Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (491)

Search Parameters:
Keywords = environment-friendly composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 17554 KB  
Article
Effect of Long-Term Immersion in Low-Salinity Seawater on Epoxy Resin Composites Filled with Marine Secondary Raw Materials
by Greta Vicentini, Carlo Santulli, Sara Mattiello, Roberto Matassa, Danilo Nikolić, Slavica Petovic, Ana Pesic, Radmila Gagic, Alberto Felici and Cristiano Fragassa
J. Mar. Sci. Eng. 2025, 13(10), 1985; https://doi.org/10.3390/jmse13101985 - 16 Oct 2025
Viewed by 185
Abstract
This research explores the potential introduction of marine waste-derived biological fillers within bio-epoxy matrices to mitigate the environmental impact of traditional materials, like fiberglass, in boat construction. However, this raises concerns about biofouling and degradation, issues that have not been extensively investigated in [...] Read more.
This research explores the potential introduction of marine waste-derived biological fillers within bio-epoxy matrices to mitigate the environmental impact of traditional materials, like fiberglass, in boat construction. However, this raises concerns about biofouling and degradation, issues that have not been extensively investigated in composites, especially over a time frame representative of issues that could arise during service. Although protective solutions like biocides and specific coatings exist, degradation remains challenging when attempting to use eco-friendly natural fillers. This study specifically integrates various biological fillers, namely ceramics (mussel, oyster, clam powder) or ligno-cellulosic (i.e., Posidonia oceanica fibers) into epoxy for use in some boat components (bench seats for the bridge deck), aiming to evaluate the biofouling process under extreme (or decommissioning) conditions. In itself, epoxy does represent an ideal enclosing matrix for biomass waste, which ideally needs to be introduced in significant amounts. The development of biofouling in the specific context of Kotor’s Bay, Montenegro, for a duration of six months, and relevant composite degradation were examined. In particular, three situations were reproduced by positioning the samples in a harbor environment: (i) on the bottom of the sea (2 m. depth), (ii) immersed just below the surface (0.5 m. depth), and (iii) on the splashing surface (pier). The concerns identified appear generally limited in the case of the envisaged application, despite some significant wear effect in the case of the samples containing Posidonia. However, this study also offers information and caveats in terms of more ambitious prospective applications (e.g., the boat hull structure). Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 29780 KB  
Article
Composite Ecological–Heritage–Recreation Corridors for Social Sustainability: A Regional Framework in the Qinling–Daba Mountains
by Tianshu Chu, Chenchen Liu and Zhe Li
Buildings 2025, 15(20), 3700; https://doi.org/10.3390/buildings15203700 - 14 Oct 2025
Viewed by 399
Abstract
Urban–rural mountainous regions face persistent challenges in reconciling ecological conservation, cultural heritage preservation, and recreational demands, all of which are vital to advancing social sustainability. This study develops an integrated corridor framework for the Qinling–Daba region that couples ecological, heritage, and recreational networks [...] Read more.
Urban–rural mountainous regions face persistent challenges in reconciling ecological conservation, cultural heritage preservation, and recreational demands, all of which are vital to advancing social sustainability. This study develops an integrated corridor framework for the Qinling–Daba region that couples ecological, heritage, and recreational networks within a socially sustainable planning perspective. Ecological sources were identified using Morphological Spatial Pattern Analysis (MSPA) combined with connectivity indices (IIC, PC, dPC). Heritage and recreation resources were inventoried through field surveys and prioritized using the Analytic Hierarchy Process (AHP). Function-specific corridors were modelled with a Minimum Cumulative Resistance (MCR) approach, and the three networks were synthesized through GIS overlay and hotspot analysis. The results indicate that there are 19 ecological sources and 28 corridors, 34 heritage nodes and 41 corridors, and 29 recreation nodes and 50 corridors. The composite network comprises 69 key nodes and 141 segments, classified into four node categories and three corridor types. Derived planning directives include graded buffer zones, continuity of riparian and forest belts, remediation of breakpoints with wildlife-friendly crossings, and universal accessibility standards for high-demand sites. By aligning ecological integrity, cultural values, and equitable access, the proposed framework offers a reproducible pathway to integrate people and places through multifunctional corridors. Beyond regional application, this research provides transferable insights for socially sustainable governance of urban–rural built environments in mountainous territories, supporting the achievement of Sustainable Development Goal 11. Full article
Show Figures

