of Burns. N. Engl. J. Med. 2019, 380, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Stratman, S.; Kirsner, R.S. Lower Extremity Ulcers. Med. Clin. N. Am. 2021, 105, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Liu, T.; Liu, M.; Li, H.; Huang, Y.; Hu, X.; He, W.; Luo, G.; Qian, W. Epidemiology and Outcome Analysis of Burns During Explosion Accident at a Major Center in Southwestern China From 2002 to 2016. J. Burn. Care Res. Off. Publ. Am. Burn. Assoc. 2021, 42, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Bian, H.; Sun, C.; Zheng, S.; Xiong, B.; Huang, Z.; Liu, Z.; Ma, L.; Li, H.; Chen, H.; et al. Usage of intermingled skin allografts and autografts in a senior patient with major burn injury. Open Med. 2021, 16, 1745–1748. [Google Scholar] [CrossRef]
- Fu, C.; Qi, Z.; Zhao, C.; Kong, W.; Li, H.; Guo, W.; Yang, X. Enhanced Wound Repair Ability of Arginine-Chitosan Nanocomposite Membrane Through the Antimicrobial Peptides-Loaded Dopmine-Modified Graphene Oxide. J. Biol. Eng. 2021, 15, 17. [Google Scholar] [CrossRef]
- Panayi, A.C.; Wu, M.; Liu, Q.; Yu, Z.; Karvar, M.; Aoki, S.; Hamaguchi, R.; Ma, C.; Orgill, D.P. Negative Pressure Wound Therapy Promotes Murine Diabetic Wound Healing By Enhancing Lymphangiogenesis. J. Am. Coll. Surg. 2021, 233, S209. [Google Scholar] [CrossRef]
- Zimoch, J.; Zielinska, D.; Michalak-Micka, K.; Rütsche, D.; Böni, R.; Biedermann, T.; Klar, A.S. Bio-engineering a prevascularized human tri-layered skin substitute containing a hypodermis. Acta Biomater. 2021, 134, 215–227. [Google Scholar] [CrossRef]
- Qin, Y.; Ge, G.; Yang, P.; Wang, L.; Qiao, Y.; Pan, G.; Yang, H.; Bai, J.; Cui, W.; Geng, D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. Adv. Sci. 2023, 10, e2207334. [Google Scholar] [CrossRef]
- Vieira, N.M.; Bueno, C.R., Jr.; Brandalise, V.; Moraes, L.V.; Zucconi, E.; Secco, M.; Suzuki, M.F.; Camargo, M.M.; Bartolini, P.; Brum, P.C.; et al. SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells 2008, 26, 2391–2398. [Google Scholar] [CrossRef]
- Jayasinghe, M.; Prathiraja, O.; Perera, P.B.; Jena, R.; Silva, M.S.; Weerawarna, P.; Singhal, M.; Alam Kayani, A.M.; Karnakoti, S.; Jain, S. The Role of Mesenchymal Stem Cells in the Treatment of Type 1 Diabetes. Cureus 2022, 14, e27337. [Google Scholar] [CrossRef]
- Franck, C.L.; Senegaglia, A.C.; Leite, L.M.B.; de Moura, S.A.B.; Francisco, N.F.; Ribas Filho, J.M. Influence of Adipose Tissue-Derived Stem Cells on the Burn Wound Healing Process. Stem Cells Int. 2019, 2019, 2340725. [Google Scholar] [PubMed]
- Huayllani, M.T.; Sarabia-Estrada, R.; Restrepo, D.J.; Boczar, D.; Sisti, A.; Nguyen, J.H.; Rinker, B.D.; Moran, S.L.; Quiñones-Hinojosa, A.; Forte, A.J. Adipose-derived stem cells in wound healing of full-thickness skin defects: A review of the literature. J. Plast. Surg. Hand Surg. 2020, 54, 263–279. [Google Scholar] [PubMed]
- Seth, A.K.; Ratanshi, I.; Dayan, J.H.; Disa, J.J.; Mehrara, B.J. Nasal Reconstruction Using the Integra Dermal Regeneration Template. Plast. Amp Reconstr. Surg. 2019, 144, 966–970. [Google Scholar]
- Hao, Z. Application of Pelnac® Artificial Dermis Combined with VSD in the Repair of Limb Wounds. J. Investig. Surg. 2018, 33, 642–643. [Google Scholar]
- Banakh, I.; Cheshire, P.; Rahman, M.; Carmichael, I.; Jagadeesan, P.; Cameron, N.R.; Cleland, H.; Akbarzadeh, S. A Comparative Study of Engineered Dermal Templates for Skin Wound Repair in a Mouse Model. Int. J. Mol. Sci. 2020, 21, 4508. [Google Scholar] [CrossRef]
- Kang, S.-W.; Park, J.-K.; Shon, H.-C.; Choi, E.-S.; Kim, D.-S.; Min, K.-T. Skin graft using MatriDerm® for plantar defects after excision of skin cancer. Cancer Manag. Res. 2019, 11, 2947–2950. [Google Scholar]
- Qi, Y.; Dong, Z.; Chu, H.; Zhao, Q.; Wang, X.; Jiao, Y.; Gong, H.; Pan, Y.; Jiang, D. Denatured acellular dermal matrix seeded with bone marrow mesenchymal stem cells for wound healing in mice. Burn. J. Int. Soc. Burn Inj. 2019, 45, 1685–1694. [Google Scholar]
- Kurita, M.; Araoka, T.; Hishida, T.; O’Keefe, D.D.; Takahashi, Y.; Sakamoto, A.; Sakurai, M.; Suzuki, K.; Wu, J.; Yamamoto, M.; et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature 2018, 561, 243–247. [Google Scholar] [CrossRef]
- Aubin, R.; Weinfeld, M.; Paterson, M.C. Polybrene/DMSOAssisted Gene Transfer. Methods Mol. Biol. 1991, 7, 35–43. [Google Scholar]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar]
