Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,027)

Search Parameters:
Keywords = enhancer RNA (eRNA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 15414 KiB  
Article
Epimedium-Derived Exosome-Loaded GelMA Hydrogel Enhances MC3T3-E1 Osteogenesis via PI3K/Akt Pathway
by Weijian Hu, Xin Xie and Jiabin Xu
Cells 2025, 14(15), 1214; https://doi.org/10.3390/cells14151214 - 7 Aug 2025
Abstract
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed [...] Read more.
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed a 3D GelMA hydrogel loaded with Epimedium-derived exosomes (“GelMA@Exo”) to improve exosome retention, stability, and sustained release. Its effects on MC3T3-E1 preosteoblasts—including proliferation, osteogenic differentiation, migration, and senescence—were evaluated via in vitro assays. Angiogenic potential was assessed using HUVECs. Underlying mechanisms were examined at transcriptomic and protein levels to elucidate GelMA@Exo’s therapeutic osteogenesis actions. GelMA@Exo exhibited sustained exosome release, enhancing exosome retention and cellular uptake. In vitro, GelMA@Exo markedly boosted MC3T3-E1 proliferation, migration, and mineralized nodule formation, while reducing senescence markers and promoting angiogenesis in HUVECs. Mechanistically, GelMA@Exo upregulated key osteogenic markers (RUNX2, TGF-β1, Osterix, COL1A1, ALPL) and activated the PI3K/Akt pathway. Transcriptomic data confirmed global upregulation of osteogenesis-related genes and bone-regeneration pathways. This study presents a GelMA hydrogel functionalized with plant-derived exosomes, which synergistically provides osteoinductive stimuli and structural support. The GelMA@Exo platform offers a versatile strategy for localized delivery of natural bioactive molecules and a promising approach for bone tissue engineering. Our findings provide strong experimental evidence for the translational potential of plant-derived exosomes in regenerative medicine. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

32 pages, 41108 KiB  
Article
A Novel Medical Image Encryption Algorithm Based on High-Dimensional Memristor Chaotic System with Extended Josephus-RNA Hybrid Mechanism
by Yixiao Wang, Yutong Li, Zhenghong Yu, Tianxian Zhang and Xiangliang Xu
Symmetry 2025, 17(8), 1255; https://doi.org/10.3390/sym17081255 - 6 Aug 2025
Abstract
Conventional image encryption schemes struggle to meet the high security demands of medical images due to their large data volume, strong pixel correlation, and structural redundancy. To address these challenges, we propose a grayscale medical image encryption algorithm based on a novel 5-D [...] Read more.
Conventional image encryption schemes struggle to meet the high security demands of medical images due to their large data volume, strong pixel correlation, and structural redundancy. To address these challenges, we propose a grayscale medical image encryption algorithm based on a novel 5-D memristor chaotic system. The algorithm integrates a Symmetric L-type Josephus Spiral Scrambling (SLJSS) module and a Dynamic Codon-based Multi-RNA Diffusion (DCMRD) module to enhance spatial decorrelation and diffusion complexity. Simulation results demonstrate that the proposed method achieves near-ideal entropy (e.g., 7.9992), low correlation (e.g., 0.0043), and high robustness (e.g., NPCR: 99.62%, UACI: 33.45%) with time complexity of O(11MN), confirming its effectiveness and efficiency for medical image protection. Full article
(This article belongs to the Special Issue Symmetry in Chaos Theory and Applications)
Show Figures