Figure 1

16 pages, 2514 KB  
Article
QTL Mapping for Leaf Rust Resistance in a Common Wheat Recombinant Inbred Line Population of Doumai/Shi4185
by Yamei Wang, Wenjing Li, Rui Wang, Nannan Zhao, Xinye Zhang, Shu Zhu and Jindong Liu
Plants 2025, 14(19), 3113; https://doi.org/10.3390/plants14193113 - 9 Oct 2025
Viewed by 341
Abstract
Leaf rust, a devastating fungal disease caused by Puccinia triticina (Pt), severely impacts wheat quality and yield. Identifying genetic loci for wheat leaf rust resistance, developing molecular markers, and breeding resistant varieties is the most environmentally friendly and economical strategy for disease control. [...] Read more.
Leaf rust, a devastating fungal disease caused by Puccinia triticina (Pt), severely impacts wheat quality and yield. Identifying genetic loci for wheat leaf rust resistance, developing molecular markers, and breeding resistant varieties is the most environmentally friendly and economical strategy for disease control. This study utilized a recombinant inbred line (RIL) population of Doumai and Shi4185, combined with the wheat 90 K single nucleotide polymorphisms (SNPs) chip data and maximum disease severity (MDS) of leaf rust from four environments, to identify adult plant resistance (APR) loci through linkage mapping. Additionally, kompetitive allele-specific PCR (KASP) markers suitable for breeding were developed, and genetic effects were validated in a natural population. In this study, 5 quantitative trait loci (QTL) on chromosomes 1B (2), 2A and 7B (2) were identified through inclusive composite interval mapping, and named as QLr.lfnu-1BL1, QLr.lfnu-1BL2, QLr.lfnu-2AL, QLr.lfnu-7BL1 and QLr.lfnu-7BL2, respectively, explaining 4.54–8.91% of the phenotypic variances. The resistance alleles of QLr.lfnu-1BL1 and QLr.lfnu-1BL2 originated from Doumai, while the resistance alleles of QLr.lfnu-2AL, QLr.lfnu-7BL1 and QLr.lfnu-7BL2 came from Shi4185. Among these, QLr.lfnu-1BL2, QLr.lfnu-7BL1 and QLr.lfnu-7BL2 overlapped with previously reported loci, whereas QLr.lfnu-1BL1 and QLr.lfnu-2AL are likely to be novel. Two KASP markers, QLr.lfnu-2AL and QLr.lfnu-7BL, were significantly associated with leaf rust resistance in a diverse panel of 150 wheat varieties mainly from China. Totally, 34 potential candidate genes encoded the NLR proteins, receptor-like kinases, signaling kinases and transcription factors were selected as candidate genes for the resistance loci. These findings will provide stable QTL, available breeding KASP markers and candidate genes, and will accelerate the progresses of wheat leaf rust resistance improvement through marker-assisted selection breeding. Full article
Show Figures

Figure 1

25 pages, 9895 KB  
Review
Harnessing Microfluidics for the Effective and Precise Synthesis of Advanced Materials
by Xinlei Qi and Guoqing Hu
Micromachines 2025, 16(10), 1106; https://doi.org/10.3390/mi16101106 - 28 Sep 2025
Viewed by 585
Abstract
Microfluidic methods are powerful platforms for synthesizing advanced functional materials because they allow for precise control of microscale reaction environments. Microfluidics manipulates reactants in lab-on-a-chip systems to enable the fabrication of highly uniform materials with tunable properties, which are crucial for drug delivery, [...] Read more.
Microfluidic methods are powerful platforms for synthesizing advanced functional materials because they allow for precise control of microscale reaction environments. Microfluidics manipulates reactants in lab-on-a-chip systems to enable the fabrication of highly uniform materials with tunable properties, which are crucial for drug delivery, diagnostics, catalysis, and nanomaterial design. This review emphasizes recent progress in microfluidic technologies for synthesizing functional materials, with a focus on polymeric, hydrogel, lipid-based, and inorganic particles. Microfluidics provides exceptional control over the size, morphology, composition, and surface chemistry of materials, thereby enhancing their performance through uniformity, tunability, hierarchical structuring, and on-chip functionalization. Our review provides novel insights by linking material design strategies with fabrication methods tailored to biomedical applications. We also discuss emerging trends, such as AI-driven optimization, automation, and sustainable microfluidic practices, offering a practical and forward-looking perspective. As the field advances toward robust, standardized, and user-friendly platforms, microfluidics has the potential to increase industrial adoption and enable on-demand solutions in nanotechnology and personalized medicine. Full article
Show Figures

