Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,108)

Search Parameters:
Keywords = environmental impact of mining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1664 KiB  
Review
Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications
by Adeel Iqbal, Nuha S. Mashaan and Themelina Paraskeva
J. Compos. Sci. 2025, 9(8), 402; https://doi.org/10.3390/jcs9080402 - 1 Aug 2025
Viewed by 200
Abstract
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of [...] Read more.
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of 41 peer-reviewed articles for detailed analysis. Bibliometric analysis indicates a notable upward trend in annual publications, reflecting growing academic and practical interest in this field. Performance-based evaluations demonstrate that mining wastes, particularly iron and copper tailings, have the potential to enhance the high-temperature performance (i.e., rutting resistance) of asphalt binders and mixtures when utilized as fillers or aggregates. However, their effects on fatigue life, low-temperature cracking, and moisture susceptibility are inconsistent, largely influenced by the physicochemical properties and dosage of the specific waste material. Despite promising results, critical knowledge gaps remain, particularly in relation to long-term durability, comprehensive environmental and economic Life-Cycle Assessments (LCA), and the inherent variability of waste materials. This review underscores the substantial potential of mining wastes as sustainable alternatives to conventional pavement materials, while emphasizing the need for further multidisciplinary research to support their broader implementation. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

36 pages, 2676 KiB  
Review
Research Activities on Acid Mine Drainage Treatment in South Africa (1998–2025): Trends, Challenges, Bibliometric Analysis and Future Directions
by Tumelo M. Mogashane, Johannes P. Maree, Lebohang Mokoena and James Tshilongo
Water 2025, 17(15), 2286; https://doi.org/10.3390/w17152286 - 31 Jul 2025
Viewed by 262
Abstract
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study [...] Read more.
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study presents a comprehensive review of research activities on AMD in South Africa from 1998 to 2025, highlighting key trends, emerging challenges and future directions. The study reveals a significant focus on passive and active treatment methods, environmental remediation and the recovery of valuable resources, such as iron, rare earth elements (REEs) and gypsum. A bibliometric analysis was conducted to identify the most influential studies and thematic research areas over the years. Bibliometric tools (Biblioshiny and VOSviewer) were used to analyse the data that was extracted from the PubMed database. The findings indicate that research production has increased significantly over time, with substantial contributions from top academics and institutions. Advanced treatment technologies, the use of artificial intelligence and circular economy strategies for resource recovery are among the new research prospects identified in this study. Despite substantial progress, persistent challenges, such as scalability, economic viability and policy implementation, remain. Furthermore, few technologies have moved beyond pilot-scale implementation, underscoring the need for greater investment in field-scale research and technology transfer. This study recommends stronger industry–academic collaboration, the development of standardised treatment protocols and enhanced government policy support to facilitate sustainable AMD management. The study emphasises the necessity of data-driven approaches, sustainable technology and interdisciplinary cooperation to address AMD’s socioeconomic and environmental effects in the ensuing decades. Full article
Show Figures

Figure 1

17 pages, 6856 KiB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 (registering DOI) - 31 Jul 2025
Viewed by 168
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 188
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

27 pages, 3262 KiB  
Article
Energy-Efficient Gold Flotation via Coarse Particle Generation Using VSI and HPGR Comminution
by Sindhura Thatipamula and Sheila Devasahayam
Materials 2025, 18(15), 3553; https://doi.org/10.3390/ma18153553 - 29 Jul 2025
Viewed by 192
Abstract
This study investigates the impact of two comminution technologies—Vertical Shaft Impactors (VSI) and High-Pressure Grinding Rolls (HPGR)—on gold flotation performance, using ore samples from the Ballarat Gold Mine, Australia. The motivation stems from the growing need to improve energy efficiency and flotation recovery [...] Read more.
This study investigates the impact of two comminution technologies—Vertical Shaft Impactors (VSI) and High-Pressure Grinding Rolls (HPGR)—on gold flotation performance, using ore samples from the Ballarat Gold Mine, Australia. The motivation stems from the growing need to improve energy efficiency and flotation recovery in mineral processing, particularly under increasing economic and environmental constraints. Despite the widespread use of HPGR and VSI in the industry, limited comparative studies have explored their effects on downstream flotation behavior. Laboratory-scale experiments were conducted across particle size fractions (300–600 µm) using two collector types—Potassium Amyl Xanthate (PAX) and DSP002 (a proprietary dithiophosphate collector) to assess differences in flotation recovery, concentrate grade, and specific energy consumption. The results reveal that HPGR produces more fines and micro-cracks, enhancing liberation but also increasing gangue entrainment and energy demand. Conversely, VSI produces coarser, cubical particles with fewer slimes, achieving higher flotation grades and recoveries at lower energy input. VSI at 600 µm demonstrated the highest flotation efficiency (4241) with only 9.79 kWh/t energy input. These findings support the development of hybrid or tailored comminution strategies for improved flotation selectivity and sustainable processing. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

