Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = enzymatic potassium carbonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7992 KB  
Article
Impact of Introduced Spatholobus suberectus and Dalbergia balansae on Soil N Accumulation and P Depletion in Chinese Fir Plantations
by Qiwu Sun, Chai Lin, Lingyu Hou, Yuhong Dong, Shumeng Wei, Xiangrong Liu and Qian Wang
Forests 2026, 17(1), 110; https://doi.org/10.3390/f17010110 - 13 Jan 2026
Viewed by 166
Abstract
The introduction of understory vegetation can increase species diversity and potential productivity in forest ecosystems, which is considered a viable solution to the global problem of declining soil quality caused by deteriorating climatic conditions and human activities. The forest management model that achieves [...] Read more.
The introduction of understory vegetation can increase species diversity and potential productivity in forest ecosystems, which is considered a viable solution to the global problem of declining soil quality caused by deteriorating climatic conditions and human activities. The forest management model that achieves economic and ecological benefits by introducing legumes is widely used. However, there have been rare studies on the effects of introducing legumes under Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations on soil nutrient content and microbial diversity. In this study, we investigated the soil chemical properties, microbial diversity, and enzymatic activities in Chinese fir plantations introduced with Spatholobus suberectus (SRS), Dalbergia balansae (DRS), both species (BS), and in a monoculture plantation (CK). As indicated by the results, soil pH, total phosphorus (TP), available phosphorus (AP), available potassium (AK), urease activities, and the ratios of C:P and N:P decreased in SRS, DRS, and BS treatments, whereas soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), phosphatase, and sucrase activities increased. The decrease in soil pH and the effects of Chytridiomycota and Glomeromycota elevated phosphatase activity. Accordingly, the mineralization rate of soil phosphorus increased. This increase enhanced phosphorus availability and the risk of loss, resulting in the depletion of soil phosphorus and the inhibition of urease activity. The findings of this study reveal that the introduction of legumes effectively improves the soil microbial community and nitrogen accumulation in Chinese fir plantations while resulting in phosphorus depletion, highlighting the need for balanced nutrient management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 2954 KB  
Article
Response of Soil Organic Carbon Components in Pinus yunnanensis Stand to Altitude Variation
by Binzhi Wang, Haitao Li, Xiaoyi Li, Xinran Liang, Lei Wang, Fangdong Zhan, Yongmei He, Zhihao Si and Siteng He
Agronomy 2026, 16(1), 4; https://doi.org/10.3390/agronomy16010004 - 19 Dec 2025
Viewed by 272
Abstract
Under global climate change, the response of mountain forest soil carbon pools to elevation is central to carbon cycle research, and Pinus yunnanensis stands, which span a wide elevation range, serve as a typical subject for studying how soil properties in mountain ecosystems [...] Read more.
Under global climate change, the response of mountain forest soil carbon pools to elevation is central to carbon cycle research, and Pinus yunnanensis stands, which span a wide elevation range, serve as a typical subject for studying how soil properties in mountain ecosystems respond to elevation gradients. To reveal the variation patterns and underlying regulatory mechanisms of soil nutrients and organic carbon components in Pinus yunnanensis stands across different altitudinal gradients, this study took Pinus yunnanensis stands at three altitude gradients (1604 m, 2377 m, 3206 m) within Yunnan Province as research objects, collected stratified soil samples, and determined soil chemical properties, organic carbon components, enzyme activity, and microbial biomass. The results showed that changes in elevation significantly influence soil nutrient content: soil pH gradually decreases with increasing elevation; soil organic carbon, total nitrogen, alkali-hydrolyzable nitrogen, available phosphorus, and readily available potassium first increase then decrease with