Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (557)

Search Parameters:
Keywords = environmental molds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 14992 KiB  
Article
Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy
by Elisabetta Rosina and Hoda Esmaeilian Toussi
Appl. Sci. 2025, 15(15), 8542; https://doi.org/10.3390/app15158542 (registering DOI) - 31 Jul 2025
Viewed by 128
Abstract
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates [...] Read more.
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates the relationship between indoor microclimate fluctuations and surface moisture dynamics across 13 historical sites in Northern Italy (Lake Como, Valtellina, Valposchiavo), encompassing diverse masonry typologies and environmental conditions. High-resolution sensors recorded temperature and relative humidity for a minimum of 13 months, and eight indicators—including dew point depression, critical temperature–humidity zones, and damp effect indices—were analyzed to assess the moisture risks. The results demonstrate that multivariate microclimate data could effectively predict humidity accumulation. The key findings reveal the impact of seasonal ventilation, thermal inertia, and localized air stagnation on moisture distribution, with unheated alpine sites showing the highest condensation risk. The study highlights the need for integrated monitoring approaches, combining dew point analysis, mixing ratio stability, and buffering performance, to enable early risk detection and targeted conservation strategies. These insights bridge the gap between environmental monitoring and surface moisture diagnostics in porous heritage materials. Full article
(This article belongs to the Special Issue Advanced Study on Diagnostics for Surfaces of Historical Buildings)
Show Figures

Figure 1

21 pages, 764 KiB  
Article
Sustainable Optimization of the Injection Molding Process Using Particle Swarm Optimization (PSO)
by Yung-Tsan Jou, Hsueh-Lin Chang and Riana Magdalena Silitonga
Appl. Sci. 2025, 15(15), 8417; https://doi.org/10.3390/app15158417 - 29 Jul 2025
Viewed by 240
Abstract
This study presents a breakthrough in sustainable injection molding by uniquely combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO) to overcome traditional optimization challenges. The BPNN’s exceptional ability to learn complex nonlinear relationships between six key process parameters (including melt [...] Read more.
This study presents a breakthrough in sustainable injection molding by uniquely combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO) to overcome traditional optimization challenges. The BPNN’s exceptional ability to learn complex nonlinear relationships between six key process parameters (including melt temperature and holding pressure) and product quality is amplified by PSO’s intelligent search capability, which efficiently navigates the high-dimensional parameter space. Together, this hybrid approach achieves what neither method could accomplish alone: the BPNN accurately models the intricate process-quality relationships, while PSO rapidly converges on optimal parameter sets that simultaneously meet strict quality targets (66–70 g weight, 3–5 mm thickness) and minimize energy consumption. The significance of this integration is demonstrated through three key outcomes: First, the BPNN-PSO combination reduced optimization time by 40% compared to traditional trial-and-error methods. Second, it achieved remarkable prediction accuracy (RMSE 0.8229 for thickness, 1.5123 for weight) that surpassed standalone BPNN implementations. Third, the method’s efficiency enabled SMEs to achieve CAE-level precision without expensive software, reducing setup costs by approximately 25%. Experimental validation confirmed that the optimized parameters decreased energy use by 28% and material waste by 35% while consistently producing parts within specifications. This research provides manufacturers with a practical, scalable solution that transforms injection molding from an experience-dependent craft to a data-driven science. The BPNN-PSO framework not only delivers superior technical results but does so in a way that is accessible to resource-constrained manufacturers, marking a significant step toward sustainable, intelligent production systems. For SMEs, this framework offers a practical pathway to achieve both economic and environmental sustainability, reducing reliance on resource-intensive CAE tools while cutting production costs by an estimated 22% through waste and energy savings. The study provides a replicable blueprint for implementing data-driven sustainability in injection molding operations without compromising product quality or operational efficiency. Full article
(This article belongs to the Special Issue Advancement in Smart Manufacturing and Industry 4.0)
Show Figures