Figure 1

19 pages, 1680 KiB  
Article
Role of Endogenous Galectin-3 on Cell Biology of Immortalized Retinal Pigment Epithelial Cells In Vitro †
by Caspar Liesenhoff, Marlene Hillenmayer, Caroline Havertz, Arie Geerlof, Daniela Hartmann, Siegfried G. Priglinger, Claudia S. Priglinger and Andreas Ohlmann
Int. J. Mol. Sci. 2025, 26(15), 7622; https://doi.org/10.3390/ijms26157622 - 6 Aug 2025
Abstract
 Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, [...] Read more.
 Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, we developed an immortalized human RPE cell line (ARPE-19) with a knockdown for galectin-3 expression (ARPE-19/LGALS3+/−) using a sgRNA/Cas9 all-in-one expression vector. By Western blot analysis, a reduced galectin-3 expression of approximately 48 to 60% in heterozygous ARPE-19/LGALS3+/− cells was observed when compared to native controls. Furthermore, ARPE-19/LGALS3+/− cells displayed a flattened, elongated phenotype with decreased E-cadherin as well as enhanced N-cadherin and α-smooth muscle actin mRNA expression, indicating an epithelial–mesenchymal transition of the cells. Compared to wildtype controls, ARPE-19/LGALS3+/− cells had significantly reduced metabolic activity to 86% and a substantially decreased proliferation to 73%. Furthermore, an enhanced cell adhesion and a diminished migration of immortalized galectin-3 knockdown RPE cells was observed compared to native ARPE-19 cells. Finally, by Western blot analysis, reduced pAKT, pERK1/2, and β-catenin signaling were detected in ARPE-19/LGALS3+/− cells when compared to wildtype controls. In summary, in RPE cells, endogenous galectin-3 appears to be essential for maintaining the epithelial phenotype as well as cell biological functions such as metabolism, proliferation, or migration, effects that might be mediated via a decreased activity of the AKT, ERK1/2, and β-catenin signaling pathways.  Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
14 pages, 3011 KiB  
Article
Ameliorative Effects of Soybean Powder Fermented by Bacillus subtilis on Constipation Induced by Loperamide in Rats
by Gi Soo Lee, Su Kang Kim, Ju Yeon Ban and Chung-Hun Oh
Int. J. Mol. Sci. 2025, 26(15), 7615; https://doi.org/10.3390/ijms26157615 - 6 Aug 2025
Abstract
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated [...] Read more.
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated the laxative effects of soybean powder fermented by Bacillus subtilis DKU_09 in a loperamide-induced rat model of constipation. The probiotic strain was isolated from cheonggukjang, a traditional Korean fermented soybean paste, and its identity was confirmed through 16S rRNA sequencing. Fermented soybean powder was characterized morphologically via scanning electron microscopy and chemically via HPLC to assess its isoflavone content. Rats were administered loperamide (5 mg/kg) for four days to induce constipation and were then treated with fermented soybean powder at doses of 100, 200, or 300 mg/kg. No pharmacological laxatives (e.g., PEG) were used as a positive control; instead, values from the treatment groups were compared with those from the loperamide-only constipation group. Key outcomes of fecal output, water content, colonic fecal retention, and gastrointestinal transit ratio were measured. The fermented product significantly improved stool frequency and moisture content, reduced colonic fecal retention, and restored gastrointestinal transit in a dose-dependent manner. Notably, the 300 mg/kg group demonstrated nearly complete recovery of fecal parameters without affecting body weight. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test. These findings suggest that Bacillus subtilis-fermented soybean powder exerts synergistic laxative effects through the combined action of probiotic viability and fermentation-enhanced bioactive compounds such as aglycone isoflavones. This study supports the potential use of fermented soybean-based nutraceuticals as a natural and safe intervention for constipation and gastrointestinal dysregulation. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

25 pages, 2042 KiB  
Article
Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
by Michal Sima, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan and Pavel Rossner
Int. J. Mol. Sci. 2025, 26(15), 7583; https://doi.org/10.3390/ijms26157583 - 5 Aug 2025
Abstract
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of [...] Read more.
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA–miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs’ healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

18 pages, 3940 KiB  
Article
CTCF Represses CIB2 to Balance Proliferation and Differentiation of Goat Myogenic Satellite Cells via Integrin α7β1–PI3K/AKT Axis
by Changliang Gong, Huihui Song, Zhuohang Hao, Zhengyi Zhang, Nanjian Luo and Xiaochuan Chen
Cells 2025, 14(15), 1199; https://doi.org/10.3390/cells14151199 - 5 Aug 2025
Viewed by 83
Abstract
Skeletal muscle development is a critical economic trait in livestock, governed by myogenic satellite cell regulation. Integrins mediate mechanical anchorage to the ECM and enable ECM–intracellular signaling. CIB2, as an EF-hand-domain protein involved in mechanotransduction, shows significant developmental regulation in goat muscle. [...] Read more.
Skeletal muscle development is a critical economic trait in livestock, governed by myogenic satellite cell regulation. Integrins mediate mechanical anchorage to the ECM and enable ECM–intracellular signaling. CIB2, as an EF-hand-domain protein involved in mechanotransduction, shows significant developmental regulation in goat muscle. Although the role of CIB2 in skeletal muscle growth is poorly characterized, we observed pronounced developmental upregulation of IB2 in postnatal goat muscle. CIB2 expression increased >20-fold by postnatal day 90 (P90) compared to P1, sustaining elevation through P180 (p < 0.05). Functional investigations indicated that siRNA-mediated knockdown of CIB2 could inhibit myoblast proliferation by inducing S-phase arrest (p < 0.05) and downregulating the expression of CDK4/Cyclin D/E. Simultaneously, CIB2 interference treatment was found to decrease the proliferative activity of goat myogenic satellite cells, yet it significantly promoted differentiation by upregulating the expression of MyoD/MyoG/MyHC (p < 0.01). Mechanistically, CTCF was identified as a transcriptional repressor binding to an intragenic region of the CIB2 gene locus (ChIP enrichment: 2.3-fold, p < 0.05). Knockdown of CTCF induced upregulation of CIB2 (p < 0.05). RNA-seq analysis established CIB2 as a calcium signaling hub: its interference activated IL-17/TNF and complement cascades, while overexpression suppressed focal adhesion/ECM–receptor interactions and enriched neuroendocrine pathways. Collectively, this study identifies the CTCF-CIB2–integrin α7β1–PI3K/AKT axis as a novel molecular mechanism that regulates the balance of myogenic fate in goats. These findings offer promising targets for genomic selection and precision breeding strategies aimed at enhancing muscle productivity in ruminants. Full article
Show Figures

