Characterization of the Phytochemical Profile of Halophytes (Limonium Mill., Plumbaginaceae) with Natural Deep Eutectic Solvents Extraction
Abstract
1. Introduction
2. Results and Discussion
2.1. Phytochemical Profile by HPLC-ESI-Q-TOF-MS
2.2. Selection of the Extraction Solvent
2.3. Phytochemical Composition by HPLC-ESI-Q-TOF
3. Materials and Methods
3.1. Sample Material
- -
- ALC: collected at Alcaudete, Laguna Honda (province of Jaén, Andalusia): 37°35′53.1″ N 4°08′30.7″ W, 448 m a.s.l.
- -
- PRI: collected at Priego de Córdoba, Barranco Cueva de la Reina (province of Córdoba, Andalusia): 37°33′02.9″ N 4°09′08.5″ W, 444 m a.s.l.
3.2. Preparation of the Eutectic Solvents
3.3. Sample Preparation
3.4. Phytochemical Analysis by HPLC-ESI-Q-TOF-MS
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubitzki, K.; Rohwer, J.G.; Bittrich, V. The families and genera of vascular plants: Flowering Plants-Dicotyledons; Springer: Berlin, Germany, 1993; Volume 2. [Google Scholar]
- Aniya, Y.; Miyagi, C.; Nakandakari, A.; Kamiya, S.; Imaizumi, N.; Ichiba, T. Free radical scavenging action of the medicinal herb Limonium wrightii from the Okinawa islands. Phytomedicine 2002, 9, 239–244. [Google Scholar] [CrossRef]
- Geng, D.; Chi, X.; Dong, Q.; Hu, F. Antioxidants screening in Limonium aureum by optimized on-line HPLC-DPPH assay. Ind. Crops Prod. 2015, 67, 492–497. [Google Scholar] [CrossRef]
- Medini, F.; Bourgou, S.; Lalancette, K.; Snoussi, M.; Mkadmini, K.; Coté, I.; Abdelly, C.; Legault, J.; Ksouri, R. Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. S. Afr. J. Bot. 2015, 99, 158–164. [Google Scholar] [CrossRef]
- Murray, A.P.; Rodriguez, S.; Frontera, M.A.; Tomas, M.A.; Mulet, M.C. Antioxidant metabolites from Limonium brasiliense (Boiss.) Kuntze. Z. Für Naturforsch. C 2004, 59, 477–480. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Soszynski, A.; Martins, A.; Rauter, A.P.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Ind. Crops Prod. 2015, 77, 315–322. [Google Scholar] [CrossRef]
- González-Orenga, S.; Grigore, M.N.; Boscaiu, M.; Vicente, O. Constitutive and Induced Salt Tolerance Mechanisms and Potential Uses of Limonium Mill. Species. Agron. 2021, 11, 413. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- García-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef] [PubMed]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural Deep Eutectic Solvents (NADESs) combined with sustainable extraction techniques: A review of the green chemistry approach in food analysis. Foods 2022, 12, 56. [Google Scholar] [CrossRef]
- Freitas, D.S.; Rocha, D.; Castro, T.G.; Noro, J.; Castro, V.I.B.; Teixeira, M.A.; Reis, R.L.; Cavaco-Paulo, A.; Silva, C. Green extraction of cork bioactive compounds using natural deep eutectic mixtures. ACS Sustain. Chem. Eng. 2022, 10, 7974–7989. [Google Scholar] [CrossRef]
- Vo, T.P.; Ho, T.A.T.; Truong, K.V.; Ha, N.M.H.; Nguyen, D.Q. Combining novel extraction techniques with natural deep eutectic solvents to acquire phenolic and terpenoid compounds from Paris polyphylla roots. J. Agric. Food Res. 2004, 18, 101544. [Google Scholar] [CrossRef]
- Radošević, K.; Ćurko, N.; Srček, V.G.; Bubalo, M.C.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT–Food Sci. Technol. 2016, 73, 45–51. [Google Scholar] [CrossRef]
- Szopa, D.; Wróbel, P.; Witek-Krowiak, A. Enhancing polyphenol extraction efficiency: A systematic review on the optimization strategies with natural deep eutectic solvents. J. Mol. Liq. 2024, 404, 124902. [Google Scholar] [CrossRef]
- Domina, G. Plumbaginaceae Resource for Euro-Mediterranean Plant Diversity. Euro+Med Plantbase, Berlin, Germany. 2011. Available online: https://ww2.bgbm.org/EuroPlusMed (accessed on 23 July 2025).