Figure 1

18 pages, 278 KiB  
Review
Biomarkers over Time: From Visual Contrast Sensitivity to Transcriptomics in Differentiating Chronic Inflammatory Response Syndrome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
by Ming Dooley
Int. J. Mol. Sci. 2025, 26(15), 7284; https://doi.org/10.3390/ijms26157284 - 28 Jul 2025
Viewed by 374
Abstract
Chronic inflammatory response syndrome (CIRS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are debilitating multisystem illnesses that share overlapping symptoms and molecular patterns, including immune dysregulation, mitochondrial impairment, and vascular dysfunction. This review provides a chronological synthesis of biomarker development in CIRS, tracing its [...] Read more.
Chronic inflammatory response syndrome (CIRS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are debilitating multisystem illnesses that share overlapping symptoms and molecular patterns, including immune dysregulation, mitochondrial impairment, and vascular dysfunction. This review provides a chronological synthesis of biomarker development in CIRS, tracing its evolution from early functional tests such as visual contrast sensitivity (VCS) to advanced transcriptomic profiling. Drawing on peer-reviewed studies spanning two decades, we examine the layered integration of neuroendocrine, immunologic, metabolic, and genomic markers that collectively support a multisystem model of innate immune activation specific to environmentally acquired illness. Particular focus is given to the Gene Expression: Inflammation Explained (GENIE) platform’s use of transcriptomics to classify disease stages and distinguish CIRS from other fatiguing conditions. While ME/CFS research continues to explore overlapping pathophysiologic features, it has yet to establish a unified diagnostic model with validated biomarkers or exposure-linked mechanisms. As a result, many patients labeled with ME/CFS may, in fact, represent unrecognized CIRS cases. This review underscores the importance of structured biomarker timelines in improving differential diagnosis and guiding treatment in complex chronic illness and highlights the reproducibility of the CIRS framework in contrast to the diagnostic ambiguity surrounding ME/CFS. Full article
16 pages, 2322 KiB  
Article
Reducing Marine Ecotoxicity and Carbon Burden: A Life Cycle Assessment Study of Antifouling Systems
by Trent Kelly, Emily M. Hunt, Changxue Xu and George Tan
Processes 2025, 13(8), 2356; https://doi.org/10.3390/pr13082356 - 24 Jul 2025
Viewed by 302
Abstract
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high [...] Read more.
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high material and labor demands, and environmental concerns such as volatile organic compound emissions and copper leaching. Recent developments in material science have introduced an alternative system involving the direct incorporation of copper oxide (Cu2O) into high-density polyethylene (HDPE) during the molding process. This study conducts a comparative life cycle assessment (LCA) of two antifouling integration methods—System 1 (traditional coating-based) and System 2 (Cu2O-impregnated HDPE)—evaluating their environmental impact across production, application, use, and end-of-life stages. The functional unit used for this study was 1 square meter for a time period of five years. Using ISO 14040-compliant methodology and data from Ecoinvent and OpenLCA, three impact categories were assessed: global warming potential (GWP), cumulative energy demand (CED), and marine aquatic ecotoxicity Potential (MAETP). The results indicate that System 2 outperforms System 1 in GWP (4.42 vs. 5.65 kg CO2-eq), CED (75.3 vs. 91.0 MJ-eq), and MAETP (327,002 vs. 469,929 kg 1,4-DCB-eq) per functional unit over a five-year lifespan, indicating a 21.8%, 17.3%, and 30.4% reduction in the key impact factors, respectively. These results suggest that direct Cu2O incorporation offers a more environmentally sustainable and mechanically resilient antifouling strategy, supporting the potential of embedded antifouling systems to shift industry practices toward more sustainable marine infrastructure. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