Figure 1

24 pages, 2067 KB  
Review
Coconut Coir Fiber Composites for Sustainable Architecture: A Comprehensive Review of Properties, Processing, and Applications
by Mohammed Nissar, Chethan K. N., Yashaswini Anantsagar Birjerane, Shantharam Patil, Sawan Shetty and Animita Das
J. Compos. Sci. 2025, 9(10), 516; https://doi.org/10.3390/jcs9100516 - 26 Sep 2025
Viewed by 1817
Abstract
The growing need for sustainable materials in architecture has sparked significant interest in natural-fiber-based composites. Among these, coconut coir, a by-product of the coconut industry, has emerged as a promising raw material owing to its abundance, renewability, and excellent mechanical properties. The promise [...] Read more.
The growing need for sustainable materials in architecture has sparked significant interest in natural-fiber-based composites. Among these, coconut coir, a by-product of the coconut industry, has emerged as a promising raw material owing to its abundance, renewability, and excellent mechanical properties. The promise of coir-based composites in architecture is highlighted in this review, which also looks at their problems, advantages for the environment, manufacturing processes, and mechanical, thermal, and acoustic performances. The fibrous shape of the coir provides efficient thermal and acoustic insulation, while its high lignin concentration guarantees stiffness, biological resistance, and dimensional stability. Fiber-matrix adhesion and durability have improved owing to advancements in treatment and environmentally friendly binders, opening up the use of cement, polymers, and hybrid composites. In terms of the environment, coir composites promote a biophilic design, reduce embodied carbon, and decrease landfill waste. Moisture sensitivity, inconsistent fiber quality, and production scaling are obstacles; however, advancements in hybridization, grading, and nanotechnology hold promise. This review provides comprehensive, architecture-focused review that integrates material science, fabrication techniques, and real-world architectural applications of coir-based composites. Coir-based composites have the potential to be long-lasting, sustainable substitutes for conventional materials in climate-resilient architectural design if they are further investigated and included in green certification programs and the circular economy. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