- Ramos-Gutiérrez, I.; Lima, H.; Pajarón, S.; Romero-Zarco, C.; Sáez, L.; Pataro, L.; Molina-Venegas, R.; Rodríguez, M.A.; Moreno-Saiz, J.C. Atlas of the vascular flora of the Iberian Peninsula biodiversity hotspot (AFLIBER). Glob. Ecol. Biogeogr. 2021, 30, 1951–1957. [Google Scholar] [CrossRef]
- Cueto, M.; Melendo, M.; Giménez, E.; Fuentes, J.; López-Carrique, E.; Blanca, G. First updated checklist of the vascular flora of Andalusia (S of Spain), one of the main biodiversity centres in the Mediterranean Basin. Phytotaxa 2018, 339, 1–95. [Google Scholar] [CrossRef]
- Gutiérrez-Carretero, L.; Blanca, G. Atlas y Libro Rojo De La Flora Vascular Amenazada De España; Limonium quesadense Erben; Bañares, A., Blanca, G., Güemes, J., Moreno, J.C., Ortiz, S., Eds.; Dirección General de Conservación de la Naturaleza: Madrid, Spain, 2004. [Google Scholar]
- Moreno-Saiz, J.C. Lista roja de la flora vascular Española. In Actualización Con Los Datos De La Adenda 2010 Al Atlas y Libro Rojo De La Flora Vascular Amenazada; Sociedad Española de Biología de la Conservación de las Plantas: Madrid, Spain, 2011. [Google Scholar]
- García-Fuentes, A.; Cano, E. Estudio de la flora en el alto valle del Guadalquivir (Jaén). Monograf. Jard. Bot. Córdoba 1998, 7, 5–100. [Google Scholar]
- Cobo-Muro, M.C. Contribución a la flora del alto valle del Guadalquivir en las provincias de Jaén y Córdoba (S. España). Acta Bot. Malacit. 2000, 25, 233–250. [Google Scholar] [CrossRef]
- Lendínez, M.L.; Marchal, F.M.; Salazar, C. Estudio florístico de los medios húmedos salinos de Andalucía (S. España). Catálogo y análisis de la flora vascular halófila. Lagascalia 2011, 31, 77–130. [Google Scholar]
- Piovesana, A.; Rodrigues, E.; Noreña, C.P.Z. Composition analysis of carotenoids and phenolic compounds and antioxidant activity from hibiscus calyces (Hibiscus sabdariffa L.) by HPLC-DAD-MS/MS. Phytochem. Anal. 2019, 30, 208–217. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Sáez, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic profile of grape canes: Novel compounds identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef]
- de Araujo Gomes, R.B.; de Souza, E.S.; Barraqui, N.S.G.G.; Tosta, C.L.; Nunes, A.P.F.; Schuenck, R.P.; Ruas, F.G.; Ventura, J.A.; Filgueiras, P.R.; Kuster, R.M. Residues from the Brazilian pepper tree (Schinus terebinthifolia Raddi) processing industry: Chemical profile and antimicrobial activity of extracts against hospital bacteria. Ind. Crops Prod. 2020, 143, 111430. [Google Scholar] [CrossRef]
- Ruiz-Riaguas, A.; Zengin, G.; Sinan, K.I.; Salazar-Mendías, C.; Llorent-Martínez, E.J. Phenolic profile, antioxidant activity, and enzyme inhibitory properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. J. Chem. 2020, 2020, 1016208. [Google Scholar] [CrossRef]
- Fernández-Cobo, M.J.; Salmerón-Sánchez, E.; Salazar-Mendías, C.; Miranda-Hernández, L.; Merlo, M.E.; Mota, J.F. Study and Identification of New Gypsophilous Taxa of the Genus Limonium Mill. in the Inner Outcrops of Andalusia (SE Spain). Proceedings of the XX International Botanical Congress IBC, Madrid, Spain, 21–27 July 2024; pp. 109–110. Book of Abstracts (Posters). Available online: https://ibcmadrid2024.com/docs/secciones/24.pdf (accessed on 23 July 2025).
- Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff; New York Botanical Garden’s Virtual Herbarium: New York, NY, USA, 2024; Available online: http://sweetgum.nybg.org/science/ih (accessed on 23 July 2025).