Figure 1

37 pages, 22351 KiB  
Article
The Extract of Periplaneta americana (L.) Promotes Hair Regrowth in Mice with Alopecia by Regulating the FOXO/PI3K/AKT Signaling Pathway and Skin Microbiota
by Tangfei Guan, Xin Yang, Canhui Hong, Zehao Zhang, Peiyun Xiao, Yongshou Yang, Chenggui Zhang and Zhengchun He
Curr. Issues Mol. Biol. 2025, 47(8), 619; https://doi.org/10.3390/cimb47080619 - 4 Aug 2025
Viewed by 76
Abstract
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for [...] Read more.
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for alopecia. This study aimed to systematically investigate the efficacy and mechanisms of PA extracts in promoting hair regeneration. A strategy combining network pharmacology prediction and in vivo experiments was adopted. The efficacy of a Periplaneta americana extract was validated by evaluating hair regrowth status and skin pathological staining in C57BL/6J mice. Transcriptomics, metabolomics, RT-qPCR, and 16s rRNA techniques were integrated to dissect the underlying mechanisms of its hair-growth-promoting effects. PA-011 significantly promoted hair regeneration in depilated mice via multiple mechanisms: enhanced skin superoxide dismutase activity and upregulated vascular endothelial growth factor expression; modulated FOXO/PI3K/AKT signaling pathway and restored skin microbiota homeostasis; and accelerated transition of hair follicles from the telogen to anagen phase. PA-011 exerts hair-promoting effects through synergistic modulation of FOXO/PI3K/AKT signaling and the skin microbiome. As a novel therapeutic candidate, it warrants further systematic investigation for clinical translation. Full article
Show Figures

Figure 1

23 pages, 2284 KiB  
Article
The Replication Function of Rabies Virus P Protein Is Regulated by a Novel Phosphorylation Site in the N-Terminal N Protein-Binding Region
by Ericka Tudhope, Camilla M. Donnelly, Ashish Sethi, Cassandra David, Nicholas Williamson, Murray Stewart, Jade K. Forwood, Paul R. Gooley and Gregory W. Moseley
Viruses 2025, 17(8), 1075; https://doi.org/10.3390/v17081075 - 1 Aug 2025
Viewed by 332
Abstract
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for [...] Read more.
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for the viral nucleoprotein (N protein). Although P protein is known to undergo phosphorylation by cellular kinases, the location and functions of the phosphorylation sites remains poorly defined. Here, we report the identification by mass-spectrometry (MS) of residues of P protein that are modified by phosphorylation in mammalian cells, including several novel sites. Analysis of P protein with phospho-mimetic and phospho-inhibitory mutations of three novel residues/clusters that were commonly identified by MS (Ser48, Ser183/187, Ser217/219/220) indicate that phosphorylation at each of these sites does not have a major influence on nuclear trafficking or antagonistic functions toward IFN signalling pathways. However, phosphorylation of Ser48 in the N-terminus of P protein impaired function in transcription/replication and in the formation of replication structures that contain complexes of P and N proteins, suggestive of altered interactions of these proteins. The crystal structure of P protein containing the S48E phospho-mimetic mutation indicates that Ser48 phosphorylation facilitates the binding of residues 41–52 of P protein into the RNA-binding groove of non-RNA-bound N protein (N0), primarily through the formation of a salt bridge with Arg434 of N protein. These data indicate that Ser48 modification regulates the cycling of P-N0 chaperone complexes that deliver N protein to RNA to enable transcription/replication, such that enhanced interaction due to S48E phospho-mimetic mutation reduces N protein delivery to the RNA, inhibiting subsequent transcription/replication processes. These data are, to our knowledge, the first to implicate phosphorylation of RABV P protein in conserved replication functions of the P gene. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