20 pages, 838 KB  
Article
Nurses’ Attitudes, Environmental Perceptions and Involvement in Research: A Multisite Study
by Amanda J. Hessels, Ulanda Marcus-Aiyeku, Mani Paliwal, Carrie Ann Catanzaro, Kimberly Dimino, Jessica Crowley, Jessica Miszlay, Maria Manzella, Kimkyla Kritch, Rachel Kilpatrick, Kim Kranz, Serpouhi S. Vartivarian and Barbara McGoey
Nurs. Rep. 2025, 15(9), 344; https://doi.org/10.3390/nursrep15090344 - 22 Sep 2025
Viewed by 602
Abstract
Background: Although evidence-based practice is widely promoted in nursing, direct care nurses remain underrepresented in research activities. This study aimed to assess nurses’ attitudes toward research, their perceptions of the organizational research environment, and their levels of involvement, as well as identify key [...] Read more.
Background: Although evidence-based practice is widely promoted in nursing, direct care nurses remain underrepresented in research activities. This study aimed to assess nurses’ attitudes toward research, their perceptions of the organizational research environment, and their levels of involvement, as well as identify key barriers and facilitators to engagement within a comprehensive healthcare system. This study also explored how racial and ethnic diversity within the nursing workforce may shape research engagement and contribute new perspectives to the field. Methods: A cross-sectional electronic survey was administered to registered nurses across 10 hospitals in a Northeast U.S. health system. The survey instrument assessed research attitudes, environment, involvement (past, present, future), and demographics. Descriptive and inferential statistics, including matched-pairs t-tests, were used to analyze responses. Results: Of 7655 invited nurses, 1094 responses were analyzed. Respondents were predominantly female (88.5%), White (56.8%), and employed full-time (87.1%) as clinical staff nurses (77.3%). While 54.8% had completed a formal research course (mainly within the past 1–3 years), informal research and statistics training were uncommon (17.4% and 5.4%, respectively). Nurses reported highly positive attitudes toward research (composite M = 2.15, SD = 0.51), especially its role in guiding practice, professional growth, and education. However, actual involvement was low. The most common current activities included practice change based on research (20.7%) and participation in committees (18.8%). Anticipated future engagement increased substantially, particularly in collaboration (+21.3%), committee participation (+20.6%), and IRB submission (+18.2%). The research environment was perceived as under-resourced, particularly in terms of protected time, funding, and mentorship. Statistically significant gaps were observed between perceived present and desired future supports (p < 0.01 for all 15 items). The Research Awareness Index revealed high rates of uncertainty about available resources (e.g., 66.1% did not know if internal funding existed). Conclusions: Nurses demonstrate strong positive attitudes and a desire to engage in research, including more advanced roles. Yet structural and informational barriers, particularly a lack of protected time, mentorship, and awareness of existing supports, limit participation. Investments in infrastructure, communication, and accessible development pathways are needed to translate nurses’ readiness into active research engagement. Implications: Institutions should prioritize making research support more visible and navigable while investing in mentorship, protected time, and user-friendly infrastructure. Addressing both facets will empower a highly motivated nursing workforce to engage in and lead practice-relevant research. Full article
Show Figures

Figure 1

23 pages, 5396 KB  
Article
Biobased Lubricating Oil Prepared from Ethyl Cellulose/Montmorillonite Additives and Waste Cooking Oil
by Sha Wang, Haoyue Wang, Zhenpeng Wang, Tao Hou, Kai Zhang, Zhuoyi Lv, Gaole Zhao, Huimin Sun, Wenkai Li and Yinan Hao
Lubricants 2025, 13(9), 417; https://doi.org/10.3390/lubricants13090417 - 17 Sep 2025
Viewed by 504
Abstract
Mineral oil-based lubricants contain harmful elements, such as sulfur and phosphorus, pose significant harm to the environment. In current research on the application of waste oils and fats in bio-based lubricants, most studies focus on single pretreatment processes or additive preparation, lacking systematic [...] Read more.
Mineral oil-based lubricants contain harmful elements, such as sulfur and phosphorus, pose significant harm to the environment. In current research on the application of waste oils and fats in bio-based lubricants, most studies focus on single pretreatment processes or additive preparation, lacking systematic investigations into the combined use of composite pretreatment and additives on lubricant performance. Moreover, the decolorization efficiency of traditional physical adsorption methods for treating waste oils and fats is limited, making it difficult to meet the raw material requirements for bio-based lubricants. The purpose of this study is to conduct composite pretreatment processes on waste oils and fats, understand the impacts of parameters such as additive dosage and environmental factors on lubricant performance, establish an environmentally friendly and performance-compliant preparation process for bio-based lubricants, and provide a theoretical basis and technical support for its industrial application. Recent studies have shown that new decolorization processes for waste oil treatment significantly improve decolorization and recovery rates, as evidenced by research comparing new and traditional methods. Pretreatment with hydrogen peroxide, activated clay, and activated carbon significantly improved the color and odor of treated waste oil, meeting standards for bio-based lubricant production. The intercalation polymerization reaction between ethyl cellulose (EC) and montmorillonite (MMT) was employed to develop an additive (CTAB-MMT/KH560-EC). A thorough investigation was performed to analyze the impact of temperature, processing time, and additive concentration on the rheological behavior. The bio-based lubricant exhibited a kinematic viscosity of 200.3 mm2/s at 40 °C and 28.3 mm2/s at 100 °C, meeting the standard conditions as outlined in ASTM D2270-10e1. This lubricant achieved an improved low-temperature performance with a pour point of −22 °C, a friction coefficient of 0.081, and an average pitting diameter of 0.94 mm, indicating its suitability for a range of applications. These lubricants exhibit outstanding viscosity characteristics, meeting the relevant requirements for energy and environmental applications in green, eco-friendly, and biodegradable sustainable development strategies while expanding their application scope. Full article
Show Figures