- de Oliveira, I.L.; Domínguez-Rodríguez, G.; Montero, L.; Viganó, J.; Cifuentes, A.; Rostagno, M.A.; Ibáñez, E. Advanced extraction techniques combined with natural deep eutectic solvents for extracting phenolic compounds from pomegranate (Punica granatum L.) peels. Int. J. Mol. Sci. 2024, 25, 9992. [Google Scholar] [CrossRef] [PubMed]
No. | tR (min) | Observed [M-H]− | Molecular Formula | Error (ppm) | Fragment Ions | Assigned Identification |
---|---|---|---|---|---|---|
1 | 1.9 | 189.0042 | C6H6O7 | −1.39 | 127.0032 | Hibiscus acid |
2 | 2.0 | 133.014 | C4H6O5 | 1.84 | 115.0041, 71.0145 | Malic acid |
3 | 2.4 | 191.0194 | C6H8O7 | 1.79 | 173.0078, 129.0179, 111.0083, 87.0090 | Citric acid * |
4 | 2.5 | 331.0676 | C13H16O10 | −1.44 | 271.0453, 169.0134, 125.0243 | Galloylglucose |
5 | 3.1 | 169.0141 | C7H6O5 | 0.97 | 124.9837, 114.9884 | Gallic acid * |
6 | 4.5 | 325.0562 | C14H14O9 | −0.46 | 169.0142, 125.0254 | Gallic acid derivative |
7 | 6.7 | 483.0791 | C20H20O14 | −2.51 | 331.0692, 271.0455, 169.0124, 125.0242 | Digalloylglucose |
8 | 7.5 | 305.0662 | C15H14O7 | 1.05 | 219.0662, 179.0364, 125.0234 | Epigallocatechin |
9 | 9.5 | 483.0786 | C20H20O14 | −1.24 | 331.0659, 169.0135, 125.0248 | Digalloylglucose |
10 | 10.2 | 321.0255 | C14H10O9 | −1.02 | 169.0138, 125.0241 | Digallic acid |
11 | 11.7 | 477.0674 | C21H18O13 | −0.78 | 325.0557, 169.0150, 125.0227 | Digalloyl shikimic acid |
12 | 12.4 | 457.0779 | C22H18O11 | −0.53 | 331.0450, 305.0665, 169.0138, 125.0245 | (Epi)gallocatechin gallate isomer |
13 | 13.2 | 457.0774 | C22H18O11 | 0.59 | 331.0457, 305.0661, 287.0568, 193.0143, 169.0138, 125.0242 | (Epi)gallocatechin gallate isomer |
14 | 14.2 | 197.0457 | C9H10O5 | −0.72 | 124.0161, 78.0113 | Syringic acid * |
15 | 14.2 | 385.1137 | C17H22O10 | 0.87 | 223.0819, 179.0361, 137.0226 | Sinapoyl-glucoside |
16 | 15.6 | 163.0399 | C9H8O3 | −0.06 | 119.0505 | Coumaric acid * |
17 | 15.7 | 631.0938 | C28H24O17 | 0.40 | 479.0819, 316.0225, 271.0310 | Myricetin-galloyl-hexoside |
18 | 17.4 | 477.1045 | C22H22O12 | −1.52 | 433.1144, 401.5665, 313.0572, 169.0135, 125.0238 | Gallic acid derivative |
19 | 17.5 | 625.1409 | C27H30O17 | 0.17 | 317.0318, 316.0195, 271.0197, 178.9963, 151.0035 | Myricetin-O-rutinoside |
20 | 17.9 | 479.0834 | C21H20O13 | −0.60 | 316.0234, 271.0250, 179.0025, 151.0035 | Myricetin-O-hexoside |
21 | 19.7 | 615.0990 | C28H24O16 | 0.40 | 463.0900, 301.0369, 178.9980, 151.0037 | Quercetin-galloyl-hexoside |
22 | 19.9 | 609.0887 | C29H22O15 | 0.17 | 457.0747, 169.0139, 125.0248 | (Epi)gallocatechin-3,5-digallate |
23 | 20.5 | 463.0880 | C21H20O12 | 0.52 | 316.0219, 178.9978 | Myricetin-O-deoxyhexoside |
24 | 20.6 | 609.1445 | C27H30O16 | 2.59 | 301.0354, 169.0132 | Rutin * |
25 | 21.1 | 463.0876 | C21H20O12 | 1.79 | 301.0342, 179.2098 | Quercetin-O-hexoside |
26 | 23.4 | 593.1507 | C27H30O15 | 1.63 | 285.0398, 257.0334, 151.0052 | Kaempferol-O-rutinoside |