elevation, reaching their highest levels at Jin’an Town (JA); total phosphorus and total potassium gradually increase with elevation, peaking at Xiaozhongdian Town (XZD); particulate organic carbon, mineral-bound organic carbon, and microbial biomass carbon follow similar patterns to organic carbon, all showing enrichment in the surface layer; JA exhibits the highest carbon cycle enzyme activity and bacterial biomass, while XZD shows dominant fungal biomass. Partial Least Squares Path Modeling (PLS-PM) analysis indicates that elevation strongly positively drives microbial biomass, indirectly regulating enzyme activity and chemical properties, ultimately jointly influencing organic carbon components. In conclusion, soil properties varied markedly, and under stable precipitation, the thermal gradient emerged as the primary driver; the mid-elevation site (2377 m) showed optimal soil functioning, with peak nutrient and carbon stocks linked to heightened microbial and enzymatic activity, and path modeling confirmed that temperature, via microbial mediation, is the key regulator of soil organic carbon dynamics in these pine forests. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 1141 KB  
Article
Valorization of Green Arabica Coffee Coproducts for Mannanase Production and Carbohydrate Recovery
by Raquel Coldibelli Ribeiro, Leonardo João Bicalho de Moraes de Barros, Laura Braga de Menezes, Claudia Moraes de Rezende, Ayla Sant’Ana da Silva, Elba Pinto da Silva Bon and Ricardo Sposina Sobral Teixeira
Processes 2025, 13(12), 3874; https://doi.org/10.3390/pr13123874 - 1 Dec 2025
Viewed by 328
Abstract
Agro-industrial residues rich in carbohydrates represent low-cost and sustainable feedstock for enzyme production. This study demonstrates that green Arabica coffee press cake, a mannan-rich coproduct of oil extraction, is an efficient carbon source for Aspergillus niger (CFAM 1234) cultivation and for inducing mannanase [...] Read more.
Agro-industrial residues rich in carbohydrates represent low-cost and sustainable feedstock for enzyme production. This study demonstrates that green Arabica coffee press cake, a mannan-rich coproduct of oil extraction, is an efficient carbon source for Aspergillus niger (CFAM 1234) cultivation and for inducing mannanase production. Furthermore, the enzymes obtained were tested for mannose recovery in the enzymatic hydrolysis of healthy and defective coffee beans to investigate their hydrolytic potential. Mannanase production was investigated using various carbon sources—including ground coffee beans; coffee press cake; different particle sizes of coffee press cake; aqueous coffee cake extract (prepared at 30 g·L−1 under constant stirring (300 rpm) at 80 °C for 2 h, followed by filtration.); and a commercial galactomannan, locust bean gum (LBG). CNHSO analysis was performed in the best carbon source (coffee press cake) and LBG. Statistical optimization (Plackett–Burman and Central Composite Rotatable Design) simplified the culture medium composition to coffee press cake (48.78 g·L−1), yeast extract (4 g·L−1), and potassium phosphate (0.25 g·L−1, pH 5.5) and increased mannanases productivity to 22.4 ± 0.6 U·mL−1 within only 3 days (a 42.9% improvement compared to non-optimized conditions, which were 30 g·L−1, carbon source, 4 g·L−1 yeast extract, 1 g·L−1 Al2O3, 0.5 g·L−1 potassium phosphate buffer (pH 5.5), 0.5 g·L−1 of MgSO4·7H2O, and 0.05 g·L−1 of CaCl2·2H2O, which resulted in a maximum of ~20 U·mL−1 in 7 days). The crude extract also exhibited β-mannosidase activity (1.39 ± 0.06 U·mL−1). When applied to the hydrolysis of untreated healthy and defective coffee beans, the enzyme preparation enabled ~25% mannose recovery (considering the value obtained through acid hydrolysis as 100%), highlighting its potential as a mannose resource. The results demonstrate that coproducts from the coffee production chain can be used as an efficient carbon source (coffee cake) for mannanase production, as well as sugar recovery (defective coffee beans), offering an integrated strategy to strengthen the circular bioeconomy and generate carbohydrates with potential industrial and nutritional applications. Full article
(This article belongs to the Special Issue Enzyme Production Using Industrial and Agricultural By-Products)
Show Figures