Figure 1

28 pages, 11030 KB  
Review
Sustainable Cellulose–Bentonite Composites for Wastewater Treatment
by Faiza Shahzadi, Xiao-Feng Sun and Muhammad Sheraz
Materials 2025, 18(18), 4284; https://doi.org/10.3390/ma18184284 - 12 Sep 2025
Viewed by 571
Abstract
Clean water and uncontaminated soil are fundamental for sustaining life on Earth and are essential for assuring human health, and the use of sustainable adsorption materials has emerged as an effective strategy to reduce the volume of effluents released into the environment. Cellulose–bentonite [...] Read more.
Clean water and uncontaminated soil are fundamental for sustaining life on Earth and are essential for assuring human health, and the use of sustainable adsorption materials has emerged as an effective strategy to reduce the volume of effluents released into the environment. Cellulose–bentonite composites have shown significant promise in water purification due to their high adsorption capacity, structural stability, and eco-friendly nature, making them an effective material for the removal of a wide range of pollutants from contaminated water. The most commonly employed methods of fabrication of cellulose–bentonite composites include solution casting, in situ polymerization, and electrospinning. Wastewater typically contains a variety of toxic contaminants, including synthetic dyes such as Congo red and methylene blue, heavy metals such as Cu, Pb, Hg, Ni, pesticides, and oils. Cellulose–bentonite composites offer an economical and efficient solution for the removal of these pollutants, owing to their synergistic properties—especially when compared to other adsorbents such as activated carbon, nanographene oxide, and metal–organic frameworks (MOFs). However, a systematic evaluation of their fabrication strategies, adsorption mechanisms, and application-related studies remains lacking. Also, there is an urgent need for a comprehensive review that consolidates recent findings on the removal of environmental contaminants and highlights both individual and combined adsorption efficiencies. Therefore, this work focuses on cellulose–bentonite composites as highly promising materials for developing sustainable, high-performance adsorbents tailored for advanced water treatment technologies. Full article
Show Figures

Graphical abstract

26 pages, 3749 KB  
Article
Synthesis of Pectin Hydrogels from Grapefruit Peel for the Adsorption of Heavy Metals from Water
by Vinusiya Vigneswararajah, Nirusha Thavarajah and Xavier Fernando
Technologies 2025, 13(9), 403; https://doi.org/10.3390/technologies13090403 - 5 Sep 2025
Viewed by 1227
Abstract
The increasing presence of heavy metals in aquatic environments, driven by the production of industrial waste and consumer products, poses serious environmental and health risks due to their toxicity and persistence. Copper (Cu(II)) and nickel (Ni(II)) are particularly harmful, with high concentrations linked [...] Read more.
The increasing presence of heavy metals in aquatic environments, driven by the production of industrial waste and consumer products, poses serious environmental and health risks due to their toxicity and persistence. Copper (Cu(II)) and nickel (Ni(II)) are particularly harmful, with high concentrations linked to neurological, dermatological and carcinogenic effects. This proof-of-concept study explores the synthesis of sustainable hydrogels derived from grapefruit peel (biosorbents) for the adsorption of Cu(II) and Ni(II) from aqueous solutions. Pectin was extracted from the peels and was used to synthesize pectin-based hydrogels (PH) and pectin hydrogel metal–organic frameworks (PHM composites). The hydrogels were characterized using FT-IR, SEM, diameter size and water absorption capacity. Lyophilized hydrogels were significantly smaller than their wet counterparts, and adsorption performance was analyzed using FAAS. PHs demonstrated high Cu(II) removal efficiency, achieving 95.11% adsorption and 97.75 mg/g capacity at pH 5. PHM composites showed comparable Cu(II) adsorption with a maximum capacity of 67.53 mg/g. Notably, PHs also exhibited rapid Ni(II) adsorption, reaching 92.62% efficiency and 28.189 mg/g capacity within one minute. These findings highlight the potential of pectin-based hydrogels as an effective, low-cost and environmentally friendly method for heavy metal remediation in water. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2025)
Show Figures