27 | 23.9 | 599.1029 | C28H24O15 | 1.31 | 447.0903, 313.0575, 285.0477, 169.0152 | Kaempferol-O-galloyl-hexoside |
28 | 24.3 | 549.0885 | C24H22O15 | 0.37 | 505.0976, 316.0222, 271.0241, 178.9983, 151.0031 | Myricetin derivative |
29 | 24.9 | 447.0928 | C21H20O11 | 1.27 | 301.0843, 179.0015, 151.0032 | Quercetin-O-deoxyhexoside |
30 | 26.8 | 317.0308 | C15H10O8 | −1.72 | 179.9897, 151.0026 | Myricetin * |
31 | 28.4 | 615.0988 | C28H24O16 | 0.48 | 463.0879, 317.0294, 179.0006, 151.0024 | Myricetin-O-galloyl-deoxyhexoside |
32 | 29.6 | 533.0933 | C24H22O14 | 0.22 | 447.1043, 301.0332 | Quercetin malonyl deoxyhexoside |
33 | 31.6 | 701.1001 | C31H26O19 | −0.87 | 549.0885, 505.0992, 463.0971, 316.0229, 271.0266, 178.9981 | Myricetin derivative |
34 | 33.2 | 599.1034 | C28H24O15 | 1.52 | 447.0959, 301.0351, 178.9961, 151.0067 | Quercetin-O-galloyl-deoxyhexoside |
35 | 33.9 | 301.0353 | C15H10O7 | 0.05 | 179.0104, 151.0051 | Quercetin * |
Abbreviation | HBA | HBD | Water (%) | Mol Ratio |
---|---|---|---|---|
Urea | Choline chloride | Urea | 20 | 1:2 |
Lac-1 | Sodium acetate | Lactic acid | 20 | 1:3 |
Lac-2 | Choline chloride | Lactic acid | 20 | 1:3 |
Etg_1_10 | Choline chloride | Ethylene glycol | 10 | 1:1 |
Etg_1_20 | Choline chloride | Ethylene glycol | 20 | 1:1 |
Etg_2_0 | Choline chloride | Ethylene glycol | 0 | 1:2 |
Etg_2_10 | Choline chloride | Ethylene glycol | 10 | 1:2 |
Etg_2_20 | Choline chloride | Ethylene glycol | 20 | 1:2 |
Etg_3_0 | Choline chloride | Ethylene glycol | 0 | 1:3 |
Etg_3_10 | Choline chloride | Ethylene glycol | 10 | 1:3 |
Etg_3_20 | Choline chloride | Ethylene glycol | 20 | 1:3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Medina, A.; Parras-Guijarro, D.J.; Salazar-Mendías, C.; Llorent-Martínez, E.J. Characterization of the Phytochemical Profile of Halophytes (Limonium Mill., Plumbaginaceae) with Natural Deep Eutectic Solvents Extraction. Plants 2025, 14, 2609. https://doi.org/10.3390/plants14172609
Ruiz-Medina A, Parras-Guijarro DJ, Salazar-Mendías C, Llorent-Martínez EJ. Characterization of the Phytochemical Profile of Halophytes (Limonium Mill., Plumbaginaceae) with Natural Deep Eutectic Solvents Extraction. Plants. 2025; 14(17):2609. https://doi.org/10.3390/plants14172609
Chicago/Turabian StyleRuiz-Medina, Antonio, David J. Parras-Guijarro, Carlos Salazar-Mendías, and Eulogio J. Llorent-Martínez. 2025. "Characterization of the Phytochemical Profile of Halophytes (Limonium Mill., Plumbaginaceae) with Natural Deep Eutectic Solvents Extraction" Plants 14, no. 17: 2609. https://doi.org/10.3390/plants14172609
APA StyleRuiz-Medina, A., Parras-Guijarro, D. J., Salazar-Mendías, C., & Llorent-Martínez, E. J. (2025). Characterization of the Phytochemical Profile of Halophytes (Limonium Mill., Plumbaginaceae) with Natural Deep Eutectic Solvents Extraction. Plants, 14(17), 2609. https://doi.org/10.3390/plants14172609