Graphical abstract

25 pages, 3783 KB  
Article
Application of a Multi-Component Conditioner as a Sustainable Management Practice for Enhancing Soil Properties and Hordeum vulgare L. Growth and Yield
by Jacek Długosz, Karol Kotwica, Ewelina Przybyszewska and Anna Piotrowska-Długosz
Sustainability 2025, 17(22), 10169; https://doi.org/10.3390/su172210169 - 13 Nov 2025
Viewed by 421
Abstract
The purpose of this study was to evaluate how a multi-component soil conditioner consisting of zeolite, calcium carbonate, potassium humate, and Ascophyllum nodosum extract affects selected soil properties (physical, chemical, and water-related properties, as well as microbial and enzymatic properties) and the growth [...] Read more.
The purpose of this study was to evaluate how a multi-component soil conditioner consisting of zeolite, calcium carbonate, potassium humate, and Ascophyllum nodosum extract affects selected soil properties (physical, chemical, and water-related properties, as well as microbial and enzymatic properties) and the growth and grain yield of spring barley (Hordeum vulgare L.). To achieve the goal, one-year research experiments were conducted at three conventionally tilled sites, which were situated on farms across three geographically separate regions in the Kuyavian–Pomeranian Region of Midwestern Poland. Most of the chemical properties, namely, total organic C, total N, pH in KCl, cation exchangeable capacity (CEC), as well as exchangeable (Mg, Ca, K, and Na) and available (Mg, K, and P) forms of nutrients, were not significantly affected by the conditioner or sampling time. Independent of the study location, the percentage of macropores in total porosity (TP) and dissolved nitrogen content (DNt) determined in July were considerably greater in the soil treated with Solactiv compared to the reference soil. Bulk density (BD), in turn, showed the opposite tendency, also suggesting the positive effect of the studied conditioner. At all study sites, application of the conditioner significantly reduced the percentage of micropores in total porosity (TP) (by 17%), while significantly increasing the content of macropores in TP (15%) and enhancing the percentage of available and readily available water capacity (8.5% and 14%). No clear changes in the results of C and N form and enzymatic activity were noted. The activities of DHA and FDAH behave differently in each study site, making it difficult to draw clear conclusions. The cellulase was the only enzyme that was significantly and positively affected by Solactiv at all study sites and for both sampling times. The values of dry matter of roots and plants, barley root length and surface, and barley grain yield were considerably greater in soil amended with Solactiv compared to the reference soil. Because some important soil and plant properties showed a positive response toward the tested conditioner, despite the low dose used, further studies should be conducted at a larger scale, focusing on different soils and plants. Full article
(This article belongs to the Special Issue Sustainable Environmental Analysis of Soil and Water)
Show Figures

Figure 1

18 pages, 1349 KB  
Article
Enzymatic Spirulina Extract Enhances the Vasodilation in Aorta and Mesenteric Arteries of Aged Rats
by Michal S. Majewski, Mercedes Klett-Mingo, Carlos M. Verdasco-Martín, Cristina Otero and Mercedes Ferrer
Mar. Drugs 2025, 23(10), 395; https://doi.org/10.3390/md23100395 - 8 Oct 2025
Viewed by 960
Abstract
Aging, one of the main factors associated with cardiovascular diseases, induces vascular modifications through nitric oxide (NO) release and oxidative stress. Based on the antioxidant properties of the non-enzymatic spirulina extract (non-Enz-Spir-E) and that degrading enzymes enhances the extract bioactivity, the aim of [...] Read more.
Aging, one of the main factors associated with cardiovascular diseases, induces vascular modifications through nitric oxide (NO) release and oxidative stress. Based on the antioxidant properties of the non-enzymatic spirulina extract (non-Enz-Spir-E) and that degrading enzymes enhances the extract bioactivity, the aim of this study was to analyze the in vitro effect of an Alcalase-assisted Enz-Spir-E on the vasodilator function of conduit and resistance arteries (which differently contribute to blood pressure regulation) in aging. Therefore, thoracic aorta (TA) and mesenteric arteries (MA) from male Sprague–Dawley rats (20–22 months-old) were divided into two groups: non-incubated vessels and vessels exposed to Enz-Spir-E (0.1% w/v) for 3 h. The vasodilation to acetylcholine (ACh), sodium nitroprusside (SNP, a NO donor), carbon-monoxide-releasing molecule (CORM), and cromakalim (a potassium channel opener), as well as NO and superoxide anion production, were studied. Enz-Spir-E increased the ACh-, SNP-, and CORM-induced responses in both types of arteries, while the cromalakim-induced relaxation was increased only in MA. Enz-Spir-E increased NO release (TA: 5.69-fold; MA: 1.79-fold), while it reduced superoxide anion formation (TA: 0.52-fold; MA: 0.66-fold). These results indicate that Enz-Spir-E improves aging-associated vasodilation through increasing NO release/bioavailability in both types of arteries and hyperpolarizing mechanisms only in MA. Full article
(This article belongs to the Special Issue Marine Antioxidants 2025)
Show Figures

