Modeling the Salinity Distribution Suitable for the Survival of Asian Clam (Corbicula fluminea) and Examining Measures for Environmental Flow Supply in the Estuary of the Seomjin River, Korea
Abstract
:1. Introduction
2. Methodology
2.1. Salinity Monitoring
2.2. Construction of Numerical Model
2.3. Model Calibration and Verification
3. Results and Discussion
3.1. Results of Salinity Monitoring and Modeling
3.2. Minimum Flow Rate Required for Asian Clam Survival
3.3. Optimal Environmental Flow Supply Strategy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Land, Transport and Maritime Affairs (MLTMA). Study on the Establishment of an Estuary Management System (3): Seomjin River Estuary; Ministry of Land, Transport and Maritime Affairs (MLTMA): Sejong, Republic of Korea, 2010. [Google Scholar]
- Ministry of Environment (ME). Investigation of Causes and Countermeasures for Saline Damage in the Lower Seomjin River; Ministry of Environment (ME): Sejong, Republic of Korea, 2021. [Google Scholar]
- Bespalaya, Y.V.; Kropotin, A.V.; Kondakov, A.V.; Aksenova, O.V.; Gofarov, M.Y.; Kim, S.K.; Lee, J.H.; Travian, O.V.; Vikhrev, I.V.; Vinarski, M.V.; et al. A taxonomic reassessment of native and invasive species of Corbicula clams (Bivalvia: Cyrenidae) from the Russian Far East and Korea. Zool. J. Linn. Soc. 2023, 197, 104–126. [Google Scholar] [CrossRef]
- Newell, R.I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. J. Shellfish Res. 2004, 23, 51–62. [Google Scholar]
- Food and Agriculture Organization (FAO). Globally Important Agricultural Heritage Systems (GIAHS). 2023. Available online: http://www.fao.org/newsroom/detail/globally-important-agricultural-heritage-systems-(giahs)--the-republic-of-korea-notches-up-its-sixth-site/en (accessed on 1 March 2025).
- Lee, M.; Park, B.S.; Baek, S.H. Tidal influences on biotic and abiotic factors in the Seomjin River Estuary and Gwangyang Bay, Korea. Estuaries Coasts 2018, 41, 1977–1993. [Google Scholar] [CrossRef]
- Ministry of Environment (ME). Analysis of Water Use Status Using Water Quantity and Quality Monitoring Data in the Seomjin River Area; Ministry of Environment (ME): Sejong, Republic of Korea, 2021. [Google Scholar]
- Kim, H.G.; Jeong, J.J.; Jeong, S.W.; Kim, H.S.; Lee, Y.S. A study on water quality to understand the cause of bloom of potamocorbula amurensis in Seomjin River estuary wetland. J. Korean Soc. Environ. Technol. 2018, 19, 322–327. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Bo, T.; Ralston, D.K.; Garcia, A.M.P.; Geyer, W.R. Tidal intrusion fronts, surface convergence, and mixing in an estuary with complex topography. J. Phys. Oceanogr. 2024, 54, 653–677. [Google Scholar] [CrossRef]
- Álvarez, A.H.; Otero, L.; Restrepo, J.C.; Álvarez, O. The effect of waves in hydrodynamics, stratification, and salt wedge intrusion in a microtidal estuary. Front. Mar. Sci. 2022, 9, 974163. [Google Scholar]
- Zhang, J.; Cheng, L.; Wang, Y.; Jiang, C. The impact of tidal straining and advection on the stratification in a partially mixed estuary. Water 2023, 15, 339. [Google Scholar] [CrossRef]
- Zhu, L.; He, Q.; Shen, J. Response of stratification processes to tidal current alteration due to channel narrowing and deepening. J. Geophys. Res. Ocean 2020, 125, e2019JC015223. [Google Scholar] [CrossRef]
- Hetzel, Y.; Pattiaratchi, C.; Lowe, R.; Hofmeister, R. Wind and tidal mixing controls on stratification and dense water outflows in a large hypersaline bay. J. Geophys. Res. Oceans 2015, 120, 6034–6056. [Google Scholar] [CrossRef]