18 pages, 1330 KiB  
Review
Metallothionein and Other Factors Influencing Cadmium-Induced Kidney Dysfunction: Review and Commentary
by Gunnar F. Nordberg and Monica Nordberg
Biomolecules 2025, 15(8), 1083; https://doi.org/10.3390/biom15081083 - 26 Jul 2025
Viewed by 297
Abstract
Cadmium is widely recognized as an important environmental toxicant that may give rise to kidney dysfunction, bone disease, and cancer in humans and animals. Kidney dysfunction occurs at very low exposures and is often considered as the most sensitive or critical effect. Cadmium [...] Read more.
Cadmium is widely recognized as an important environmental toxicant that may give rise to kidney dysfunction, bone disease, and cancer in humans and animals. Kidney dysfunction occurs at very low exposures and is often considered as the most sensitive or critical effect. Cadmium exposures of concern occur in many countries. In low- and middle-income countries with small-scale mining, excessive exposure to cadmium and other metals occurs in occupational and environmental settings. This is of particular importance in view of the growing demand for metals in global climate change mitigation. Since the 1970s, the present authors have contributed evidence concerning the role of metallothionein and other factors in influencing the toxicokinetics and toxicity of cadmium, particularly as it relates to the development of adverse effects on kidneys in humans and animals. The findings gave a background to the development of biomarkers employed in epidemiological studies, demonstrating the important role of metallothionein in protection against cadmium-induced kidney dysfunction in humans. Studies in cadmium-exposed population groups demonstrated how biomarkers of kidney dysfunction changed during 8 years after drastic lowering of environmental cadmium exposure. Other epidemiological studies showed the impact of a good zinc status in lowering the prevalence of cadmium-related kidney dysfunction. Increased susceptibility to Cd-induced kidney dysfunction was shown in a population with high exposure to inorganic arsenic when compared with a group with low such exposure. Several national and international organizations have used part of the reviewed information, but the metallothionein-related biomarkers and the interaction effects have not been fully considered. We hope that these data sets will also be included and improve risk assessments and preventive measures. Full article
(This article belongs to the Special Issue Current Advances of Metal Complexes for Biomedical Applications)
Show Figures

Figure 1

31 pages, 15992 KiB  
Article
Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery
by Inés Pereira, Eduardo García-Meléndez, Montserrat Ferrer-Julià, Harald van der Werff, Pablo Valenzuela and Juncal A. Cruz
Remote Sens. 2025, 17(15), 2582; https://doi.org/10.3390/rs17152582 - 24 Jul 2025
Viewed by 291
Abstract
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral [...] Read more.
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral imagery for multi-temporal mapping of AMD-related minerals in two mining-affected drainage basins: Beal and Gorguel. Key minerals indicative of AMD—iron oxides and hydroxides (hematite, jarosite, goethite), gypsum, and aluminium-bearing clays—were identified and mapped using band ratios applied to PRISMA data acquired over five dates between 2020 and 2024. Additionally, Sentinel-2 data were incorporated in the analysis due to their higher temporal resolution to complement iron oxide and hydroxide evolution from PRISMA. Results reveal distinct temporal and spatial patterns in mineral distribution, influenced by seasonal precipitation and climatic factors. Jarosite was predominant after torrential precipitation events, reflecting recent AMD deposition, while gypsum exhibited seasonal variability linked to evaporation cycles. Goethite and hematite increased in drier conditions, indicating transitions in oxidation states. Validation using X-ray diffraction (XRD), laboratory spectral curves, and a larger time-series of Sentinel-2 imagery demonstrated strong correlations, confirming PRISMA’s effectiveness for iron oxides and hydroxides and gypsum identification and monitoring. However, challenges such as noise, striping effects, and limited image availability affected the accuracy of aluminium-bearing clay mapping and limited long-term trend analysis. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

