Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (93)

Search Parameters:
Keywords = environmental flow threshold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 4976 KiB  
Article
Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform
by Yao Qu, Jiahuan Qian, Zhihua Lu, Ruihong Chen, Sheng Zhang, Jingyuan Cui, Chenyu Song, Haiping Zhang and Yafei Cui
Microorganisms 2025, 13(8), 1776; https://doi.org/10.3390/microorganisms13081776 - 30 Jul 2025
Viewed by 123
Abstract
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell [...] Read more.
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell dynamic continuous observation platform (ACDCOP) is proposed with a parallel-plate flow chamber (PPFC) to capture cellular growth images which are then used as input to a computer vision algorithm featuring a pre-trained backpropagation neural network to quantitatively evaluate the volumes and volumetric growth rates of individual cells. The platform was applied to investigate the growth of Scenedesmus quadricauda cells under different hydraulic shear stress conditions. The results indicated that the threshold shear stress for the development of Scenedesmus quadricauda cells was 270 µL min−1 (5.62 × 10−5 m2 s−3). Cellular growth was inhibited at very low and very high intensities of hydraulic shear. Among all the experimental groups, the longest growth period for a cell, from attachment to PPFC to cell division, was 5.7 days. Cells with larger initial volumes produced larger volumes at division. The proposed platform could provide a novel approach for algal research by enabling direct observation of algal growth at the cell scale, and could potentially be applied to investigate the impacts of various environmental stressors such as nutrient, temperature, and light on cellular growth in different algal species. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 958 KiB  
Article
Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments
by Kaouthar Andaloussi, Hafid Achtak, Abdeltif El Ouahrani, Jalal Kassout, Giovanni Vinti, Daniele Di Trapani, Gaspare Viviani, Hassnae Kouali, Mhammed Sisouane, Khadija Haboubi and Mostafa Stitou
Soil Syst. 2025, 9(3), 82; https://doi.org/10.3390/soilsystems9030082 - 22 Jul 2025
Viewed by 351
Abstract
This study aims to assess the ecological and human health risks associated with four heavy metals (Cd, Cr, Cu, and Zn) in the soil of a dumpsite in Targuist city, Morocco. In total, 16 surface soil samples were collected from the dumpsite and [...] Read more.
This study aims to assess the ecological and human health risks associated with four heavy metals (Cd, Cr, Cu, and Zn) in the soil of a dumpsite in Targuist city, Morocco. In total, 16 surface soil samples were collected from the dumpsite and its nearby areas following leaching drain flows. The pollution load index (PLI), geo-accumulation index (Igeo), and potential ecological risk index (RI) were subsequently determined. In addition, hazard quotient (HQ) and health index (HI) were used to assess the non-carcinogenic and carcinogenic risks associated with the soil heavy metal contents. The PLI indicated significant contamination by the studied heavy metals. On the other hand, the Igeo values suggested no Cr contamination, moderate contamination by Cu and Zn, and severe contamination by Cd. The RI indicated a dominant contribution from Cd, with minor contributions from Cu, Zn, and Cr accounting for 92.47, 5.44, 1.11, and 0.96%, respectively, to the potential ecological risk in the study area. The non-carcinogenic health risks associated with exposure of the nearby population to the soil heavy metals at the dumpsite and burned solid waste-derived air pollution were below the threshold value of 1 for both children and adults. Although carcinogenic risks were observed in the study area, they were acceptable for both children and adults according to the United States Environmental Protection Agency (USEPA). However, carcinogenic risks associated with Cr were unacceptable according to the Italian Legislation. Finally, strategies to mitigate the risks posed by the dumpsite were also discussed in this study. Full article
Show Figures