22 pages, 7580 KiB  
Article
Bacterial and Physicochemical Dynamics During the Vermicomposting of Bovine Manure: A Comparative Analysis of the Eisenia fetida Gut and Compost Matrix
by Tania Elizabeth Velásquez-Chávez, Jorge Sáenz-Mata, Jesús Josafath Quezada-Rivera, Rubén Palacio-Rodríguez, Gisela Muro-Pérez, Alan Joel Servín-Prieto, Mónica Hernández-López, Pablo Preciado-Rangel, María Teresa Salazar-Ramírez, Juan Carlos Ontiveros-Chacón and Cristina García-De la Peña
Microbiol. Res. 2025, 16(8), 177; https://doi.org/10.3390/microbiolres16080177 - 1 Aug 2025
Viewed by 145
Abstract
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition [...] Read more.
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition of the substrate and the gut of E. fetida at three time points (weeks 0, 6, and 12). The V3–V4 region of the 16S rRNA gene was sequenced, and microbial diversity was characterized using QIIME2. Significant differences in alpha diversity (observed features, Shannon index, and phylogenetic diversity) and beta diversity indicated active microbial succession. Proteobacteria, Bacteroidota, and Actinobacteriota were the dominant phyla, with abundances varying across habitats and over time. A significant enrichment of Proteobacteria, Bacteroidota, and the genera Chryseolinea, Flavobacterium, and Sphingomonas was observed in the manure treatments. In contrast, Actinobacteriota, Firmicutes, and the genera Methylobacter, Brevibacillus, Enhygromyxa, and Bacillus, among others, were distinctive of the gut samples and contributed to their dissimilarity from the manure treatments. Simultaneously, the physicochemical parameters indicated progressive substrate stabilization and nutrient enrichment. Notably, the organic matter and total organic carbon contents decreased (from 79.47% to 47.80% and from 46.10% to 27.73%, respectively), whereas the total nitrogen content increased (from 1.70% to 2.23%); these effects reduced the C/N ratio, which is a recognized indicator of maturity, from 27.13 to 12.40. The macronutrient contents also increased, with final values of 1.41% for phosphorus, 1.50% for potassium, 0.89% for magnesium, and 2.81% for calcium. These results demonstrate that vermicomposting modifies microbial communities and enhances substrate quality, supporting its use as a biofertilizer for sustainable agriculture, soil restoration, and agrochemical reduction. Full article
Show Figures

Figure 1

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 496
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

15 pages, 1843 KiB  
Article
Genotype-Specific HPV mRNA Triage Improves CIN2+ Detection Efficiency Compared to Cytology: A Population-Based Study of HPV DNA-Positive Women
by S. Sørbye, B. M. Falang, M. Antonsen and E. Mortensen
Pathogens 2025, 14(8), 749; https://doi.org/10.3390/pathogens14080749 - 30 Jul 2025
Viewed by 714
Abstract
Background: Effective triage of women testing positive for high-risk HPV DNA is essential to reduce unnecessary colposcopies while preserving cancer prevention. Cytology, the current standard, has limited specificity and reproducibility. The genotype-specific 7-type HPV E6/E7 mRNA test (PreTect HPV-Proofer’7), targeting HPV types 16, [...] Read more.
Background: Effective triage of women testing positive for high-risk HPV DNA is essential to reduce unnecessary colposcopies while preserving cancer prevention. Cytology, the current standard, has limited specificity and reproducibility. The genotype-specific 7-type HPV E6/E7 mRNA test (PreTect HPV-Proofer’7), targeting HPV types 16, 18, 31, 33, 45, 52, and 58, detects transcriptionally active infections and may enhance risk stratification. Methods: Between 2019 and 2023, 34,721 women aged 25–69 underwent primary HPV DNA screening with the Cobas 4800 assay at the University Hospital of North Norway, within the national screening program. Of these, 1896 HPV DNA-positive women were triaged with liquid-based cytology with atypical squamous cells of undetermined significance or worse (≥ASC-US) and the 7-type HPV mRNA test. Histological outcomes were followed through October 2024. Diagnostic performance for CIN2+ was evaluated overall and by genotype. Results: CIN2+ prevalence was 13.3%. The mRNA test reduced test positivity from 50.3% to 33.4% while maintaining comparable sensitivity (70.6% vs. 72.2%) and improving specificity (72.3% vs. 53.0%) and PPV (28.1% vs. 19.1%). Genotype-specific PPVs were highest for HPV16 mRNA (47.7%), followed by HPV33 (39.2%) and HPV31 (32.2%), all exceeding corresponding DNA-based estimates. Conclusion: Genotype-specific HPV mRNA triage offers superior risk discrimination compared to cytology, supporting more targeted, efficient, and accessible cervical cancer screening. Full article
Show Figures