- Chang, S.H.; Park, C.G. Allogeneic ADSCs induce CD8 T cell-mediated cytotoxicity and faster cell death after exposure to xenogeneic serum or proinflammatory cytokines. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [PubMed]
- Mildmay-White, A.; Khan, W. Cell Surface Markers on Adipose-Derived Stem Cells: A Systematic Review. Curr. Stem Cell Res. Ther. 2017, 12, 484–492. [Google Scholar]
- Egaña, J.T.; Fierro, F.A.; Krüger, S.; Bornhäuser, M.; Huss, R.; Lavandero, S.; Machens, H.-G. Use of Human Mesenchymal Cells to Improve Vascularization in a Mouse Model for Scaffold-Based Dermal Regeneration. Tissue Eng. Part A 2009, 15, 1191–1200. [Google Scholar] [PubMed]
- Formigli, L.; Benvenuti, S.; Mercatelli, R.; Quercioli, F.; Tani, A.; Mirabella, C.; Dama, A.; Saccardi, R.; Mazzanti, B.; Cellai, I.; et al. Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration. J. Tissue Eng. Regen. Med. 2011, 6, 125–134. [Google Scholar] [PubMed]
- Burke, J.F.; Yannas, I.V.; Quinby, W.C.; Bondoc, C.C., Jr.; Jung, W.K. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 1981, 194, 413–428. [Google Scholar] [PubMed]
- Birgersdotter, A.; Sandberg, R.; Ernberg, I. Gene expression perturbation in vitro—A growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 2005, 15, 405–412. [Google Scholar]
- Godier, A.F.G.; Marolt, D.; Gerecht, S.; Tajnsek, U.; Martens, T.P.; Vunjak-Novakovic, G. Engineered microenvironments for human stem cells. Birth Defects Res. Part C Embryo Today Rev. 2008, 84, 335–347. [Google Scholar]
- Lucich, E.A.; Rendon, J.L.; Valerio, I.L. Advances in addressing full-thickness skin defects: A review of dermal and epidermal substitutes. Regen. Med. 2018, 13, 443–456. [Google Scholar]
- Suzuki, S.; Kawai, K.; Ashoori, F.; Morimoto, N.; Nishimura, Y.; Ikada, Y. Long-term follow-up study of artificial dermis composed of outer silicone layer and inner collagen sponge. Br. J. Plast. Surg. 2000, 53, 659–666. [Google Scholar]
- Bloemen, M.C.T.; van Leeuwen, M.C.E.; van Vucht, N.E.; van Zuijlen, P.P.M.; Middelkoop, E. Dermal substitution in acute burns and reconstructive surgery: A 12-year follow-up. Plast. Reconstr. Surg. 2010, 125, 1450–1459. [Google Scholar]
- Wosgrau, A.C.; Jeremias Tda, S.; Leonardi, D.F.; Pereima, M.J.; Di Giunta, G.; Trentin, A.G. Comparative experimental study of wound healing in mice: Pelnac versus Integra. PLoS ONE 2015, 10, e0120322. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Jia, S.X.; Xie, P.; Xu, W.; Leung, K.P.; Mustoe, T.A.; Galiano, R.D. Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS ONE 2013, 8, e55640. [Google Scholar] [CrossRef] [PubMed]
- Mazini, L.; Rochette, L.; Admou, B.; Amal, S.; Malka, G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Int. J. Mol. Sci. 2020, 21, 1306. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.D.F.; Gomes, D.A. Stem Cell Extracellular Vesicles in Skin Repair. Bioengineering 2018, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Chen, J.; Duscher, D.; Liu, Y.; Guo, G.; Kang, Y.; Xiong, H.; Zhan, P.; Wang, Y.; Wang, C.; et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res. Ther. 2019, 10, 47. [Google Scholar] [CrossRef]
- Liu, Y.; Cox, S.R.; Morita, T.; Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ. Res. 1995, 77, 638–643. [Google Scholar] [CrossRef]
- Sumi, M.; Sata, M.; Toya, N.; Yanaga, K.; Ohki, T.; Nagai, R. Transplantation of adipose stromal cells, but not mature adipocytes, augments ischemia-induced angiogenesis. Life Sci. 2007, 80, 559–565. [Google Scholar]
- Meruane, M.A.; Rojas, M.; Marcelain, K. The use of adipose tissue-derived stem cells within a dermal substitute improves skin regeneration by increasing neoangiogenesis and collagen synthesis. Plast. Reconstr. Surg. 2012, 130, 53–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Gao, D.; Li, M.; Wang, Q.; Du, X.; Yuan, S. Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute. Biomedicines 2024, 12, 2844. https://doi.org/10.3390/biomedicines12122844
Wang S, Gao D, Li M, Wang Q, Du X, Yuan S. Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute. Biomedicines. 2024; 12(12):2844. https://doi.org/10.3390/biomedicines12122844
Chicago/Turabian StyleWang, Shiqi, Dinghui Gao, Mingyu Li, Qian Wang, Xuanyu Du, and Siming Yuan. 2024. "Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute" Biomedicines 12, no. 12: 2844. https://doi.org/10.3390/biomedicines12122844
APA StyleWang, S., Gao, D., Li, M., Wang, Q., Du, X., & Yuan, S. (2024). Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute. Biomedicines, 12(12), 2844. https://doi.org/10.3390/biomedicines12122844