- Liu, W.; Lu, F.; Han, W. Sustainable Marginal Water Resource Management: A Case Study of Brackish Water Irrigation on the Southern Coast of Laizhou Bay. Sustainability 2025, 17, 1956. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, K.; Yang, Y.; Zhang, M. Field survey and analysis of water flux and salinity gradients considering the effects of sea ice coverage and rubber dam: A case study of the Liao River Estuary, China. Front. Mar. Sci. 2023, 10, 1154150. [Google Scholar] [CrossRef]
- Pool, M.; Post, V.E.; Simmons, C.T. Effects of tidal fluctuations on mixing and spreading in coastal aquifers: Homogeneous case. Water Resour. Res. 2014, 50, 6910–6926. [Google Scholar] [CrossRef]
- Huang, X.; Werner, A.D.; Solórzano, S.C.; Jazayeri, A. Salinity profiles in coastal aquifers: A characterization framework for field measurements. Water Resour. Res. 2024, 60, e2024WR037244. [Google Scholar] [CrossRef]
- Kniebusch, M.; Meier, H.M.; Radtke, H. Changing salinity gradients in the Baltic Sea as a consequence of altered freshwater budgets. Geophys. Res. Lett. 2019, 46, 9739–9747. [Google Scholar] [CrossRef]
- Xiao, B.C.; Li, E.C.; Du, Z.Y.; Jiang, R.L.; Chen, L.Q.; Yu, N. Effects of temperature and salinity on metabolic rate of the Asiatic clam Corbicula fluminea (Müller, 1774). SpringerPlus 2014, 3, 455. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, W.K.; Lee, C.S. Growth and survival of the brackish water clam, Corbicula japonica larvae according to rearing conditions. Korean J. Malacol. 2011, 27, 337–343. [Google Scholar] [CrossRef]
- Nakamura, M.; Yasugi, S.; Takahashi, F.; Shinagawa, A.; Nakao, S. Salinity tolerance of the brackish water bivalve, Corbicula japonica Prime. Aquac. Sci. 1996, 44, 31–35. [Google Scholar]
- Baek, S.H.; Seo, J.Y.; Choi, J.W. Growth characteristics and distribution pattern of a brackish water clam, Corbicula japonica along an estuarine salinity gradient in Seomjin River. J. Korea Acad.-Ind. Coop. Soc. 2015, 16, 6852–6859. [Google Scholar]
- Lee, Y.; Choi, H.; Kim, W.; Cheong, C. Evaluation of acute toxicity of salinity, ammonia, and nitrite to Corbicula. J. Korean Soc. Environ. Technol. 2016, 17, 542–547. [Google Scholar]
- Hamrick, J.M. A Three-Dimensional Environmental Fluid Dynamics Code: Theoretical and Computational Aspects; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 1992. [Google Scholar]
- Akter, A.; Tanim, A.H. Salinity distribution in river network of a partially mixed estuary. J. Waterw. Port Coast. Ocean Eng. 2021, 147, 04020055. [Google Scholar] [CrossRef]
- Guillermo, M.L.; Marta, A.; Carmen, Z.; Alejandro, L.R. Estuarine Salinity Distribution: The Role of Convergence. In Proceedings of the 40th IAHR World Congress, Vienna, Austria, 21–25 August 2023. [Google Scholar]
- Qiao, H.; Zhang, M.; Jiang, H.; Xu, T.; Zhang, H. Numerical study of hydrodynamic and salinity transport processes in the Pink Beach wetlands of the Liao River estuary, China. Ocean. Sci. 2018, 14, 437–451. [Google Scholar] [CrossRef]
- Roibás-Rozas, A.; Núñez, M.; Mosquera-Corral, A.; Hospido, A. Modeling the impact of salinity variations on aquatic environments: Including negative and positive effects in life cycle assessment. Environ. Sci. Technol. 2022, 56, 874–884. [Google Scholar] [CrossRef]
- Brookes, J.D.; Huang, P.; Zhai, S.Y.; Gibbs, M.S.; Ye, Q.; Aldridge, K.T.; Busch, B.; Hipsey, M.R. Environmental flows to estuaries and coastal lagoons shape the salinity gradient and generate suitable fish habitat: Predictions from the Coorong, Australia. Front. Environ. Sci. 2022, 10, 796623. [Google Scholar] [CrossRef]