Figure 1

22 pages, 1870 KB  
Article
Symbiotic Fungus Serendipita indica as a Natural Bioenhancer Against Cadmium Toxicity in Chinese Cabbage
by Akram Rahbari, Behrooz Esmaielpour, Rasoul Azarmi, Hamideh Fatemi, Hassan Maleki Lajayer, Sima Panahirad, Gholamreza Gohari and Federico Vita
Plants 2025, 14(17), 2773; https://doi.org/10.3390/plants14172773 - 4 Sep 2025
Viewed by 546
Abstract
Heavy metal toxicity, particularly cadmium (Cd), poses a growing threat to agriculture and human health due to its persistence and high solubility, which facilitates its entry into the food chain. Among the strategies proposed to reduce Cd toxicity in plants and the environment, [...] Read more.
Heavy metal toxicity, particularly cadmium (Cd), poses a growing threat to agriculture and human health due to its persistence and high solubility, which facilitates its entry into the food chain. Among the strategies proposed to reduce Cd toxicity in plants and the environment, the use of beneficial microorganisms, such as endophytic fungi, has gained attention due to its effectiveness and eco-friendliness. This study investigates the potential of the root-colonizing fungus Serendipita indica (formerly Piriformospora indica) to mitigate cadmium (Cd) stress in Chinese cabbage (Brassica rapa L. subsp. Pekinensis) grown hydroponically under varying Cd concentrations (0, 1, 3, and 4 mM). Several parameters were assessed, including morphological traits, physiological and biochemical responses, and changes in leaf composition. Exposure to Cd significantly reduced plant growth, increased membrane electrolyte leakage, and decreased relative water content and root colonization, while enhancing antioxidant enzyme activities and the accumulation of phenolics, flavonoids, proline, glycine betaine, and carbohydrates. Notably, plants treated with S. indica showed improved tolerance to Cd stress, indicating the potential of the fungus. These findings suggest that S. indica can enhance plant resilience in Cd-contaminated environments and may offer a promising biological strategy for sustainable crop production under heavy metal stress. Full article
(This article belongs to the Special Issue Impact of Biostimulants on Plant Growth and Nutrient Uptake)
Show Figures

Figure 1

14 pages, 1452 KB  
Article
Characterization of the Phytochemical Profile of Halophytes (Limonium Mill., Plumbaginaceae) with Natural Deep Eutectic Solvents Extraction
by Antonio Ruiz-Medina, David J. Parras-Guijarro, Carlos Salazar-Mendías and Eulogio J. Llorent-Martínez
Plants 2025, 14(17), 2609; https://doi.org/10.3390/plants14172609 - 22 Aug 2025
Viewed by 464
Abstract
Limonium Mill. (Plumbaginaceae) is a genus comprising many species, some of which are reported to possess high bioactivity and are used as food, medicinal herbs, and fodder. Here we report the use of different deep eutectic solvents (DESs) and natural DESs (NADESs) to [...] Read more.
Limonium Mill. (Plumbaginaceae) is a genus comprising many species, some of which are reported to possess high bioactivity and are used as food, medicinal herbs, and fodder. Here we report the use of different deep eutectic solvents (DESs) and natural DESs (NADESs) to study the phytochemical composition of plants of the genus Limonium Mill. Most of the organic solvents commonly used for extracting phytochemicals from plants are hazardous to health and may harm the environment. Hence, their replacement with environmentally friendly solvents, particularly NADESs, is desirable. We performed ultrasound-assisted extractions of aerial parts of Limonium species using these solvents, followed by characterization of the phytochemicals with liquid chromatography with high-resolution mass spectrometry. Gallic acid and myricetin derivatives accounted for approximately 60 and 27% of all the compounds, respectively, therefore representing more than 80% of the characterized compounds in the analyzed plants. The best extraction yield for both flavonoids and organic acids was achieved using the NADES chloride choline/ethylene glycol (ratio 1:3), improving the recoveries by approximately 20% compared to the use of methanol and methanol/water mixtures. These results indicate the possibility of replacing conventional organic solvents with more environmentally friendly ones, reducing the use of toxic solvents and improving the sample treatment. In addition, possible new Limonium plant species were studied in the south of Spain with the optimized method. Full article
Show Figures

Graphical abstract

17 pages, 2566 KB  
Article
Synergistic Epichlorohydrin-Crosslinked Carboxymethyl Xylan for Enhanced Thermal Stability and Filtration Control in Water-Based Drilling Fluids
by Yutong Li, Fan Zhang, Bo Wang, Jiaming Liu, Yu Wang, Zhengli Shi, Leyao Du, Kaiwen Wang, Wangyuan Zhang, Zonglun Wang and Liangbin Dou
Gels 2025, 11(8), 666; https://doi.org/10.3390/gels11080666 - 20 Aug 2025
Viewed by 470
Abstract
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design [...] Read more.
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design and synthesis of epichlorohydrin-crosslinked carboxymethyl xylan (ECX), developed through a synergistic strategy combining covalent crosslinking with hydrophilic functionalization. When incorporated into water-based drilling fluid base slurries, ECX facilitates the formation of a robust gel suspension. Comprehensive structural analyses (FT-IR, XRD, TGA/DSC) reveal that dual carboxymethylation and ether crosslinking impart a 10 °C increase in glass transition temperature and a 15% boost in crystallinity, forming a rigid–flexible three-dimensional network. ECX-modified drilling fluids demonstrate excellent colloidal stability, as evidenced by an enhancement in zeta potential from −25 mV to −52 mV, which significantly improves dispersion and interparticle electrostatic repulsion. In practical formulation (1.0 wt%), ECX achieves a 620% rise in yield point and a 71.6% reduction in fluid loss at room temperature, maintaining 70% of rheological performance and 57.5% of filtration control following dynamic aging at 150 °C. Tribological tests show friction reduction up to 68.2%, efficiently retained after thermal treatment. SEM analysis further confirms the formation of dense and uniform polymer–clay composite filter cakes, elucidating the mechanism behind its high-temperature resilience and effective sealing performance. Furthermore, ECX demonstrates high biodegradability (BOD5/COD = 21.3%) and low aquatic toxicity (EC50 = 14 mg/L), aligning with sustainable development goals. This work elucidates the correlation between molecular engineering, gel microstructure, and macroscopic function, underscoring the great potential of eco-friendly polysaccharide-based crosslinked polymers for industrial gel-based fluid design in harsh environments. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

14 pages, 2685 KB  
Article
Assessing the Effects of Green Surface Coatings on the Corrosion-Related Mechanical Attributes of Materials
by Mohammed A. Albadrani
Processes 2025, 13(8), 2576; https://doi.org/10.3390/pr13082576 - 14 Aug 2025
Viewed by 469
Abstract
This study investigates the effectiveness of an environmentally friendly coating in mitigating corrosion and preserving the mechanical properties of carbon steel, copper, and aluminium. The coated and uncoated samples were subjected to a 20-day immersion in 5% NaCl solution. Corrosion behaviour was assessed [...] Read more.
This study investigates the effectiveness of an environmentally friendly coating in mitigating corrosion and preserving the mechanical properties of carbon steel, copper, and aluminium. The coated and uncoated samples were subjected to a 20-day immersion in 5% NaCl solution. Corrosion behaviour was assessed using Linear Sweep Voltammetry (LSV), Open Circuit Potential (OCP), and Electrochemical Impedance Spectroscopy (EIS), while mechanical performance was evaluated through tensile testing. The coating’s thickness, surface roughness, water contact angle, and composition were characterised to understand its protective behaviour. The results show that the coating significantly reduced corrosion rates, with carbon steel exhibiting a 99.99% inhibition efficiency and aluminium showing the lowest corrosion rate due to a synergistic effect between the coating and native oxide layer. Mechanical testing revealed that coated carbon steel retained higher tensile strength and stiffness compared to its uncoated counterpart, while aluminium showed notable recovery in elastic modulus. Copper displayed minimal mechanical changes due to its inherent corrosion resistance. This work highlights the potential of eco-friendly coatings in enhancing both the corrosion resistance and mechanical durability of metallic materials in aggressive environments. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