21 pages, 4393 KiB  
Article
Lightweight and Sustainable Steering Knuckle via Topology Optimization and Rapid Investment Casting
by Daniele Almonti, Daniel Salvi, Emanuele Mingione and Silvia Vesco
J. Manuf. Mater. Process. 2025, 9(8), 252; https://doi.org/10.3390/jmmp9080252 - 24 Jul 2025
Viewed by 443
Abstract
Considering the importance of the automotive industry, reducing the environmental impact of automotive component manufacturing is crucial. Additionally, lightening of the latter promotes a reduction in fuel consumption throughout the vehicle’s life cycle, limiting emissions. This study presents a comprehensive approach to optimizing [...] Read more.
Considering the importance of the automotive industry, reducing the environmental impact of automotive component manufacturing is crucial. Additionally, lightening of the latter promotes a reduction in fuel consumption throughout the vehicle’s life cycle, limiting emissions. This study presents a comprehensive approach to optimizing and manufacturing a MacPherson steering knuckle using topology optimization (TO), additive manufacturing, and rapid investment casting (RIC). Static structural simulations confirmed the mechanical integrity of the optimized design, with stress and strain values remaining within the elastic limits of the SG A536 iron alloy. The TO process achieved a 30% reduction in mass, resulting in lower material use and production costs. Additive manufacturing of optimized geometry reduced resin consumption by 27% and printing time by 9%. RIC simulations validated efficient mold filling and solidification, with porosity confined to removable riser regions. Life cycle assessment (LCA) demonstrated a 27% reduction in manufacturing environmental impact and a 31% decrease throughout the component life cycle, largely due to vehicle lightweighting. The findings highlight the potential of integrated TO and advanced manufacturing techniques to produce structurally efficient and environmentally sustainable automotive components. This workflow offers promising implications for broader industrial applications that aim to balance mechanical performance with ecological responsibility. Full article
Show Figures

Figure 1

12 pages, 641 KiB  
Article
Do Patients with Complaints Attributed to Chemicals in the Environment Trust in Biomonitoring as a Valid Diagnostic Tool? A Prospective, Observational Study from a German University Outpatient Clinic
by Claudia Schultz, Catharina Sadaghiani, Stefan Schmidt, Roman Huber and Vanessa M. Eichel
Int. J. Environ. Res. Public Health 2025, 22(7), 1143; https://doi.org/10.3390/ijerph22071143 - 18 Jul 2025
Viewed by 283
Abstract
Biomonitoring often yields normal results in patients who report environmental sensitivities, such as in multiple chemical sensitivity. This study examined whether biomonitoring results influence disease attribution and perception. Patients over 18 presenting for the first time to the University Environmental Medicine Outpatient Clinic [...] Read more.
Biomonitoring often yields normal results in patients who report environmental sensitivities, such as in multiple chemical sensitivity. This study examined whether biomonitoring results influence disease attribution and perception. Patients over 18 presenting for the first time to the University Environmental Medicine Outpatient Clinic in Freiburg with suspected complaints linked to heavy metals, wood preservatives, pesticides, solvents, or mold spores were included. Illness perceptions were assessed before and after biomonitoring using the Illness Perception Questionnaire (IPQ-R). Of 358 patients, 51 met inclusion criteria; 3 showed relevant findings, and 15 did not attribute their symptoms to environmental causes at baseline. The remaining 33 patients were analyzed. After receiving a normal biomonitoring result, only seven patients (21%) altered their illness attribution. These individuals also reported milder perceived consequences, less personal control over the illness, and showed lower levels of somatization and compulsiveness than those who maintained their original attribution. Most patients remained convinced of an environmental cause despite unremarkable findings. This suggests that a substantial subset of patients is strongly attached to an environmental explanation for their symptoms, with stable attribution linked to higher psychological symptom burden and a belief in personal control over the illness. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

10 pages, 2690 KiB  
Article
Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)
by Tyler M. Wilson, Alma Laney, Zabrina Ruggles and Richard E. Carlson
Agrochemicals 2025, 4(3), 11; https://doi.org/10.3390/agrochemicals4030011 - 15 Jul 2025
Viewed by 1332
Abstract
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional [...] Read more.
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional fungicides and their residues have purported negative environmental and health impacts. Natural products, such as essential oils, are viewed as a promising alternative to conventional fungicides. The current research is an in vitro study on the antifungal activity of a natural water-based fungicide (N.F.), which uses a blend of essential oils (ajowan, cassia, clove, eucalyptus, lemongrass, oregano) as the active ingredients against B. cinerea. Compared to conventional fungicides tested at the same concentration (50 μL/mL), those with active ingredients of myclobutanil or propiconazole; the N.F. demonstrated significant (F(3,16) = 54, p = <0.001) and complete fungal growth inhibition. While previous research has largely focused on the antifungal properties of single essential oils and/or isolated compounds from essential oils, this research focuses on the efficacy of using a blend of essential oils in a proprietary delivery system. This research is of importance to the fields of agronomy, ecology, and health sciences. Full article
Show Figures