Figure 1

33 pages, 27778 KiB  
Article
Integrated Adaptive Water Allocation Scenarios for Wetland Restoration: A Case Study of Lake Marmara Under Climate Change
by Mert Can Gunacti and Cem Polat Cetinkaya
Water 2025, 17(13), 1930; https://doi.org/10.3390/w17131930 - 27 Jun 2025
Viewed by 271
Abstract
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation [...] Read more.
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation in recent years. Within the scope of the PRIMA-funded “Mara-Mediterra” project, an integrated modeling approach was employed to evaluate multiple restoration scenarios using the WEAP (Water Evaluation and Planning) platform. Scenarios varied based on the initial storage capacity of Gördes Dam, irrigation demands, environmental flow priorities, and a potential water diversion investment from the Tabaklı reach. Results indicate that under current conditions, Lake Marmara’s ecological water needs can be sustained without the Tabaklı investment. However, under 2050 climate projections, scenarios lacking the Tabaklı investment or deprioritizing ecological needs consistently failed to meet the lake’s minimum water thresholds. Conversely, scenarios combining moderate dam storage levels, environmental prioritization, and Tabaklı inflow succeeded in restoring lake volumes by over 90%. These findings highlight the need for adaptive water planning that aligns with projected hydro-climatic shifts to ensure long-term wetland sustainability. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Graphical abstract

14 pages, 7540 KiB  
Article
Sustainable Spring Water Extraction—A Remedy to Water Shortage?
by Beata Ferencz and Jarosław Dawidek
Sustainability 2025, 17(13), 5798; https://doi.org/10.3390/su17135798 - 24 Jun 2025
Viewed by 375
Abstract
This study addresses a key challenge in water resource management, focusing on spring water. Rapidly increasing water demand, owing to population growth and shifting climate conditions, threatens water availability. Although springs are vital and renewable, they remain largely untapped sources of freshwater worldwide. [...] Read more.
This study addresses a key challenge in water resource management, focusing on spring water. Rapidly increasing water demand, owing to population growth and shifting climate conditions, threatens water availability. Although springs are vital and renewable, they remain largely untapped sources of freshwater worldwide. This study aims to estimate the volume of spring water that can be sustainably extracted from selected catchments without causing environmental harm. It is assumed that substantial water volumes can be withdrawn from catchments where aquifers consist of Cretaceous or Tertiary sediments. By applying the Threshold Level Method (TLM), the study ensures that extraction adherence to environmental flow requirements, thereby helping to protect surrounding aquatic and terrestrial ecosystems. Assuming a daily per capita water use of 0.2 m3, the surplus spring water identified could meet the needs of approximately 881,545 people, whereas the study area’s population slightly exceeds 1.2 million. These findings support sustainable water management efforts and advance progress toward UN Sustainable Development Goal 6. The results demonstrate that sustainable spring water use can help reduce groundwater overexploitation and maintain ecological integrity. Full article
(This article belongs to the Special Issue Global Hydrological Studies and Ecological Sustainability)
Show Figures

Figure 1

21 pages, 1205 KiB  
Article
Development of an Innovative Landfill Gas Purification System in Latvia
by Laila Zemite, Davids Kronkalns, Andris Backurs, Leo Jansons, Nauris Eglitis, Patrick Cnubben and Sanda Lapuke
Sustainability 2025, 17(13), 5691; https://doi.org/10.3390/su17135691 - 20 Jun 2025
Viewed by 394
Abstract
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national [...] Read more.
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national strategies to enhance circularity, untreated LFG is underutilized due to inadequate purification infrastructure, particularly in meeting biomethane standards. This study addressed this gap by proposing and evaluating an innovative, multistep LFG purification system tailored to Latvian conditions, with the aim of enabling the broader use of LFG for energy cogeneration and potentially biomethane injection. The research objective was to design, describe, and preliminarily assess a pilot-scale LFG purification prototype suitable for deployment at Latvia’s largest landfill facility—Landfill A. The methodological approach combined chemical composition analysis of LFG, technical site assessments, and engineering modelling of a five-step purification system, including desulfurization, cooling and moisture removal, siloxane filtration, pumping stabilization, and activated carbon treatment. The system was designed for a nominal gas flow rate of 1500 m3/h and developed with modular scalability in mind. The results showed that raw LFG from Landfill A contains high concentrations of hydrogen sulfide, siloxanes, and volatile organic compounds (VOCs), far exceeding permissible thresholds for biomethane applications. The designed prototype demonstrated the technical feasibility of reducing hydrogen sulfide (H2S) concentrations to <7 mg/m3 and siloxanes to ≤0.3 mg/m3, thus aligning the purified gas with EU biomethane quality requirements. Infrastructure assessments confirmed that existing electricity, water, and sewage capacities at Landfill A are sufficient to support the system’s operation. The implications of this research suggest that properly engineered LFG purification systems can transform landfills from passive waste sinks into active energy resources, aligning with the EU Green Deal goals and enhancing local energy resilience. It is recommended that further validation be carried out through long-term pilot operation, economic analysis of gas recovery profitability, and adaptation of the system for integration with national gas grids. The prototype provides a transferable model for other Baltic and Eastern European contexts, where LFG remains an underexploited asset for sustainable energy transitions. Full article
Show Figures