20 pages, 4266 KiB  
Article
Reducing Hidden Costs and CO2 Emissions: Development of Practical User Interface for Underground Stope Dilution Analysis
by Egemen Saygin and Bahtiyar Unver
Appl. Sci. 2025, 15(15), 8178; https://doi.org/10.3390/app15158178 - 23 Jul 2025
Viewed by 130
Abstract
Stope dilution is a major hidden cost driver for the underground operation, especially in terms of reducing ore quality, increasing the amount of processing feed, and effects on operational cost. Accurate calculation and consideration of planned and unplanned dilution and mining loss amounts [...] Read more.
Stope dilution is a major hidden cost driver for the underground operation, especially in terms of reducing ore quality, increasing the amount of processing feed, and effects on operational cost. Accurate calculation and consideration of planned and unplanned dilution and mining loss amounts are essential during mine planning. The user interface named D–Loss has been developed with MATLAB R2023b, which provides a multiparadigm numerical computing environment for faster and more practical calculation of these dilution amounts to address these challenges by quantifying dilution and linking them directly to economic and CO2 emissions indicators. By determination and analysis of the stope overall dilution amounts, it helps us understand greenhouse gas emissions and ensures the efficient use of underground equipment. Calculation of stope dilution in a practical and rapid manner allows for stope design and operational improvements, which can help reduce dilution in underground operations. This progress is tracked through the D–Loss interface within the short- and long-term production planning. Moreover, by quantifying dilution impacts on comminution and haulage costs, D–Loss becomes a critical software for tracking economic losses and optimizing financial outcomes in the mining industry. D–Loss helps users iteratively assess the efficiency of updates and provides support in mine design, scheduling, and environmental impact control by comparing planning and operational improvements before and after. Full article
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador
by Daniel Garcés, Samantha Jiménez-Oyola, Yolanda Sánchez-Palencia, Fredy Guzmán-Martínez, Raúl Villavicencio-Espinoza, Sebastián Jaramillo-Zambrano, Victoria Rosado, Bryan Salgado-Almeida and Josué Marcillo-Guillén
Minerals 2025, 15(8), 767; https://doi.org/10.3390/min15080767 - 22 Jul 2025
Viewed by 374
Abstract
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization [...] Read more.
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization and X-ray Fluorescence Spectrometry (XRF) were used to analyze the content of potentially toxic elements (PTEs) of interest (As, Cd, Cr, Cu, Ni, Pb, and Zn), and X-ray Diffraction (XRD) for mineralogical characterization. The contamination index (IC) was calculated to assess the potential hazard associated with the content of PTEs in the mining wastes. To assess environmental risks, leaching tests were carried out to evaluate the potential release of PTEs, and Acid-Base Accounting (ABA) tests were conducted to determine the likelihood of acid mine drainage formation. The results revealed that the PETs concentration exceeded the maximum permissible limits in all samples, according to Ecuadorian regulations: As, Pb, and Cd were identified as critical contaminants. Mineralogically, quartz was the dominant phase, followed by carbonates (calcite, dolomite and magnesite), phyllosilicates (chlorite and illite), and minor amounts of pyrite and talc. The IC indicated high to very high contamination risk levels, with As being the predominant contributor. Although leaching tests met the established limits for non-hazardous mining waste, the ABA test showed that all samples had a high potential for long-term acid generation. These results underscore the need for implementing management strategies to mitigate the environmental impacts and the development of plans to protect local ecosystems and communities from the adverse effects of mining activities. Full article
Show Figures