Figure 1

12 pages, 1421 KB  
Article
Enzymatic Stoichiometry and Driving Factors Under Different Land-Use Types in the Qinghai–Tibet Plateau Region
by Yonggang Zhu, Feng Xiong, Derong Wu, Baoguo Zhao, Wenwu Wang, Biao Bi, Yihang Liu, Meng Liang and Sha Xue
Land 2025, 14(8), 1550; https://doi.org/10.3390/land14081550 - 28 Jul 2025
Viewed by 560
Abstract
Eco-enzymatic stoichiometry provides a basis for understanding soil ecosystem functions, with implications for land management and ecological protection. Long-term climatic factors and human interferences have caused significant land-use transformations in the Qinghai–Tibet Plateau region, affecting various ecological functions, such as soil nutrient cycling [...] Read more.
Eco-enzymatic stoichiometry provides a basis for understanding soil ecosystem functions, with implications for land management and ecological protection. Long-term climatic factors and human interferences have caused significant land-use transformations in the Qinghai–Tibet Plateau region, affecting various ecological functions, such as soil nutrient cycling and chemical element balance. It is currently unclear how large-scale land-use conversion affects soil ecological stoichiometry. In this study, 763 soil samples were collected across three land-use types: farmland, grassland, and forest land. In addition, changes in soil physicochemical properties and enzyme activity and stoichiometry were determined. The soil available phosphorus (SAP) and total phosphorus (TP) concentrations were the highest in farmland soil. Bulk density, pH, SAP, TP, and NO3-N were lower in forest soil, whereas NH4+-N, available nitrogen, soil organic carbon (SOC), available potassium, and the soil nutrient ratio increased. Land-use conversion promoted soil β-1,4-glucosidase, N-acetyl-β-glucosaminidase, and alkaline phosphatase activities, mostly in forest soil. The eco-enzymatic C:N ratio was higher in farmland soils but grassland soils had a higher enzymatic C:P and N:P. Soil microorganisms were limited by P nutrients in all land-use patterns. C limitation was the highest in farmland soil. The redundancy analysis indicated that the ecological stoichiometry in farmland was influenced by TN, whereas grass and forest soils were influenced by SOC. Overall, the conversion of cropland or grassland to complex land-use types can effectively enhance soil nutrients, enzyme activities, and ecosystem functions, providing valuable insights for ecological restoration and sustainable land management in alpine regions. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

20 pages, 2357 KB  
Article
Influence of Rice–Crayfish Co-Culture Systems on Soil Properties and Microbial Communities in Paddy Fields
by Dingyu Duan, Dingxuan He, Liangjie Zhao, Chenxi Tan, Donghui Yang, Wende Yan, Guangjun Wang and Xiaoyong Chen
Plants 2025, 14(15), 2320; https://doi.org/10.3390/plants14152320 - 27 Jul 2025
Viewed by 1378
Abstract
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects [...] Read more.
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects of the RC systems on soil physicochemical characteristics and microbial dynamics in paddy fields of southern Henan Province, China, over the 2023 growing season and subsequent fallow period. Using a randomized complete design, rice monoculture (RM, as the control) and RC treatments were compared across replicated plots. Soil and water samples were collected post-harvest and pre-transplanting to assess soil properties, extracellular enzyme activity, and microbial community structure. Results showed that RC significantly enhanced soil moisture by up to 30.2%, increased soil porosity by 9.6%, and nearly tripled soil organic carbon compared to RM. The RC system consistently elevated nitrogen (N), phosphorus (P), and potassium (K) throughout both the rice growth and fallow stages, indicating improved nutrient availability and retention. Elevated extracellular enzyme activities linked to carbon, N, and P cycling were observed under RC, with enzymatic stoichiometry revealing increased microbial nutrient limitation intensity and a shift toward P limitation. Microbial community composition was significantly altered under RC, showing increased biomass, a higher fungi-to-bacteria ratio, and greater relative abundance of Gram-positive bacteria, reflecting enhanced soil biodiversity and ecosystem resilience. Further analyses using the Mantel test and Random Forest identified extracellular enzyme activities, PLFAs, soil moisture, and bulk density as major factors shaping microbial communities. Redundancy analysis (RDA) confirmed that total potassium (TK), vector length (VL), soil pH, and total nitrogen (TN) were the strongest environmental predictors of microbial variation, jointly explaining 74.57% of the total variation. Our findings indicated that RC improves soil physicochemical conditions and microbial function, thereby supporting sustainable nutrient cycling and offering a promising, environmentally sound strategy for enhancing productivity and soil health in rice-based agro-ecosystems. Full article
Show Figures