15 pages, 4219 KB  
Article
Photoinduced Transport and Activation of Polymer-Embedded Silver on Rice Husk Silica Nanoparticles for a Reusable Antimicrobial Surface
by Carly J. Frank, Vivian He, Juan C. Scaiano and M. Jazmin Silvero C.
Nanomaterials 2025, 15(16), 1224; https://doi.org/10.3390/nano15161224 - 11 Aug 2025
Cited by 1 | Viewed by 534
Abstract
Antimicrobial materials are gaining significant interest as awareness of pathogens spread through contact becomes increasingly prevalent. While various compounds with antibacterial properties have been explored as active ingredients in such materials, many are prone to leaching, leading to undesirable risks to the environment [...] Read more.
Antimicrobial materials are gaining significant interest as awareness of pathogens spread through contact becomes increasingly prevalent. While various compounds with antibacterial properties have been explored as active ingredients in such materials, many are prone to leaching, leading to undesirable risks to the environment and to human health. Herein, we develop and test a multilayered plastic film filled with silver nanoparticles, long known to be potent antibacterial agents, supported in a silica matrix. Cross-linked methacrylate layers on both sides of these nanostructures prevent leaching even after several uses, making the material essentially benign. Furthermore, we derive silica from rice husk, an abundant and affordable agricultural waste product. Our findings demonstrate that initial irradiation of the material with UVA light facilitates the photothermal migration of nanoparticles towards the material’s surface, thereby significantly enhancing its antimicrobial properties. Remarkably, after just 5 min of visible light irradiation, the material exhibits over 99.999% inhibition of bacterial growth. This environmentally friendly plastic composite harnesses visible light to actively combat bacteria, providing an exciting proof-of-concept for future applications in antimicrobial coatings. Full article
Show Figures

Graphical abstract

22 pages, 6992 KB  
Article
Study on Gel–Resin Composite for Losting Circulation Control to Improve Plugging Effect in Fracture Formation
by Jinzhi Zhu, Tao Wang, Shaojun Zhang, Yingrui Bai, Guochuan Qin and Jingbin Yang
Gels 2025, 11(8), 617; https://doi.org/10.3390/gels11080617 - 7 Aug 2025
Cited by 1 | Viewed by 443
Abstract
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a [...] Read more.
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a high-performance gel–resin composite plugging material resistant to HTHP environments. By optimizing the formulation of bisphenol-A epoxy resin (20%), hexamethylenetetramine (3%), and hydroxyethyl cellulose (1%), and incorporating fillers such as nano-silica and walnut shell particles, a controllable high-strength plugging system was constructed. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the structural stability of the resin, with an initial decomposition temperature of 220 °C and a compressive strength retention of 14.4 MPa after 45 days of aging at 140 °C. Rheological tests revealed shear-thinning behavior (initial viscosity: 300–350 mPa·s), with viscosity increasing marginally to 51 mPa·s after 10 h of stirring at ambient temperature, demonstrating superior pumpability. Experimental results indicated excellent adaptability of the system to drilling fluid contamination (compressive strength: 5.04 MPa at 20% dosage), high salinity (formation water salinity: 166.5 g/L), and elevated temperatures (140 °C). In pressure-bearing plugging tests, the resin achieved a breakthrough pressure of 15.19 MPa in wedge-shaped fractures (inlet: 7 mm/outlet: 5 mm) and a sand-packed tube sealing pressure of 11.25 MPa. Acid solubility tests further demonstrated outstanding degradability, with a 97.69% degradation rate after 24 h in 15% hydrochloric acid at 140 °C. This study provides an efficient, stable, and environmentally friendly solution for mitigating drilling fluid loss in complex formations, exhibiting significant potential for engineering applications. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

Back to TopTop