Figure 1

24 pages, 7229 KiB  
Article
Comparative Emission Analysis of Diesel Engine Integrated with Mn and Ce-Si Synthesis Catalyst-Based Molds Using Base Fuel and B50 Plastic Oil
by Premkumar Subramanian, Kavitha Ganeshan, Jibitesh Kumar Panda, Rajesh Kodbal, Malinee Sriariyanun, Arunkumar Thirugnanasambandam and Babu Dharmalingam
Energies 2025, 18(14), 3625; https://doi.org/10.3390/en18143625 - 9 Jul 2025
Viewed by 338
Abstract
Progressive research on reducing engine emissions is highly valued due to the emissions’ significant environmental and health impacts. This comprehensive comparative study examines the catalytic efficiency of manganese (Mn) and cerium silica (Ce-Si) synthesis catalyst-based molds in a diesel engine using a selective [...] Read more.
Progressive research on reducing engine emissions is highly valued due to the emissions’ significant environmental and health impacts. This comprehensive comparative study examines the catalytic efficiency of manganese (Mn) and cerium silica (Ce-Si) synthesis catalyst-based molds in a diesel engine using a selective catalytic reduction (SCR) technique with diesel and diesel–plastic oil blend (DPB) (B50). In addition to Fourier transform infrared spectroscopy (FTIR) studies, X-ray diffraction (XRD), scanning electron microscopy (SEM), and the Brunauer–Emmett–Teller (BET) method are utilized to characterize the produced molds before and after exhaust gas passes. The Ce-Si-based mold demonstrates superior redox capacity, better adsorption capacity, and better thermal stability, attributed to enhanced oxygen storage and structural integrity compared to the Mn-based mold. Under minimum load conditions, nitrogen oxide (NO) reduction efficiency peaks at 80.70% for the Ce-Si-based mold in the SCR treatment with DPB fuel. Additionally, significant reductions of 86.84%, 65.75%, and 88.88% in hydrocarbon (HC), carbon monoxide (CO), and smoke emissions, respectively, are achieved in the SCR treatment under optimized conditions. Despite a wide temperature range, Ce-Si-based mold promotes high surface area and superior gas diffusion properties. Overall, the Ce-Si-based mold provides efficient emission control in diesel engines, which paves a path for developing better environmental sustainability. The outcomes contribute to advancing environmental sustainability by supporting the achievement of SDGs 7, 11, and 13. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 3185 KiB  
Article
Sustainable Use of Gypsum Waste for Applications in Soil–Cement Bricks: Mechanical, Environmental, and Durability Performance
by Elvia Soraya Santos Nascimento, Herbet Alves de Oliveira, Cochiran Pereira dos Santos, Maria de Andrade Gomes, Mário Ernesto Giroldo Valerio and Zélia Soares Macedo
Ceramics 2025, 8(3), 83; https://doi.org/10.3390/ceramics8030083 - 1 Jul 2025
Viewed by 489
Abstract
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in [...] Read more.
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in proportions ranging from 5% to 40%. The raw materials were characterized in terms of chemical composition, crystalline phases, plasticity, and thermal behavior. Specimens, molded by uniaxial pressing into cylindrical bodies and cured for either 7 or 28 days, were evaluated for compressive strength, water absorption, durability, and microstructure. Water absorption remained below 20% in all samples, with an average value of 16.20%. Compressive strength after 7 days exhibited a slight reduction with increasing gypsum content, ranging from 16.36 MPa (standard formulation) to 13.74 MPa (40% gypsum), all meeting the quality standards. After 28 days of curing, the formulation containing 10% gypsum achieved the highest compressive strength (26.7 MPa), surpassing the reference sample (25.2 MPa). Mass loss during wetting–drying cycles remained within acceptable limits for formulations incorporating up to 20% gypsum. Notably, samples with 5% and 10% gypsum demonstrated superior mechanical performance, while the 20% formulation showed performance comparable to the standard formulation. These findings indicate that replacing up to 20% of cement with gypsum waste is a technically and environmentally viable approach, supporting sustainable development, circular economy, and reduction of construction-related environmental impacts. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