Figure 1

25 pages, 1344 KiB  
Article
Cloud-Based Data-Driven Framework for Optimizing Operational Efficiency and Sustainability in Tube Manufacturing
by Michael Maiko Matonya and István Budai
Appl. Syst. Innov. 2025, 8(4), 100; https://doi.org/10.3390/asi8040100 - 22 Jul 2025
Viewed by 340
Abstract
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often [...] Read more.
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often lacks dynamic environmental indicators, while standard Life Cycle Assessment (LCA) provides environmental evaluation but uses static data unsuitable for real-time optimization. Frameworks integrating real-time data for dynamic multi-objective optimization are scarce. This study proposes a comprehensive, data-driven, cloud-based framework that overcomes these limitations. It uniquely combines three key components: (1) real-time Process Mining for actual workflows and operational KPIs; (2) dynamic LCA using live sensor data for instance-level environmental impacts (energy, emissions, waste) and (3) Multi-Objective Optimization (NSGA-II) to identify Pareto-optimal solutions balancing efficiency and sustainability. TOPSIS assists decision-making by ranking these solutions. Validated using extensive real-world data from a tube manufacturing facility processing over 390,000 events, the framework demonstrated significant, quantifiable improvements. The optimization yielded a Pareto front of solutions that surpassed baseline performance (87% efficiency; 2007.5 kg CO2/day). The optimal balanced solution identified by TOPSIS simultaneously increased operational efficiency by 5.1% and reduced carbon emissions by 12.4%. Further analysis quantified the efficiency-sustainability trade-offs and confirmed the framework’s adaptability to varying strategic priorities through sensitivity analysis. This research offers a validated framework for industrial applications that enables manufacturers to improve both operational efficiency and environmental sustainability in a unified manner, moving beyond the limitations of disconnected tools. The validated integrated framework provides a powerful, data-driven tool, recommended as a valuable approach for industrial applications seeking continuous improvement in both economic and environmental performance dimensions. Full article
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Optimising Nature-Based Treatment Systems for Management of Mine Water
by Catherine J. Gandy, Beate Christgen and Adam P. Jarvis
Minerals 2025, 15(7), 765; https://doi.org/10.3390/min15070765 - 21 Jul 2025
Viewed by 198
Abstract
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance [...] Read more.
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance of organic substrates used in nature-based systems for metals removal (via bacterial sulfate reduction) from mine water, and then (2) the potential to operate systems modestly contaminated with Zn (0.5 mg/L) at reduced hydraulic residence times (HRTs). Bioreactors containing limestone, straw, and wood chips, with and without compost and/or sewage sludge all achieved 88%–90% Zn removal, but those without compost/sludge had higher Ksat (929–1546 m/d). Using a high Ksat substrate, decreasing the HRT from 15 to 9 h had no impact on Zn removal (92.5% to 97.5%). Although the sulfate reduction rate decreased at a shorter HRT, microbial analysis showed high relative abundance (2%–7%) of sulfate reducing bacteria, and geochemical modelling pointed to ZnS(s) precipitation as the main attenuation mechanism (mean ZnS saturation index = 3.91–4.23). High permeability organic substrate treatment systems operated at a short HRT may offer potential for wider deployment of such systems, but pilot-scale testing under ambient environmental conditions is advisable. Full article
(This article belongs to the Special Issue Characterization and Management of Mine Waters)
Show Figures

Graphical abstract

34 pages, 3875 KiB  
Article
Basis for a New Life Cycle Inventory for Metals from Mine Tailings Using a Conceptual Model Tool
by Katherine E. Raymond, Mike O’Kane, Mark Logsdon, Yamini Gopalapillai, Kelsey Hewitt, Johannes Drielsma and Drake Meili
Minerals 2025, 15(7), 752; https://doi.org/10.3390/min15070752 - 18 Jul 2025
Viewed by 261
Abstract
Life Cycle Impact Assessments (LCIAs) examine the environmental impacts of products using life cycle inventories (LCIs) of quantified inputs and outputs of a product through its life cycle. Currently, estimated impacts from mining are dominated by long-term metal release from tailings due to [...] Read more.
Life Cycle Impact Assessments (LCIAs) examine the environmental impacts of products using life cycle inventories (LCIs) of quantified inputs and outputs of a product through its life cycle. Currently, estimated impacts from mining are dominated by long-term metal release from tailings due to inaccurate assumptions regarding metal release and transport within and from mine materials. A conceptual model approach is proposed to support the development of a new database of LCI data, applying mechanistic processes required for the release and transport of metals through tailings and categorizing model inputs into ‘bins’. The binning approach argues for accuracy over precision, noting that precise metal release rates are likely impossible with the often-limited data available. Three case studies show the range of forecasted metal release rates, where even after decades of monitoring within the tailings and underlying aquifer, metal release rates span several orders of magnitude (<100 mg/L to >100,000 mg/L sulfate at the Faro Mine). The proposed tool may be useful for the development of a new database of LCI data, as well as to analyze mine’s regional considerations during designs for risk evaluation, management and control prior to development, when data is also scarce. Full article
Show Figures

Figure 1

19 pages, 6727 KiB  
Article
Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania
by Emilia-Cornelia Dunca, Mădălina-Flavia Ioniță and Sorin Mihai Radu
Land 2025, 14(7), 1492; https://doi.org/10.3390/land14071492 - 18 Jul 2025
Viewed by 244
Abstract
Assessing the risks associated with waste disposal is essential for environmental protection and sustainable development, especially given concerns about the impact of industrial activities on the environment. This study analyses soil contamination in the Defor Petrila tailings-dump area caused by the deposition of [...] Read more.
Assessing the risks associated with waste disposal is essential for environmental protection and sustainable development, especially given concerns about the impact of industrial activities on the environment. This study analyses soil contamination in the Defor Petrila tailings-dump area caused by the deposition of waste material resulting from coal exploitation. To characterise the heavy-metal contamination in detail, we applied a comprehensive methodology that includes the calculation of the geo-accumulation index (Igeo), contamination factor (Cf), and potential ecological risk index (PERI), along with an analysis of the heavy-metal concentration isolines and a statistical analysis using the Pearson correlation coefficient. The results reveal varying levels of heavy-metal concentrations, as indicated by the calculated indices. The findings underscore the need for remediation and ongoing monitoring to mitigate the environmental impacts. This study provides a scientific basis for decision making in environmental management and highlights the importance of assessing mining-waste disposal near human settlements using various contamination-assessment methods. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