Figure 1

16 pages, 2293 KiB  
Article
BIM-Ken: Identifying Disease-Related miRNA Biomarkers Based on Knowledge-Enhanced Bio-Network
by Yanhui Zhang, Kunjie Dong, Wenli Sun, Zhenbo Gao, Jianjun Zhang and Xiaohui Lin
Genes 2025, 16(8), 902; https://doi.org/10.3390/genes16080902 - 28 Jul 2025
Viewed by 214
Abstract
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and [...] Read more.
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and define reliable miRNA biomarkers. To tackle this issue, we propose a disease-related miRNA biomarker identification method based on the knowledge-enhanced bio-network (BIM-Ken) by combining the miRNA expression data and prior knowledge. BIM-Ken constructs the miRNA cooperation network by examining the miRNA interactions based on the miRNA expression data, which contains characteristics about the specific disease, and the information of the network nodes (miRNAs) is enriched by miRNA knowledge (i.e., miRNA-disease associations) from databases. Further, BIM-Ken optimizes the miRNA cooperation network using the well-designed GAE (graph auto-encoder). We improve the loss function by introducing the functional consistency and the difference prompt, so as to facilitate the optimized network to keep the intrinsically important characteristics of the miRNA data about the specific disease and the prior knowledge. The experimental results on the public datasets showed the superiority of BIM-Ken in classification. Subsequently, BIM-Ken was applied to analyze renal cell carcinoma data, and the defined key modules demonstrated involvement in the cancer-related pathways with good discrimination ability. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

27 pages, 7908 KiB  
Article
Deciphering Cowpea Resistance to Potyvirus: Assessment of eIF4E Gene Mutations and Their Impact on the eIF4E-VPg Protein Interaction
by Fernanda Alves de Andrade, Madson Allan de Luna-Aragão, José Diogo Cavalcanti Ferreira, Fernanda Freitas Souza, Ana Carolina da Rocha Oliveira, Antônio Félix da Costa, Francisco José Lima Aragão, Carlos André dos Santos-Silva, Ana Maria Benko-Iseppon and Valesca Pandolfi
Viruses 2025, 17(8), 1050; https://doi.org/10.3390/v17081050 - 28 Jul 2025
Viewed by 400
Abstract
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It [...] Read more.
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It is known that the VPg protein interacts with the host’s translation initiation factor (eIF4E), promoting viral replication. This study aimed to investigate the relationship between mutations in the cowpea eIF4E gene and resistance to CABMV. Twenty-seven cultivars were screened by PCR and bioassays for presence/absence of mutations associated with resistance or susceptibility to Potyviruses. Of the cultivars with mutations previously associated with susceptibility, 88.24% exhibited viral symptoms, while 62.5% associated with resistance remained asymptomatic. The in silico analyses revealed that non-synonymous mutations (Pro68Arg, Gly109Arg) alter the structure of the eIF4E protein, reducing its affinity to VPg. Molecular dynamics simulations also pointed to an enhanced structural stability of eIF4E in resistant cultivars and reinforced, for the first time, key mutations and the functional role of the eIF4E gene in resistance to CABMV in cowpea. Our results offer valuable insights for virus disease management and for genetic improvement programs for this important crop. Full article
(This article belongs to the Special Issue Viral Manipulation of Plant Stress Responses)
Show Figures