Figure 1

27 pages, 2491 KiB  
Article
Advancing Pavement Sustainability: Assessing Recycled Aggregates as Substitutes in Hot Mix Asphalt
by Saadeddine Ramadan, Hussein Kassem, Adel Elkordi and Rouba Joumblat
Sustainability 2025, 17(12), 5472; https://doi.org/10.3390/su17125472 - 13 Jun 2025
Viewed by 723
Abstract
The integration of Recycled Concrete Aggregate (RCA) and Reclaimed Asphalt Pavement (RAP) into Hot Mix Asphalt (HMA) presents a sustainable solution to mitigate environmental impacts and reduce reliance on virgin materials. This study investigates the influence of RCA and RAP as partial replacements [...] Read more.
The integration of Recycled Concrete Aggregate (RCA) and Reclaimed Asphalt Pavement (RAP) into Hot Mix Asphalt (HMA) presents a sustainable solution to mitigate environmental impacts and reduce reliance on virgin materials. This study investigates the influence of RCA and RAP as partial replacements for natural limestone aggregates on the volumetric, mechanical, and performance properties of asphalt mixtures. Replacement levels of 11%, 33%, and 66% (by total aggregate weight) were evaluated through comprehensive testing, including dynamic modulus, flow number, stiffness factor, and loss modulus assessments under varying temperatures and loading frequencies. Findings indicate that recycled aggregate incorporation results in a progressive reduction in optimum asphalt binder content, voids in mineral aggregates (VMAs), and voids filled with asphalt (VFAs). While all mixtures demonstrated acceptable stiffness-frequency behavior, the 33% replacement mix provided the best balance of rutting resistance and fatigue performance, satisfying Superpave volumetric criteria. The 11% mix exhibited enhanced fatigue resistance, whereas the 66% mix, despite showing the highest rutting stiffness, failed to meet minimum volumetric thresholds and is therefore unsuitable for structural applications. Statistical analysis (one-way ANOVA) confirmed the significant effect of RCA and RAP content on the mechanical response across performance zones. The results highlight the potential of using moderate recycled aggregate levels (particularly 33%) to produce durable, sustainable, and cost-efficient asphalt mixtures. For regions with mixed distress conditions, a 33% replacement is recommended, while 11% may be preferable in fatigue-critical environments. Further research incorporating viscoelastic continuum damage models and life cycle cost analysis is suggested to optimize design strategies and quantify long-term benefits. Full article
(This article belongs to the Special Issue Sustainable Development of Asphalt Materials and Pavement Engineering)
Show Figures

Figure 1

26 pages, 9089 KiB  
Article
Hydrological Effects of the Planned Power Project and Protection of the Natura 2000 Areas: A Case Study of the Adamów Power Plant
by Tomasz Kałuża, Ireneusz Laks, Jolanta Kanclerz, Ewelina Janicka-Kubiak, Mateusz Hämmerling and Stanisław Zaborowski
Energies 2025, 18(12), 3079; https://doi.org/10.3390/en18123079 - 11 Jun 2025
Viewed by 390
Abstract
The planned construction of a steam–gas unit at the Adamów Power Plant raises questions about the potential hydrological impact on the neighboring Natura 2000 protected areas, particularly the Middle Warta Valley (PLB300002) and the Jeziorsko Reservoir (PLB100002). These ecosystems play a key role [...] Read more.
The planned construction of a steam–gas unit at the Adamów Power Plant raises questions about the potential hydrological impact on the neighboring Natura 2000 protected areas, particularly the Middle Warta Valley (PLB300002) and the Jeziorsko Reservoir (PLB100002). These ecosystems play a key role in protecting bird habitats and biodiversity, and any changes in water management can affect their condition. This paper presents a detailed hydrological analysis of the Warta River and Jeziorsko Reservoir for 2018–2022, with a focus on low-flow periods. The Peak Over Threshold (POT) method and Q70% threshold were used to identify the frequency, length, and seasonality of low-flow periods in three water gauge profiles: Uniejów, Koło, and Sławsk. The longest recorded low-flow episode lasted 167 days. The permissible water intake for the investment (up to 0.8 m3∙s–1) is in accordance with the applicable permits and is used mainly for cooling purposes. Calculations indicate that under maximum intake conditions, the water level reduction in the Jeziorsko Reservoir would be between 1.7 and 2.0 mm∙day–1, depending on the current level of filling. Such changes do not disrupt the natural functions of the reservoir under typical conditions, although during prolonged droughts, they can pose a threat to protected areas. An analysis of the impact of periodic water overflow into the Kiełbaska Duża River indicates its negligible effect on water levels in the reservoir and flows in the Warta River. The results underscore the need for the integrated management of water and power resources, considering the increasing variability in hydrological conditions. Ensuring a balance between industrial needs and environmental protection is key to minimizing the potential impact of investments and implementing sustainable development principles. Full article
Show Figures

Figure 1

23 pages, 6966 KiB  
Article
Structural Vibration Detection Using the Optimized Optical Flow Technique and UAV After Removing UAV’s Motions
by Xin Bai, Rongliang Xie, Ning Liu and Zi Zhang
Appl. Sci. 2025, 15(11), 5821; https://doi.org/10.3390/app15115821 - 22 May 2025
Viewed by 640
Abstract
Traditional structural damage detection relies on multi-sensor arrays (e.g., total stations, accelerometers, and GNSS). However, these sensors have some inherent limitations such as high cost, limited accuracy, and environmental sensitivity. Advances in computer vision technology have driven the research on vision-based structural vibration [...] Read more.
Traditional structural damage detection relies on multi-sensor arrays (e.g., total stations, accelerometers, and GNSS). However, these sensors have some inherent limitations such as high cost, limited accuracy, and environmental sensitivity. Advances in computer vision technology have driven the research on vision-based structural vibration analysis and damage identification. In this study, an optimized Lucas–Kanade optical flow algorithm is proposed, and it integrates feature point trajectory analysis with an adaptive thresholding mechanism, and improves the accuracy of the measurements through an innovative error vector filtering strategy. Comprehensive experimental validation demonstrates the performance of the algorithm in a variety of test scenarios. The method tracked MTS vibrations with 97% accuracy in a laboratory environment, and the robustness of the environment was confirmed by successful noise reduction using a dedicated noise-suppression algorithm under camera-induced interference conditions. UAV field tests show that it effectively compensates for UAV-induced motion artifacts and maintains over 90% measurement accuracy in both indoor and outdoor environments. Comparative analyses show that the proposed UAV-based method has significantly improved accuracy compared to the traditional optical flow method, providing a highly robust visual monitoring solution for structural durability assessment in complex environments. Full article
Show Figures

Figure 1

24 pages, 10531 KiB  
Article
River Surface Space–Time Image Velocimetry Based on Dual-Channel Residual Network
by Ling Gao, Zhen Zhang, Lin Chen and Huabao Li
Appl. Sci. 2025, 15(10), 5284; https://doi.org/10.3390/app15105284 - 9 May 2025
Viewed by 403
Abstract
Space–Time Image Velocimetry (STIV) estimates the one-dimensional time-averaged velocity by analyzing the main orientation of texture (MOT) in space–time images (STIs). However, environmental interference often blurs weak tracer textures in STIs, limiting the accuracy of traditional MOT detection algorithms based on shallow features [...] Read more.
Space–Time Image Velocimetry (STIV) estimates the one-dimensional time-averaged velocity by analyzing the main orientation of texture (MOT) in space–time images (STIs). However, environmental interference often blurs weak tracer textures in STIs, limiting the accuracy of traditional MOT detection algorithms based on shallow features like images’ gray gradient. To solve this problem, we propose a deep learning-based MOT detection model using a dual-channel ResNet (DCResNet). The model integrates gray and edge channels through ResNet18, performs weighted fusion on the features extracted from two channels, and finally outputs the MOT. An adaptive threshold Sobel operator in the edge channel improves the model’s ability to extract edge features in STI. Based on a typical mountainous river (located at the Panzhihua hydrological station in Panzhihua City, Sichuan Province), an STI dataset is constructed. DCResNet achieves the optimal MOT detection at a 7:3 gray–edge fusion ratio, with MAEs of 0.41° (normal scenarios) and 1.2° (complex noise scenarios), respectively, outperforming the single-channel models. In flow velocity comparison experiments, DCResNet demonstrates an excellent detection performance and robustness. Compared to current meter results, the MRE of DCResNet is 4.08%, which is better than the FFT method. Full article
Show Figures

Figure 1

17 pages, 8453 KiB  
Article
Modeling the Salinity Distribution Suitable for the Survival of Asian Clam (Corbicula fluminea) and Examining Measures for Environmental Flow Supply in the Estuary of the Seomjin River, Korea
by Dong Yeol Lee and Kyong Oh Baek
Sustainability 2025, 17(9), 4171; https://doi.org/10.3390/su17094171 - 5 May 2025
Viewed by 398
Abstract
The Seomjin River estuary is a key habitat for the Asian clam (Corbicula fluminea), contributing significantly to the local economy and aquatic biodiversity in South Korea. However, long-term reductions in upstream discharge, geomorphological alterations, land reclamation, and climate change have intensified [...] Read more.
The Seomjin River estuary is a key habitat for the Asian clam (Corbicula fluminea), contributing significantly to the local economy and aquatic biodiversity in South Korea. However, long-term reductions in upstream discharge, geomorphological alterations, land reclamation, and climate change have intensified saltwater intrusion, gradually displacing clam habitats upstream. This study employed the Environmental Fluid Dynamics Code (EFDC) model to simulate salinity distribution and evaluate optimal environmental flow strategies for clam conservation. Simulation results indicated that maintaining a minimum upstream flow of 23 m3/s was essential to prevent salinity levels from exceeding the critical threshold of 20 psu at Seomjin Bridge, a key habitat site. During neap tides, reduced tidal flushing led to prolonged saltwater retention, elevating salinity levels and increasing the risk of mass clam mortality. A historical event in May 2017, when salinity exceeded 20 psu for over four consecutive days, resulted in a major die-off. This study successfully reproduced that event and evaluated mitigation strategies. A combined approach involving increased dam releases and temporary reductions in intake withdrawal was assessed. Notably, a pulse release strategy supplying an additional 9.9–10.37 m3/s (total 30.4 m3/s) over three days during neap tide effectively limited critical salinity durations to fewer than four days. The preservation of Asian clams in the Seomjin River estuary is a sustainability measure not only from an ecological perspective but also from a cultural one. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

15 pages, 6839 KiB  
Article
Influence of Recirculation Zones on Flaming Ignition of Porous Wood Fuel Beds
by Derek Bean and David L. Blunck
Fire 2025, 8(4), 141; https://doi.org/10.3390/fire8040141 - 31 Mar 2025
Viewed by 313
Abstract
Understanding environmental factors that control the ignition of fuel beds exposed to firebrands is necessary to help reduce the risk of losses of structures. Ignition by firebrands has been reported to be sensitive to wind, but identification and quantification of the physical cause(s) [...] Read more.
Understanding environmental factors that control the ignition of fuel beds exposed to firebrands is necessary to help reduce the risk of losses of structures. Ignition by firebrands has been reported to be sensitive to wind, but identification and quantification of the physical cause(s) of such sensitivities are still limited. The objective of this study was to quantify the influence of wind speed and direction on the ignition of a fuel bed exposed to firebrands and to understand the causes of this sensitivity. Fuel beds of Douglas fir shavings were exposed to a firebrand surrogate (i.e., a resistive heater) to determine flaming ignition probability and time to ignition for three different wind speeds and three wind directions. Increases in wind speed above quiescent reduced the temperature required for flaming ignition. However, a wind speed threshold above which ignition probability decreased was observed for some wind directions. The temperatures required for flaming ignition to occur and the time to ignition were sensitive to the wind direction. High-speed images and corresponding CFD calculations indicated that ignition occurred in the regions with the most prominent recirculation zones. Thus, sensitivities to wind speed and direction are attributable to differences in the pyrolysate residence time as controlled by recirculation zones. The results indicate that the local flow characteristics can significantly influence ignition, and characterization of the freestream velocity alone may not be sufficient. Full article
Show Figures

Figure 1

19 pages, 5580 KiB  
Article
Study on the Influence of Relative Chord Length and Frequency of Flapping Hydrofoil Device on Hydrodynamic Performance and Bank Slope Scour
by Ertian Hua, Caiju Lu, Mingwang Xiang, Yabo Song, Tao Wang and Qizong Sun
Water 2025, 17(7), 1026; https://doi.org/10.3390/w17071026 - 31 Mar 2025
Viewed by 353
Abstract
A flapping hydrofoil device is an innovative device for enhancing the hydrodynamics of small rivers. While increasing the flow velocity of the river, it inevitably causes different degrees of scouring on the bank slope. This study aims to find an optimal combination of [...] Read more.
A flapping hydrofoil device is an innovative device for enhancing the hydrodynamics of small rivers. While increasing the flow velocity of the river, it inevitably causes different degrees of scouring on the bank slope. This study aims to find an optimal combination of flapping hydrofoil parameters to maximize the pushing-water performance while minimizing the impact on bank slope scour, which is of great significance for the device’s application and environmental protection. Based on the finite volume method and overlapping dynamic grid technology, this paper selects the maximum bank slope scouring section as the research plane for numerical simulation. In order to expand the scope of application, the relative chord length c* (the ratio of chord length to river channel width) is introduced as a research parameter, and the influence of different relative chord lengths c* and frequencies f on the pushing-water performance of the device and the degree of bank slope scouring is systematically analyzed. The research results show that the near-shore current mean scouring force increases significantly with the increase in f and c*. The pushing-water efficiency will increase with c*, and will gradually increase with the increase in f and then tend to be stable. When c* = 1/2 and f = 2.5 Hz, the pushing-water efficiency reaches 51.04%, but at this time, the impact on bank slope scour is the most serious. When c* is reduced to 1/8, the bank slopes are not scoured even at the maximum frequency f = 2.5 Hz, and the pushing-water efficiency is 24.59% at this time. As c* decreases, the threshold frequency at which scour does not occur on the riverbank increases gradually. In addition, when c* is constant, decreasing f will significantly reduce the scouring force, but will have little effect on pushing-water efficiency. In order to achieve the purpose of this study, the parameters of flapping hydrofoil are recommended to be larger relative chord length and smaller motion frequency combinations. Full article
(This article belongs to the Special Issue Ecological Hydraulic Engineering and River Restoration)
Show Figures

Figure 1

21 pages, 2374 KiB  
Article
Optimizing Energy Efficiency and Sustainability in Winter Climate Control: Innovative Use of Variable Refrigerant Flow (VRF) Systems in University Buildings
by Yolanda Arroyo Gómez, Julio F. San José-Alonso, Luis J. San José-Gallego, Javier M. Rey-Hernández, Ascensión Sanz-Tejedor and Francisco J. Rey-Martínez
Appl. Sci. 2025, 15(5), 2374; https://doi.org/10.3390/app15052374 - 23 Feb 2025
Viewed by 1162
Abstract
This study presents a comprehensive analysis of the energy efficiency and sustainability of Variable Refrigerant Flow (VRF) systems in university buildings during the winter season, offering significant contributions to the field. A novel methodology is introduced to accurately assess the real Seasonal Coefficient [...] Read more.
This study presents a comprehensive analysis of the energy efficiency and sustainability of Variable Refrigerant Flow (VRF) systems in university buildings during the winter season, offering significant contributions to the field. A novel methodology is introduced to accurately assess the real Seasonal Coefficient of Performance (SCOP) of VRF systems, benchmarked against conventional Heating, Ventilation, and Air Conditioning (HVAC) technologies, such as natural gas-fueled boiler systems. The findings demonstrate outstanding seasonal energy performance, with the VRF system achieving a SCOP of 5.349, resulting in substantial energy savings and enhanced sustainability. Key outcomes include a 67% reduction in primary energy consumption and a 79% decrease in greenhouse gas emissions per square meter when compared to traditional boiler systems. Furthermore, VRF systems meet 83% of the building’s energy demand through renewable energy sources, exceeding the regulatory SCOP threshold of 2.5. These results underscore the transformative potential of VRF systems in achieving nearly Zero-Energy Building (nZEB) objectives, illustrating their ability to exceed stringent sustainability standards. The research emphasizes the strategic importance of adopting advanced HVAC solutions, particularly in regions with high heating demands, such as those characterized by continental climates. VRF systems emerge as a superior alternative, optimizing energy consumption while significantly reducing the environmental footprint of buildings. By contributing to global sustainable development and climate change mitigation efforts, this study advocates for the widespread adoption of VRF systems, positioning them as a critical component in the transition toward a sustainable, zero-energy building future. Full article
(This article belongs to the Special Issue Energy Efficiency in Buildings and Its Sustainable Development)
Show Figures