Figure 1

19 pages, 1578 KB  
Article
Decreased Nitrogen and Carbohydrate Metabolism Activity Leads to Grain Yield Reduction in Qingke Under Continuous Cropping
by Zhiqi Ma, Chaochao He, Jianxin Tan, Tao Jin and Shuijin Hua
Plants 2025, 14(14), 2235; https://doi.org/10.3390/plants14142235 - 19 Jul 2025
Cited by 3 | Viewed by 852
Abstract
Qingke (Hordeum vulgare L. var. nudum Hook. f.), a staple crop in the Tibetan Plateau, suffers from severe yield reduction under continuous cropping (by 38.67%), yet the underlying mechanisms remain unclear. This study systematically investigated the effects of 23-year continuous cropping (23y-CC) [...] Read more.
Qingke (Hordeum vulgare L. var. nudum Hook. f.), a staple crop in the Tibetan Plateau, suffers from severe yield reduction under continuous cropping (by 38.67%), yet the underlying mechanisms remain unclear. This study systematically investigated the effects of 23-year continuous cropping (23y-CC) on the nutrient dynamics, carbohydrate metabolism, and enzymatic activities in Qingke leaves across five developmental stages (T1: seedling; T2: tillering; T3: jointing; T4: flowering; T5: filling). Compared to the control (first-year planting), 23y-CC significantly reduced leaf nitrogen (N), phosphorus (P), and potassium (K) contents by 60.94%, 47.96%, and 60.82%, respectively, at early growth stages. Key nitrogen-metabolizing enzymes, including glutamate synthase (GOGAT), glutamine synthase (GS), and nitrate reductase (NR), exhibited reduced activities under 23y-CC, indicating impaired nitrogen assimilation. Carbohydrate profiling revealed lower starch and glucose contents but higher sucrose accumulation in later stages (T4–T5) under 23y-CC, accompanied by the dysregulation of sucrose synthase (SS) and invertase activities. These findings elucidate how continuous cropping disrupts nutrient homeostasis and carbon allocation, ultimately compromising Qingke productivity. This study provides novel insights into agronomic strategies for mitigating continuous cropping obstacles in Qingke. Full article
(This article belongs to the Special Issue Influence of Management Practices on Plant Growth)
Show Figures

Figure 1

14 pages, 1278 KB  
Article
High Ratio of Manure Substitution Enhanced Soil Organic Carbon Storage via Increasing Particulate Organic Carbon and Nutrient Availability
by Xiaoyu Hao, Xingzhu Ma, Lei Sun, Shuangquan Liu, Jinghong Ji, Baoku Zhou, Yue Zhao, Yu Zheng, Enjun Kuang, Yitian Liu and Shicheng Zhao
Plants 2025, 14(13), 2045; https://doi.org/10.3390/plants14132045 - 3 Jul 2025
Cited by 3 | Viewed by 1678
Abstract
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios [...] Read more.
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios of manure substitution in northeast China, with treatments including chemical fertilizer application alone (nitrogen, phosphorus, and potassium, NPK) and replacing 1/4 (1/4M), 2/4 (2/4M), 3/4 (3/4M), and 4/4 (4/4M) of chemical fertilizer N with manure N. Soil nutrients, enzymatic activity, and SOC fractions were analyzed to evaluate the effect of different manure substitution ratios on SOC storage. A high ratio of manure substitution (>1/4) significantly increased soil total N, total P, total K, and available nutrients (NO3-N, available P, and available K), and the 4/4M greatly decreased the C/N ratio compared to the NPK. Manure incorporation increased microbial biomass carbon (MBC) by 18.3–53.0%. Treatments with 50%, 75%, and 100% manure substitution (2/4M, 3/4M, and 4/4M) enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total microbial necromass carbon (MNC) by 31.9–63.5%, 25.5–107.1%, and 27.4–94.2%, respectively, compared to the NPK treatment. Notably, the increase in FNC was greater than that of BNC as the manure substitution ratio increased. The increasing manure substitution significantly enhanced particulate organic C (POC) and total SOC but did not affect mineral-associated organic C (MAOC). High soil N and P supplies decreased leucine aminopeptidases (LAPs) and alkaline phosphatase activities but increased the activity ratio of β-glucosidase (BG)/(N-acetyl-glucosaminidase (NAG) + LAP). Treatments with 25% manure substitution (1/4M) maintained maize and soybean yield, but with increasing manure rate, the maize yield decreased gradually. Overall, the high ratio of manure substitution enhanced SOC storage via increasing POC and MNC, and decreasing the decomposition potential of manure C and soil C resulting from low N- and P-requiring enzyme activities under high nutrient supplies. This study provides empirical evidence that the rational substitution of chemical fertilizers with manure is an effective measure to improve the availability of nutrients, and its effect on increasing crop yields still needs to be continuously observed, which is still a beneficial choice for enhancing black soil fertility. Full article
Show Figures