14 pages, 1609 KiB  
Review
RNA Interference in Fungal Plant Pathogens: What Do We Know from Botrytis cinerea with Research Hotspots and Gaps, and What Are the Future Directions?
by Guy Smagghe
J. Fungi 2025, 11(7), 498; https://doi.org/10.3390/jof11070498 - 1 Jul 2025
Viewed by 539
Abstract
RNA interference (RNAi) has emerged as a promising tool for controlling fungal plant pathogens, offering a targeted and environmentally friendly alternative to traditional chemical fungicides. Botrytis cinerea, the causative agent of gray mold disease, serves as a model and plant pathogen for [...] Read more.
RNA interference (RNAi) has emerged as a promising tool for controlling fungal plant pathogens, offering a targeted and environmentally friendly alternative to traditional chemical fungicides. Botrytis cinerea, the causative agent of gray mold disease, serves as a model and plant pathogen for investigating RNAi-based strategies due to its wide host range and economic impact. This review synthesizes current knowledge on RNAi mechanisms in B. cinerea, and that several factors influence the efficacy of RNAi in B. cinerea, including the stability and uptake of double-stranded RNAs (dsRNAs), the efficiency of RNA processing machinery, and environmental conditions. Furthermore, RNAi responses can vary significantly across strains, developmental stages, and infection modes, underscoring the complexity of fungal responses. With this review, I also aim to present the field trials reported so far, underscoring the practicality of RNAi. This review identifies current hotspots and outlines future directions for deploying RNAi as a sustainable control strategy against fungal pathogens. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

21 pages, 7797 KiB  
Article
On the Optimization of T6 Heat Treatment Parameters of a Secondary Al-Si-Cu-Mg Foundry Aluminum Alloy: A Microstructural and Mechanical Characterization
by Mattia Merlin, Lorenzo Antonioli, Federico Bin, Cindy Morales and Chiara Soffritti
Metals 2025, 15(7), 742; https://doi.org/10.3390/met15070742 - 30 Jun 2025
Viewed by 385
Abstract
Foundry aluminum-silicon (Al-Si) alloys, especially those containing Cu and/or Mg, are widely used in casting processes for fabricating lightweight parts. This study focuses on the optimization of the solution heat treatment parameters within the T6 heat treatment of an innovative AlSi7Cu0.5Mg0.3 secondary alloy, [...] Read more.
Foundry aluminum-silicon (Al-Si) alloys, especially those containing Cu and/or Mg, are widely used in casting processes for fabricating lightweight parts. This study focuses on the optimization of the solution heat treatment parameters within the T6 heat treatment of an innovative AlSi7Cu0.5Mg0.3 secondary alloy, aiming at achieving energy savings and reducing the environmental impact related to the production of foundry components for the automotive industry. Different combinations of solution times and temperatures lower than those typically adopted in industrial practice were evaluated, and their effects on tensile properties were investigated on samples machined from as-cast and T6-treated castings produced by pouring the alloy into a steel permanent mold. Thermal analysis (TA) and differential thermal analysis (DTA) were performed to monitor the solidification sequence of microstructural phases as well as their dissolution on heating according to the proposed solution heat treatments. Microstructural analysis by light microscopy (LM) and scanning electron microscopy (SEM), together with Brinell hardness testing, was also carried out to assess the effects of heat treatment parameters. The results suggested that a shorter solution heat treatment set at a temperature lower than that currently adopted for the heat treatment of the studied alloy can still ensure the required mechanical properties while improving productivity and reducing energy consumption. Full article
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 374
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

17 pages, 6013 KiB  
Article
The Effect of Injection Molding Processing Parameters on Chrome-Plated Acrylonitrile Butadiene Styrene-Based Automotive Parts: An Industrial Scale
by Yunus Emre Polat, Mustafa Oksuz, Aysun Ekinci, Murat Ates and Ismail Aydin
Polymers 2025, 17(13), 1787; https://doi.org/10.3390/polym17131787 - 27 Jun 2025
Viewed by 574
Abstract
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is [...] Read more.
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is generally preferred in the production of decorative plastic parts in the automotive industry. In this study, the effect of injection molding processing parameters on the metal–polymer adhesion of chrome-plated acrylonitrile butadiene styrene (ABS) was investigated. The ABS-based front grille frames are fabricated by means of using an industrial-scale injection molding machine. Then, the fabricated ABS-based front grille frame was plated with chrome by means of the electroplating method. The metal–polymer adhesion was investigated as a function of the injection molding processing parameters by means of a cross-cut test and scanning electron microscope (SEM). As a result, it was determined that the optimal injection process parameters, a cooling time of 18 s, a mold temperature of 70 °C, injection rates of 45-22-22-20-15-10 mm/s, and packing pressures of 110-100-100 bar, were effective in enhancing polymer–metal adhesion for the ABS-based front grille frame. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