Figure 1

26 pages, 5463 KiB  
Article
Intelligent Congestion Control in Wireless Sensor Networks (WSN) Based on Generative Adversarial Networks (GANs) and Optimization Algorithms
by Seyed Salar Sefati, Bahman Arasteh, Razvan Craciunescu and Ciprian-Romeo Comsa
Mathematics 2025, 13(4), 597; https://doi.org/10.3390/math13040597 - 12 Feb 2025
Cited by 2 | Viewed by 1208
Abstract
Internet of Things (IoT) technology has facilitated the deployment of autonomous sensors in remote and challenging environments, enabling substantial advancements in environmental monitoring and data collection. IoT sensors continuously gather data, transmitting it to a central Base Station (BS) via designated Cluster Heads [...] Read more.
Internet of Things (IoT) technology has facilitated the deployment of autonomous sensors in remote and challenging environments, enabling substantial advancements in environmental monitoring and data collection. IoT sensors continuously gather data, transmitting it to a central Base Station (BS) via designated Cluster Heads (CHs). However, data flow encounters frequent congestion at CH nodes, negatively impacting network performance and Quality of Service (QoS). This paper introduces a novel congestion control strategy tailored for Wireless Sensor Networks (WSNs) to balance energy efficiency and data reliability. The proposed approach follows an eight-step process, integrating Generative Adversarial Networks (GANs) for enhanced clustering and Ant Colony Optimization (ACO) for optimal CH selection and routing. GANs simulate realistic node clustering, achieving better load distribution and energy conservation across the network. ACO then selects CHs based on energy levels, distance, and network centrality, using pheromone-based routing to adaptively manage data flows. A congestion factor (CF) threshold is also incorporated to dynamically reroute traffic when congestion risks arise, preserving QoS. Simulation results show that this approach significantly improves QoS metrics, including latency, throughput, and reliability. Comparative evaluations reveal that our method outperforms existing frameworks, such as Fuzzy Structure and Genetic-Fuzzy (FSFG), Deep Reinforcement Learning Cache-Aware Congestion Control (DRL-CaCC), and Adaptive Cuckoo Search Rate Optimization (ACSRO). Full article
Show Figures

Figure 1

16 pages, 2308 KiB  
Article
Assessment of Debris Flow Triggering Rainfall Using Parameter-Elevation Relationships on an Independent Slope Model
by Bum-Hee Jo, Taek-Kyu Chung and Inhyun Kim
Sustainability 2025, 17(4), 1499; https://doi.org/10.3390/su17041499 - 12 Feb 2025
Viewed by 785
Abstract
The increasing frequency of extreme weather events such as typhoons and heavy rains, driven by climate change, has intensified debris flow risks during Korea’s monsoon season, causing considerable human and economic losses. In South Korea, where mountainous terrain covers 64% of the country, [...] Read more.
The increasing frequency of extreme weather events such as typhoons and heavy rains, driven by climate change, has intensified debris flow risks during Korea’s monsoon season, causing considerable human and economic losses. In South Korea, where mountainous terrain covers 64% of the country, localized downpours exacerbate the risk of debris flows, endangering communities and critical infrastructure. To enhance resilience and ensure sustainable risk management, the Korea Expressway Corporation developed a quantitative debris flow risk assessment system based on sensitivity and vulnerability indicators. An early warning system utilizing rainfall thresholds was subsequently introduced. However, discrepancies between rainfall data from local AWS stations and actual site conditions compromised its predictive accuracy. This study addresses those limitations by integrating the Parameter-elevation Regressions on Independent Slopes Model (PRISM) into the early warning system to enhance prediction accuracy at debris flow occurrence and non-occurrence points. Comparative analysis revealed that the PRISM-enhanced system significantly improved predictive performance. Furthermore, cumulative rainfall data from five highway sites validated the system’s reliability in short-term prediction while offering a sustainable, data-driven framework for long-term debris flow risk management. This approach strengthens adaptive infrastructure strategies, promoting more resilient transportation networks and improving public safety while minimizing environmental impacts. Full article
Show Figures

Figure 1

Back to TopTop