Graphical abstract

21 pages, 938 KB  
Article
Thermodynamic and Process Modeling of CO2 Chemical Absorption Process Using Aqueous Monoethanolamine and Enzymatic Potassium Carbonate Solvents: Validation and Comparative Analysis
by Anthoula Plakia, Christina Papaioannou and Panagiotis Grammelis
Energies 2025, 18(11), 2981; https://doi.org/10.3390/en18112981 - 5 Jun 2025
Viewed by 1571
Abstract
Carbon dioxide is a major contributor to global warming, with chemical absorption using aqueous monoethanolamine (MEA) being the most widespread technology for CO2 capture. However, due to the limitations of MEA, alternative solvents should be examined. In this work, CO2 capture [...] Read more.
Carbon dioxide is a major contributor to global warming, with chemical absorption using aqueous monoethanolamine (MEA) being the most widespread technology for CO2 capture. However, due to the limitations of MEA, alternative solvents should be examined. In this work, CO2 capture using potassium carbonate promoted by the enzyme carbonic anhydrase is compared to the conventional aqueous MEA solvent. For that purpose, models for both solvents are developed, focusing on accurate thermodynamic modeling of the mixtures and simulation of the processes. As a first step, the thermodynamic modeling of CO2-H2O-MEA and CO2-H2O-K2CO3 mixtures is examined. Parameters of the electrolyte non-random two-liquid (eNRTL) model in Aspen Plus V11 are updated through regression against binary and ternary solubility and heat capacity experimental data. The regression results are satisfactory. Afterwards, the updated eNRTL is applied to the development of rate-based process models, which are validated against experimental results from pilot plants presented in the literature to ensure their accuracy. Finally, the two solvents are compared, with enzymatic potassium carbonate emerging as a promising alternative to MEA for CO2 capture. At optimized conditions and an 85% capture efficiency, the reboiler duties are 3.5 MJ/kg for enzymatic potassium carbonate and 4.2 MJ/kg CO2 for MEA. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 4389 KB  
Article
Winery Residues Transformed into Biochar and Co-Applied with Trichoderma Increase Grape Productivity and Soil Quality
by Elisiane Martins de Lima, Argemiro Pereira Martins Filho, Diogo Paes da Costa, Jamilly Alves de Barros, Rafaela Felix da França, José Romualdo de Sousa Lima, Gustavo Pereira Duda, Mairon Moura da Silva, Ademir Sérgio Ferreira Araujo and Erika Valente de Medeiros
Sustainability 2025, 17(9), 4150; https://doi.org/10.3390/su17094150 - 4 May 2025
Cited by 4 | Viewed by 1446
Abstract
The application of biochar is extensively recognized as an effective strategy to enhance soil ecosystem services. However, its combined effect with beneficial microorganisms, such as Trichoderma, still requires further investigation to understand its impact on soil microbiota and nutrient cycling processes. To [...] Read more.
The application of biochar is extensively recognized as an effective strategy to enhance soil ecosystem services. However, its combined effect with beneficial microorganisms, such as Trichoderma, still requires further investigation to understand its impact on soil microbiota and nutrient cycling processes. To address this gap, this study aimed to evaluate the effect of biochar produced from on-farm winery waste, specifically grape stalks (GSB) and grape fermentation residues (GFB), generated after wine production, when co-applied with Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 in soil cultivated with Malbec grapevines. Our findings reveal that both types of biochar and Trichoderma promoted changes in soil properties. The application of GSB biochar combined with T. hamatum increased grape productivity, while GFB biochar enhanced soil enzymatic activities, particularly those expressed per unit of microbial biomass carbon. Additionally, biochar applications increased pH, phosphorus, potassium, organic carbon, and microbial biomass carbon of the soil. Soils treated with the GFB + T. hamatum treatment exhibited an increase of 569.23% in microbial biomass carbon compared to the control. The results of this study provide substantial evidence that biochar and Trichoderma can be used to improve the chemical and biological properties of vineyard soils, increasing nutrient availability, especially carbon. These effects may contribute to soil fertility by promoting a more favorable environment for microbiota development and grapevine growth. This is the first field study to investigate the impact of on-farm winery waste transformed into biochar, combined with Trichoderma isolates, on Malbec grapevines. Full article
(This article belongs to the Special Issue Soil Pollution, Soil Ecology and Sustainable Land Use)
Show Figures

Figure 1

18 pages, 1456 KB  
Article
Effects of Long-Term Multi-Treatment Experiments on Organic Matter and Enzymatic Activity in Sandy Soil
by Krystyna Kondratowicz-Maciejewska, Joanna Lemanowicz and Iwona Jaskulska
Sustainability 2025, 17(7), 3252; https://doi.org/10.3390/su17073252 - 5 Apr 2025
Cited by 5 | Viewed by 1378
Abstract
This study shows an evaluation of the condition of organic matter against enzymatic activity in soil. Long-term static field experiments with fertilisation with manure (FYM), different minerals, and mineral–manure were used for the research. Assays were obtained of the content of total organic [...] Read more.
This study shows an evaluation of the condition of organic matter against enzymatic activity in soil. Long-term static field experiments with fertilisation with manure (FYM), different minerals, and mineral–manure were used for the research. Assays were obtained of the content of total organic carbon (TOC), dissolved fraction (DOC), susceptibility to oxidation (CL1) and (CL), total nitrogen (TN), dissolved nitrogen fraction (DTNT), and available forms of potassium, phosphorus, and magnesium. The activity of enzymes dehydrogenases, catalase, β-glucosidase, proteases, alkaline, and acid phosphatase was determined. We calculated the enzymatic indices and those evaluating the labile organic carbon management (CMI and CPI) in soil. An increase in TOC, up to 8.85 g kg−1 and 8.56 g kg−1 (FYM, FYM + KN), respectively, as compared with the control (5.67 g kg−1), did not have a significant effect on the content of labile carbon fraction CL for the fertilisation treatments. Only a higher CL content was found in the soil with the FYM + PN and FYM + NPK + Mg treatments (2.07 g kg−1 and 2.05 g kg−1). All the fertilisation treatments under study demonstrated a decrease in the value of the carbon management index (CMI). Similar DOC values (on average, 75.14 mg kg−1) were noted. The average percentage share of the DOC fraction accounted for 1.163% TOC, and it was lower as compared with the control variant (1.33% TOC). The mineral fertilisation treatments decreased soil enzyme activities. Multiparametric enzymatic soil fertility indices differed due to soil properties, depending on the fertilisation applied. Full article
Show Figures

Figure 1

11 pages, 1663 KB  
Article
Biochar and Plant Growth-Promoting Bacteria Boost Chemical and Biological Properties of Semiarid Soil in Cowpea
by Inara da Silva Araujo, Argemiro Pereira Martins Filho, Diogo Paes da Costa, Aline Oliveira Silva, Rafaela Felix da França, Mario de Andrade Lira Junior, Gustavo Pereira Duda, José Romualdo de Sousa Lima, Mairon Moura da Silva, Ademir Sergio Ferreira Araujo, Claude Hammecker and Erika Valente de Medeiros
Soil Syst. 2025, 9(1), 19; https://doi.org/10.3390/soilsystems9010019 - 24 Feb 2025
Cited by 3 | Viewed by 3224
Abstract
Plant growth-promoting bacteria (PGPB) are an effective tool for improving nutrients in agricultural systems; however, their efficacy depends on successful colonization in soils. To address this challenge, biochar has been identified as an effective material for enhancing soil ecosystem services and can serve [...] Read more.
Plant growth-promoting bacteria (PGPB) are an effective tool for improving nutrients in agricultural systems; however, their efficacy depends on successful colonization in soils. To address this challenge, biochar has been identified as an effective material for enhancing soil ecosystem services and can serve as a protective for PGPB. However, the impact of biochar and PGPB on soil health indicators and plant growth remains poorly understood. This study aimed to evaluate the effects of biochar and PGPB on soil chemical and biological properties in cowpea. We used biochar from bean husk (BHB) and grape fermentation residue (GFB) and Bradyrhizobium elkanii USDA 76 (BRA), Burkholderia cepacia ATCC 25416 (PRB), or Rhizobium altiplani BR10423 (RHI). BHB and PRB stimulated cowpea growth, while GFB and PRB promoted soil phosphatase activity. Overall, different combinations of biochar and PGPR increased soil pH, phosphorus, potassium, organic carbon content, and urease activity, but did not affect microbial biomass carbon and β-glucosidase activities. The biochars inoculated with the BRA showed the highest productivity. For example, plants subjected to the BRA + GFB treatment exhibited a 3.85-fold increase in productivity compared to the additional treatment that involved the use of commercial peat. The study demonstrated a positive effect of biochar and PGPB on soil enzymatic activity, nutrient content, and cowpea growth suggesting a sustainable alternative to chemical fertilizers, especially in poor soils. These findings highlight the potential of biochar as an environmentally sustainable carrier of PGPB while addressing the issue of agricultural waste reuse. Full article
Show Figures