18 pages, 2875 KiB  
Article
Potential Use of Residual Powder Generated in Cork Stopper Industry as Valuable Additive to Develop Biomass-Based Composites for Injection Molding
by Ismael Romero-Ocaña, Miriam Herrera, Natalia Fernández-Delgado and Sergio I. Molina
J. Compos. Sci. 2025, 9(7), 330; https://doi.org/10.3390/jcs9070330 - 26 Jun 2025
Viewed by 336
Abstract
This study presents the development of a sustainable composite material by incorporating by-products from the cork industry into acrylonitrile butadiene styrene (ABS), with the aim of reducing the environmental impact of plastic composites while maintaining their performance. ABS, a petroleum-based polymer, was used [...] Read more.
This study presents the development of a sustainable composite material by incorporating by-products from the cork industry into acrylonitrile butadiene styrene (ABS), with the aim of reducing the environmental impact of plastic composites while maintaining their performance. ABS, a petroleum-based polymer, was used as the matrix, and maleic anhydride (MAH) with dicumyl peroxide (DCP) served as a compatibilizing system to improve interfacial adhesion with cork microparticles. Composites were prepared with 10% w/w cork in various particle sizes and characterized via FTIR, X-ray computed tomography, SEM, mechanical testing, and thermal analysis. The best performing formulation (CPC-125) showed a reduction of only ~16% in tensile modulus and ~7% in tensile strength compared with ABS-g-MAH, with a more pronounced decrease in strain at break (3.23% vs. 17.47%) due to the cork’s inherent rigidity. Thermogravimetric and calorimetric analysis confirmed that thermal stability and processing temperatures remained largely unaffected. These results demonstrate the feasibility of incorporating cork microparticles as a bio-based reinforcing filler in ABS composites, offering a promising strategy to reduce the use of virgin plastics in applications compatible with conventional injection molding. Full article
Show Figures

Figure 1

25 pages, 9272 KiB  
Article
Monitoring of Fungal Diversity and Microclimate in Nine Different Museum Depots
by Katharina Derksen, Peter Brimblecombe, Guadalupe Piñar, Monika Waldherr, Alexandra Bettina Graf, Pascal Querner and Katja Sterflinger
J. Fungi 2025, 11(7), 478; https://doi.org/10.3390/jof11070478 - 24 Jun 2025
Viewed by 515
Abstract
Within museum depots, the largest part of all heritage collections is stored. Often, the preservation of highly sensitive objects is an ongoing challenge, as the materials are constantly subjected to and influenced by ever-present environmental factors—above all the surrounding climate and other physicochemical [...] Read more.
Within museum depots, the largest part of all heritage collections is stored. Often, the preservation of highly sensitive objects is an ongoing challenge, as the materials are constantly subjected to and influenced by ever-present environmental factors—above all the surrounding climate and other physicochemical processes. Biological degradation is also a major risk for collections. Fungal infestation poses a particular threat, in many regions increasingly the result of climate change. Models for damage prediction and risk assessment are still underdeveloped and require a more substantial database. Approaching this need, nine museum depots and archives were selected in this study. Two years of monitoring the indoor microclimate with thermohygrometric sensors, investigating fungal abundance and diversity through culture-dependent and -independent (metagenomics) approaches, and the collection of relevant additional information resulted in a vast amount of diverse data. The main fungal genera identified through cultivation were Cladosporium, Penicillium, Aspergillus, Alternaria and Epicoccum. The cultivation-independent approach identified Aspergillus, Pyronema, Penicillium, Xenodidymella and Blumeria as the main taxa. Data analyses indicated that key drivers involved in similarities, patterns and differences between the locations were their geographic location, immediate outdoor surroundings and indoor (micro)climatic fluctuations. The study also sheds light on a possible shift in focus when developing strategies for preventing mold growth in collection depots beyond the prevailing path of tightest possible climate control. Full article
(This article belongs to the Special Issue Diversity of Microscopic Fungi)
Show Figures

Figure 1

Back to TopTop