28 pages, 5314 KiB  
Article
Environmental Cyanide Pollution from Artisanal Gold Mining in Burkina Faso: Human Exposure Risk Analysis Based on a Conceptual Site Model
by Edmond N’Bagassi Kohio, Seyram Kossi Sossou, Hela Karoui and Hamma Yacouba
Int. J. Environ. Res. Public Health 2025, 22(7), 1125; https://doi.org/10.3390/ijerph22071125 - 16 Jul 2025
Viewed by 436
Abstract
Artisanal and small-scale gold mining (ASGM) in Burkina Faso increasingly relies on cyanide, intensifying concerns about environmental contamination and human exposure. This study assessed free cyanide levels in water and soil across three ASGM sites—Zougnazagmiline, Guido, and Galgouli. Water samples (surface and groundwater) [...] Read more.
Artisanal and small-scale gold mining (ASGM) in Burkina Faso increasingly relies on cyanide, intensifying concerns about environmental contamination and human exposure. This study assessed free cyanide levels in water and soil across three ASGM sites—Zougnazagmiline, Guido, and Galgouli. Water samples (surface and groundwater) and topsoil (0–20 cm) were analyzed using the pyridine–pyrazolone method. Data were statistically and spatially processed using SPSS version 29.0 and the Google Earth Engine in conjunction with QGIS version 3.34, respectively. A site conceptual model (SCM) was also developed, based on the literature review, field observations, and validation by multidisciplinary experts in public health, toxicology, ecotoxicology, environmental engineering, and the mining sector, through a semi-structured survey. The results showed that 9.26% of the water samples exceeded the WHO guideline (0.07 mg/L), with peaks of 1.084 mg/L in Guido and 2.42 mg/L in Galgouli. At Zougnazagmiline, the water type differences were significant (F = 64.13; p < 0.001), unlike the other sites. In the soil, 29.36% of the samples exceeded 0.5 mg/kg, with concentrations reaching 9.79 mg/kg in Galgouli. A spatial analysis revealed pollution concentrated near the mining areas but spreading to residential and agricultural zones. The validated SCM integrates pollution sources, transport mechanisms, exposure routes, and vulnerable populations, offering a structured tool for environmental monitoring and health risk assessment in cyanide-impacted mining regions. Full article
Show Figures

Figure 1

35 pages, 8222 KiB  
Article
Application of Dynamic Time Warping (DTW) in Comparing MRT Signals of Steel Ropes
by Justyna Tomaszewska, Mirosław Witoś and Jerzy Kwaśniewski
Appl. Sci. 2025, 15(14), 7924; https://doi.org/10.3390/app15147924 - 16 Jul 2025
Viewed by 310
Abstract
Steel wire ropes used in transport and aerospace applications are critical components whose failure can lead to significant safety, operational, and environmental consequences. Current diagnostic practices based on magnetic rope testing (MRT) often suffer from signal misalignment and subjective interpretation, particularly under varying [...] Read more.
Steel wire ropes used in transport and aerospace applications are critical components whose failure can lead to significant safety, operational, and environmental consequences. Current diagnostic practices based on magnetic rope testing (MRT) often suffer from signal misalignment and subjective interpretation, particularly under varying operational conditions or in polymer-impregnated ropes with delayed damage indicators. This study explores the application of the Dynamic Time Warping (DTW) algorithm to enhance the reliability of MRT diagnostics. The research involved analyzing long-term MRT recordings of wire ropes used in mining operations, including different scanning resolutions and signal acquisition methods. A mathematical formulation of DTW is provided along with its implementation code in R and Python. The DTW algorithm was applied to synchronize diagnostic signals with their baseline recordings, as recommended by ISO 4309:2017 and EN 12927:2019 standards. Results show that DTW enables robust alignment of time series with slowly varying spectra, thereby improving the comparability and interpretation of MRT data. This approach reduces the risk of unnecessary rope discard and increases the effectiveness of degradation monitoring. The findings suggest that integrating DTW into existing diagnostic protocols can contribute to safer operation, lower maintenance costs, and reduced environmental impact. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

Back to TopTop