- Passeri, D.L.; Ill, J.R.L.; Poisson, A.; Bilskie, M.V.; Bacopoulos, P. Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary. Front. Mar. Sci. 2023, 10, 1193462. [Google Scholar] [CrossRef]
- Ji, Z.G.; Moustafa, M.Z.; Hamrick, J. Hydrodynamic Modeling of a Large, Shallow Estuary. J. Mar. Sci. Eng. 2024, 12, 381. [Google Scholar] [CrossRef]
- Hsu, M.H.; Kuo, A.Y.; Kuo, J.T.; Liu, W.C. Modeling estuarine hydrodynamics and salinity for wetland restoration. J. Environ. Sci. Health Part A 1998, 33, 891–921. [Google Scholar] [CrossRef]
- Iglesias, I.; Pinho, J.L.; Avilez-Valente, P.; Melo, W.; Bio, A.; Gomes, A.; Vieira, J.; Bastos, L.; Veloso-Gomes, F. Improving estuarine hydrodynamic forecasts through numerical model ensembles. Front. Mar. Sci. 2022, 9, 812255. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). Seomjin River Basic Plan Report; Ministry of Land, Infrastructure and Transport (MOLIT): Sejong, Republic of Korea, 2021. [Google Scholar]
- Sharma, S.; Bhatt, R. Monitoring water and soil salinity across Mentor Marsh to investigate their temporal and spatial variability. Water 2023, 15, 4172. [Google Scholar] [CrossRef]
- Choi, H.G.; Han, K.Y.; Park, J.H. Reproducibility evaluation of stratification using EFDC model in Nakdong river. KSCE J. Civ. Environ. Eng. Res. 2017, 37, 561–573. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Very Good | Good | Satisfactory | Unsatisfactory | |
---|---|---|---|---|
PBIAS (%) | <25 | 25–40 | 40–70 | ≥70 |
RMSE | The closer to 0, the higher the reliability. |
Date | PBIAS | RMSE | |
---|---|---|---|
Bottom layer | 15 February 2020–15 March 2020 | 45.94% | 5.62 psu |
16 April 2020–11 May 2020 | 34.78% | 5.16 psu |
Neap Tide Period | Original Discharge | Discharge: 18 m3/s | Discharge: 18.5 m3/s | Discharge: 19 m3/s |
---|---|---|---|---|
Neap Tide_1 | 116 h (4 d 20 h) | 97 h (4 d 1 h) | 96 h (4 d) | 81 h (3 d 9 h) |
Neap Tide_2 | 84 h (3 d 12 h) | 50 h (2 d 2 h) | 51 h (2 d 3 h) | 58 h (2 d 10 h) |
Neap Tide_3 | 108 h (4 d 11 h) | 101 h (4 d 5 h) | 86 h (3 d 14 h) | 90 h (3 d 18 h) |
Neap Tide Period | Original Discharge (m3/s) | Additional Discharge (m3/s) | Total of Additional Water (Million m3) |
---|---|---|---|
Neap Tide_1 | 8.13–8.6 | 9.90–10.37 | 7.88 |
Neap Tide_2 | 10.74–19.81 | 0–7.76 | 4.21 |
Neap Tide_3 | 12.80–14.25 | 4.25–5.70 | 3.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.Y.; Baek, K.O. Modeling the Salinity Distribution Suitable for the Survival of Asian Clam (Corbicula fluminea) and Examining Measures for Environmental Flow Supply in the Estuary of the Seomjin River, Korea. Sustainability 2025, 17, 4171. https://doi.org/10.3390/su17094171
Lee DY, Baek KO. Modeling the Salinity Distribution Suitable for the Survival of Asian Clam (Corbicula fluminea) and Examining Measures for Environmental Flow Supply in the Estuary of the Seomjin River, Korea. Sustainability. 2025; 17(9):4171. https://doi.org/10.3390/su17094171
Chicago/Turabian StyleLee, Dong Yeol, and Kyong Oh Baek. 2025. "Modeling the Salinity Distribution Suitable for the Survival of Asian Clam (Corbicula fluminea) and Examining Measures for Environmental Flow Supply in the Estuary of the Seomjin River, Korea" Sustainability 17, no. 9: 4171. https://doi.org/10.3390/su17094171
APA StyleLee, D. Y., & Baek, K. O. (2025). Modeling the Salinity Distribution Suitable for the Survival of Asian Clam (Corbicula fluminea) and Examining Measures for Environmental Flow Supply in the Estuary of the Seomjin River, Korea. Sustainability, 17(9), 4171. https://doi.org/10.3390/su17094171