Graphical abstract

17 pages, 2657 KB  
Article
Short-Term Impacts of Fire and Post-Fire Restoration Methods on Soil Properties and Microbial Characteristics in Southern China
by Hongen Zhou, Mengmeng Yang, Xuan Luo, Zefang Yang, Lanqing Wang, Shizhong Liu, Qianmei Zhang, Mingdao Luo, Jinwei Ou, Shiyang Xiong, Yujie Qin and Yuelin Li
Fire 2024, 7(12), 474; https://doi.org/10.3390/fire7120474 - 12 Dec 2024
Cited by 2 | Viewed by 3256
Abstract
Wildfires and post-fire restoration methods significantly impact soil physicochemical properties and microbial characteristics in forest ecosystems. Understanding post-fire soil recovery and the impacts of various post-fire restoration methods is essential for developing effective restoration strategies. This study aimed to investigate how fire and [...] Read more.
Wildfires and post-fire restoration methods significantly impact soil physicochemical properties and microbial characteristics in forest ecosystems. Understanding post-fire soil recovery and the impacts of various post-fire restoration methods is essential for developing effective restoration strategies. This study aimed to investigate how fire and soil depth influence soil physicochemical properties, enzymatic activities, and the structure of microbial communities, as well as how these factors change under different post-fire management practices. We sampled 0–10 cm (topsoil) and 10–20 cm (subsoil) in unburned plots, naturally restored plots, and two afforestation plots in southern China. The results showed that fire reduced topsoil soil moisture, nutrient levels, and microbial biomass. The variations in soil physicochemical properties significantly influenced microbial processes. Soil bulk density, nitrate, ammonium, carbon-to-nitrogen ratio, and availability of nitrogen, phosphorus, and potassium availability influenced soil enzyme activities. Soil pH, ammonium nitrogen, and the availability of nitrogen, phosphorus, and potassium were key factors shaping microbial composition. Fire altered the soil microbial communities by reducing the availability of nitrogen. Soil depth alleviated the impact of fire on the soil to some degree. Although artificial interventions reduced soil organic carbon, total nitrogen, and phosphorus, planting nitrogen-fixing species, such as Acacia mangium, promoted microbial recovery. Full article
Show Figures

Figure 1

18 pages, 294 KB  
Article
Biological and Chemical Vicissitudes in Soil Rhizosphere Arbitrated under Different Tillage, Residues Recycling and Oilseed Brassica-Based Cropping Systems
by Ram Swaroop Jat, Har Vir Singh, Mohan Lal Dotaniya, Ram Lal Choudhary, Mukesh Kumar Meena and Pramod Kumar Rai
Sustainability 2024, 16(5), 2027; https://doi.org/10.3390/su16052027 - 29 Feb 2024
Cited by 3 | Viewed by 1932
Abstract
In this study, the impacts of long-term soil and crop management practices on crop productivity and soil health in oilseed brassica-based production systems were examined. Different tillage, crop residue recycling and cropping systems (fallow–mustard, cluster bean–mustard, green gram–mustard, maize–mustard, pearl millet–mustard and sesame–mustard) [...] Read more.
In this study, the impacts of long-term soil and crop management practices on crop productivity and soil health in oilseed brassica-based production systems were examined. Different tillage, crop residue recycling and cropping systems (fallow–mustard, cluster bean–mustard, green gram–mustard, maize–mustard, pearl millet–mustard and sesame–mustard) were studied for 5 years at two soil depths (0–15 and 15–30 cm) in a split-plot design with three replications. No-till permanent beds with crop residue (PB + R) noticeably improved soil organic carbon (SOC), microbial biomass carbon (MBC), enzymes (dehydrogenase (DHA) and alkaline phosphatase (AlP)), nitrogen fractions (available and total nitrate) and available phosphorus and potassium content in both soil layers compared to conventional tillage without crop residues. However, the plough soil layer (0–15 cm) showed higher concentrations of soil carbon, enzymes, N fractions and available P than in the subsoil (15–30 cm). The dynamic soil biological and chemical properties also varied with the crop stage, and higher MBC at 30 days, SOC and enzymatic activities at 60 days, and N fractions and available P and K during the harvesting of mustard crop were recorded. Green gram–mustard rotation showed higher values in terms of biological and chemical parameters. Thus, the legume-based mustard crop rotation following no-till permanent beds and residue recycling was found to be holistic in terms of improving soil health and nutrient cycling. Full article
(This article belongs to the Section Sustainable Agriculture)
Back to TopTop