Graphical abstract

13 pages, 1394 KiB  
Article
Cucurbitacin E Suppresses Adipogenesis and Lipid Accumulation in 3T3-L1 Adipocytes Without Cytotoxicity
by Tien-Chou Soong, Kuan-Ting Lee, Yi-Chiang Hsu and Tai-Hsin Tsai
Biomedicines 2025, 13(8), 1826; https://doi.org/10.3390/biomedicines13081826 - 25 Jul 2025
Viewed by 307
Abstract
Background: Cucurbitacin E (CuE), a natural tetracyclic triterpenoid compound extracted from the melon stems of Cucurbitaceae plants, has been reported to exhibit anti-inflammatory and anti-cancer properties, along with the ability to enhance cellular immunity. However, its role and molecular mechanism in regulating [...] Read more.
Background: Cucurbitacin E (CuE), a natural tetracyclic triterpenoid compound extracted from the melon stems of Cucurbitaceae plants, has been reported to exhibit anti-inflammatory and anti-cancer properties, along with the ability to enhance cellular immunity. However, its role and molecular mechanism in regulating lipid metabolism and adipogenesis remain unclear. This study aims to investigate the potential anti-adipogenic and anti-obesity effects of CuE in 3T3-L1 adipocytes. Materials and Methods: 3T3-L1 preadipocytes were cultured and induced to differentiate using a standard adipogenic cocktail containing dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), and insulin (DMI). CuE was administered during the differentiation process at various concentrations. Lipid accumulation was assessed using Oil Red O staining, and cell viability was evaluated via the MTT assay. To determine whether CuE induced apoptosis or necrosis, flow cytometry was performed using annexin V/PI staining. Additional molecular analyses, such as Western blotting and RT-PCR, were used to examine the expression of key adipogenic markers. Results: Treatment with CuE significantly reduced lipid droplet formation in DMI-induced 3T3-L1 adipocytes in a dose-dependent manner, as shown by decreased Oil Red O staining. Importantly, CuE did not induce apoptosis or necrosis in 3T3-L1 cells at effective concentrations, indicating its safety toward normal adipocytes. Moreover, CuE treatment downregulated the expression of adipogenic markers such as PPARγ and C/EBPα at both mRNA and protein levels. Discussion: Our findings suggest that CuE exerts a non-cytotoxic inhibitory effect on adipocyte differentiation and lipid accumulation. This anti-adipogenic effect is likely mediated through the suppression of key transcription factors involved in adipogenesis. The absence of cytotoxicity supports the potential application of CuE as a safe bioactive compound for obesity management. Further investigation is warranted to elucidate the upstream signaling pathways and in vivo efficacy of CuE. Conclusions: Cucurbitacin E effectively inhibits adipogenesis in 3T3-L1 adipocytes without inducing cytotoxic effects, making it a promising candidate for the development of functional foods or therapeutic agents aimed at preventing or treating obesity. This study provides new insights into the molecular basis of CuE’s anti-obesity action and highlights its potential as a natural lipogenesis inhibitor. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

26 pages, 1785 KiB  
Review
Targeting RHAMM in Cancer: Crosstalk with Non-Coding RNAs and Emerging Therapeutic Strategies Including Peptides, Oligomers, Antibodies, and Vaccines
by Dong Oh Moon
Int. J. Mol. Sci. 2025, 26(15), 7198; https://doi.org/10.3390/ijms26157198 - 25 Jul 2025
Viewed by 212
Abstract
Cancer remains a major cause of mortality worldwide, driven by complex molecular mechanisms that promote metastasis and resistance to therapy. Receptor for hyaluronan-mediated motility (RHAMM) has emerged as a multifunctional regulator in cancer, contributing to cell motility, invasion, proliferation, and fibrosis. In addition [...] Read more.
Cancer remains a major cause of mortality worldwide, driven by complex molecular mechanisms that promote metastasis and resistance to therapy. Receptor for hyaluronan-mediated motility (RHAMM) has emerged as a multifunctional regulator in cancer, contributing to cell motility, invasion, proliferation, and fibrosis. In addition to being regulated by non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, RHAMM serves as a promising therapeutic target. Recent developments in RHAMM-targeted strategies include function-blocking peptides (e.g., NPI-110, NPI-106, and P15-1), hyaluronan (HA) oligomers, and anti-RHAMM antibodies, all shown to modulate tumor stroma and suppress tumor invasiveness. Importantly, RHAMM-targeted peptide vaccines, such as the RHAMM-R3 epitope, have demonstrated immunogenicity and anti-leukemia efficacy in both pre-clinical and early clinical studies, suggesting their potential to elicit specific CD8+ T-cell responses and enhance graft-versus-leukemia effects. This review summarizes the intricate roles of RHAMM in cancer progression, its modulation by ncRNAs, and the translational promise of novel RHAMM-targeting approaches, providing insights into future directions for precision cancer therapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop