Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = enhanced northern goshawk optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1272 KiB  
Article
Complex Environmental Geomagnetic Matching-Assisted Navigation Algorithm Based on Improved Extreme Learning Machine
by Jian Huang, Zhe Hu and Wenjun Yi
Sensors 2025, 25(14), 4310; https://doi.org/10.3390/s25144310 - 10 Jul 2025
Viewed by 418
Abstract
In complex environments where satellite signals may be interfered with, it is difficult to achieve precise positioning of high-speed aerial vehicles solely through the inertial navigation system. To overcome this challenge, this paper proposes an NGO-ELM geomagnetic matching-assisted navigation algorithm, in which the [...] Read more.
In complex environments where satellite signals may be interfered with, it is difficult to achieve precise positioning of high-speed aerial vehicles solely through the inertial navigation system. To overcome this challenge, this paper proposes an NGO-ELM geomagnetic matching-assisted navigation algorithm, in which the Northern Goshawk Optimization (NGO) algorithm is used to optimize the initial weights and biases of the Extreme Learning Machine (ELM). To enhance the matching performance of the NGO-ELM algorithm, three improvements are proposed to the NGO algorithm. The effectiveness of these improvements is validated using the CEC2005 benchmark function suite. Additionally, the IGRF-13 model is utilized to generate a geomagnetic matching dataset, followed by comparative testing of five geomagnetic matching models: INGO-ELM, NGO-ELM, ELM, INGO-XGBoost, and INGO-BP. The simulation results show that after the airborne equipment acquires the geomagnetic data, it only takes 0.27 µs to obtain the latitude, longitude, and altitude of the aerial vehicle through the INGO-ELM model. After unit conversion, the average absolute errors are approximately 6.38 m, 6.43 m, and 0.0137 m, respectively, which significantly outperform the results of four other models. Furthermore, when noise is introduced into the test set inputs, the positioning error of the INGO-ELM model remains within the same order of magnitude as those before the noise was added, indicating that the model exhibits excellent robustness. It has been verified that the geomagnetic matching-assisted navigation algorithm proposed in this paper can achieve real-time, accurate, and stable positioning, even in the presence of observational errors from the magnetic sensor. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 1601 KiB  
Article
Short-Term Wind Power Prediction Based on Improved SAO-Optimized LSTM
by Zuoquan Liu, Xinyu Liu and Haocheng Zhang
Processes 2025, 13(7), 2192; https://doi.org/10.3390/pr13072192 - 9 Jul 2025
Viewed by 262
Abstract
To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the [...] Read more.
To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the optimal parameters for VMD, decomposing the original wind power series into multiple frequency-based subsequences. Subsequently, ISAO is employed to fine-tune the hyperparameters of the LSTM, resulting in an ISAO-LSTM prediction model. The final forecast is obtained by reconstructing the subsequences through superposition. Experiments conducted on real data from a wind farm in Ningxia, China demonstrate that the proposed approach significantly outperforms traditional single and combined models, yielding predictions that closely align with actual measurements. This validates the method’s effectiveness for short-term wind power prediction and offers valuable data support for optimizing microgrid scheduling and capacity planning in wind-integrated energy systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 2271 KiB  
Article
A Sustainable Solution for High-Standard Farmland Construction—NGO–BP Model for Cost Indicator Prediction in Fertility Enhancement Projects
by Xuenan Li, Kun Han, Jiaze Li and Chunsheng Li
Sustainability 2025, 17(14), 6250; https://doi.org/10.3390/su17146250 - 8 Jul 2025
Viewed by 263
Abstract
High-standard farmland fertility enhancement projects can lead to the sustainable utilization of arable land resources. However, due to difficulties in project implementation and uncertainties in costs, resource allocation efficiency is constrained. To address these challenges, this study first analyzes the impact of geography [...] Read more.
High-standard farmland fertility enhancement projects can lead to the sustainable utilization of arable land resources. However, due to difficulties in project implementation and uncertainties in costs, resource allocation efficiency is constrained. To address these challenges, this study first analyzes the impact of geography and engineering characteristics on cost indicators and applies principal component analysis (PCA) to extract key influencing factors. A hybrid prediction model is then constructed by integrating the Northern Goshawk Optimization (NGO) algorithm with a Backpropagation Neural Network (BP). The NGO–BP model is compared with the RF, XGBoost, standard BP, and GA–BP models. Using data from China’s 2025 high-standard farmland fertility enhancement projects, empirical validation shows that the NGO–BP model achieves a maximum RMSE of only CNY 98.472 across soil conditioning, deep plowing, subsoiling, and fertilization projects—approximately 30.74% lower than those of other models. The maximum MAE is just CNY 88.487, a reduction of about 32.97%, and all R2 values exceed 0.914, representing an improvement of roughly 5.83%. These results demonstrate that the NGO–BP model offers superior predictive accuracy and generalization ability compared to other approaches. The findings provide a robust theoretical foundation and technical support for agricultural resource management, the construction of projects, and project investment planning. Full article
Show Figures

Figure 1

29 pages, 4281 KiB  
Article
A BiLSTM-Based Hybrid Ensemble Approach for Forecasting Suspended Sediment Concentrations: Application to the Upper Yellow River
by Jinsheng Fan, Renzhi Li, Mingmeng Zhao and Xishan Pan
Land 2025, 14(6), 1199; https://doi.org/10.3390/land14061199 - 3 Jun 2025
Cited by 1 | Viewed by 613
Abstract
Accurately predicting suspended sediment concentrations (SSC) is vital for effective reservoir planning, water resource optimization, and ecological restoration. This study proposes a hybrid ensemble model—VMD-MGGP-NGO-BiLSTM-NGO—which integrates Variational Mode Decomposition (VMD) for signal decomposition, Multi-Gene Genetic Programming (MGGP) for feature filtering, and a double-optimized [...] Read more.
Accurately predicting suspended sediment concentrations (SSC) is vital for effective reservoir planning, water resource optimization, and ecological restoration. This study proposes a hybrid ensemble model—VMD-MGGP-NGO-BiLSTM-NGO—which integrates Variational Mode Decomposition (VMD) for signal decomposition, Multi-Gene Genetic Programming (MGGP) for feature filtering, and a double-optimized NGO-BiLSTM-NGO (Northern Goshawk Optimization) structure for enhanced predictive learning. The model was trained and validated using daily discharge and SSC data from the Tangnaihai Hydrological Station on the upper Yellow River. The main findings are as follows: (1) The proposed model achieved an NSC improvement of 19.93% over the Extreme Gradient Boosting (XGBoost) and 15.26% over the Convolutional Neural Network—Long Short-Term Memory network (CNN-LSTM). (2) Compared to GWO- and PSO-based BiLSTM ensembles, the NGO-optimized VMD-MGGP-NGO- BiLSTM-NGO model achieved superior accuracy and robustness, with an average testing-phase NSC of 0.964, outperforming the Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) counterparts. (3) On testing data, the model attained an NSC of 0.9708, indicating strong generalization across time. Overall, the VMD-MGGP-NGO-BiLSTM-NGO model demonstrates outstanding predictive capacity and structural synergy, serving as a reliable reference for future research on SSC forecasting and environmental modeling. Full article
(This article belongs to the Special Issue Artificial Intelligence for Soil Erosion Prediction and Modeling)
Show Figures

Figure 1

26 pages, 8584 KiB  
Article
Congestion Relief and Economic Optimization of Integrated Power Stations with Charging and Swapping Functions
by Zhaoyi Wang, Xiaohong Zhang, Qingyuan Yan, Xiaokang Zhang and Yanxue Li
World Electr. Veh. J. 2025, 16(4), 230; https://doi.org/10.3390/wevj16040230 - 14 Apr 2025
Viewed by 429
Abstract
To effectively address the challenges of imbalanced equipment utilization, frequent congestion, and poor economic benefits faced by charging and swapping stations (ICSSs), this paper innovatively proposes a comprehensive scheduling strategy that combines user behavior regulation and battery management. In terms of user regulation, [...] Read more.
To effectively address the challenges of imbalanced equipment utilization, frequent congestion, and poor economic benefits faced by charging and swapping stations (ICSSs), this paper innovatively proposes a comprehensive scheduling strategy that combines user behavior regulation and battery management. In terms of user regulation, an intention-reshaping model for changing user cognition is proposed to equalize the use of charging and swapping (CAS) equipment, easing ICSS congestion. Moreover, an off-station scheduling model for electric vehicles (EVs) is developed to enhance overall ICSS revenue. Within the battery management terms, the suggested inventory battery threshold adjustment method and charging strategy by charging time segmentation are employed to ensure consistent inventory battery supply and cost-effective battery charging. Finally, a two-stage scheduling strategy of in-station and off-station scheduling is suggested for the ICSS, and an improved northern goshawk optimization algorithm (INGO) is used to solve it. The results showed that this strategy reduced the overall congestion of ICSSs by 34% and increased the average annual net revenue by 64%. The goal of alleviating congestion and improving the economic efficiency of ICSSs has been achieved. Full article
Show Figures

Figure 1

23 pages, 18453 KiB  
Article
Efficient Short-Term Wind Power Prediction Using a Novel Hybrid Machine Learning Model: LOFVT-OVMD-INGO-LSSVR
by Zhouning Wei and Duo Zhao
Energies 2025, 18(7), 1849; https://doi.org/10.3390/en18071849 - 6 Apr 2025
Cited by 1 | Viewed by 478
Abstract
Accurate wind power forecasting (WPF) is crucial to enhance availability and reap the benefits of integration into power grids. The time lag of wind power generation lags the time of wind speed changes, especially in ultra-short-term forecasting. The prediction model is sensitive to [...] Read more.
Accurate wind power forecasting (WPF) is crucial to enhance availability and reap the benefits of integration into power grids. The time lag of wind power generation lags the time of wind speed changes, especially in ultra-short-term forecasting. The prediction model is sensitive to outliers and sudden changes in input historical meteorological data, which may significantly affect the robustness of the WPF model. To address this issue, this paper proposes a novel hybrid machine learning model for highly accurate forecasting of wind power generation in ultra-short-term forecasting. The raw wind power data were filtered and classified with the local outlier factor (LOF) and the voting tree (VT) model to obtain a subset of inputs with the best relevance. The time-varying properties of the fluctuating sub-signals of the wind power sequences were analyzed with the optimized variational mode decomposition (OVMD) algorithm. The Northern Goshawk optimization (NGO) algorithm was improved by incorporating a logical chaotic initialization strategy and chaotic adaptive inertia weights. The improved NGO algorithm was used to optimize the least squares support vector regression (LSSVR) prediction model to improve the computational speed and prediction results. The proposed model was compared with traditional machine learning models, deep learning models, and other hybrid models. The experimental results show that the proposed model has an average R2 of 0.9998. The average MSE, average MAE, and average MAPE are as low as 0.0244, 0.1073, and 0.3587, which displayed the best results in ultra-short-term WPF. Full article
Show Figures

Figure 1

16 pages, 3809 KiB  
Article
A Dam Displacement Prediction Method Based on a Model Combining Random Forest, a Convolutional Neural Network, and a Residual Attention Informer
by Chunhui Fang, Ying Jiao, Xue Wang, Taiqi Lu and Hao Gu
Water 2024, 16(24), 3687; https://doi.org/10.3390/w16243687 - 20 Dec 2024
Cited by 3 | Viewed by 1210
Abstract
To enhance the accuracy of dam displacement prediction, this paper proposes a hybrid model combining Random Forest (RF), a Convolutional Neural Network (CNN), and a Residual Attention Informer (RA-Informer). Firstly, RF is utilized to assess the importance of input features, selecting key factors [...] Read more.
To enhance the accuracy of dam displacement prediction, this paper proposes a hybrid model combining Random Forest (RF), a Convolutional Neural Network (CNN), and a Residual Attention Informer (RA-Informer). Firstly, RF is utilized to assess the importance of input features, selecting key factors that significantly influence dam displacement. Then, CNN is employed to perform deep feature extraction on the input data, mining effective information. Subsequently, the Informer model integrated with a residual attention mechanism establishes the mapping relationship between the extracted features and dam displacement, enhancing the focus on critical features. Finally, the Northern Goshawk Optimization (NGO) algorithm is adopted to optimize the model’s hyperparameters. Experimental results on actual engineering data demonstrate that the proposed model exhibits superior prediction accuracy and stability compared to other typical models, offering higher precision and reliability. Full article
Show Figures

Figure 1

27 pages, 3700 KiB  
Article
Enhancing Urban Electric Vehicle (EV) Fleet Management Efficiency in Smart Cities: A Predictive Hybrid Deep Learning Framework
by Mohammad Aldossary
Smart Cities 2024, 7(6), 3678-3704; https://doi.org/10.3390/smartcities7060142 - 2 Dec 2024
Cited by 7 | Viewed by 3130
Abstract
Rapid technology advances have made managing charging loads and optimizing routes for electric vehicle (EV) fleets, especially in cities, increasingly important. IoT sensors in EV charging stations and cars enhance prediction and optimization algorithms with real-time data on charging behaviors, traffic, vehicle locations, [...] Read more.
Rapid technology advances have made managing charging loads and optimizing routes for electric vehicle (EV) fleets, especially in cities, increasingly important. IoT sensors in EV charging stations and cars enhance prediction and optimization algorithms with real-time data on charging behaviors, traffic, vehicle locations, and environmental factors. These IoT data enable the GNN-ViGNet hybrid deep learning model to anticipate electric vehicle charging needs. Data from 400,000 IoT sensors at charging stations and vehicles in Texas were analyzed to identify EV charging patterns. These IoT sensors capture crucial parameters, including charging habits, traffic conditions, and other environmental elements. Frequency-Aware Dynamic Range Scaling and advanced preparation methods, such as Categorical Encoding, were employed to improve data quality. The GNN-ViGNet model achieved 98.9% accuracy. The Forecast Accuracy Rate (FAR) and Charging Load Variation Index (CLVI) were introduced alongside Root-Mean-Square Error (RMSE) and Mean Square Error (MSE) to assess the model’s predictive power further. This study presents a prediction model and a hybrid Coati–Northern Goshawk Optimization (Coati–NGO) route optimization method. Routes can be real-time adjusted using IoT data, including traffic, vehicle locations, and battery life. The suggested Coati–NGO approach combines the exploratory capabilities of Coati Optimization (COA) with the benefits of Northern Goshawk Optimization (NGO). It was more efficient than Particle Swarm Optimization (919 km) and the Firefly Algorithm (914 km), reducing the journey distance to 511 km. The hybrid strategy converged more quickly and reached optimal results in 100 rounds. This comprehensive EV fleet management solution enhances charging infrastructure efficiency, reduces operational costs, and improves fleet performance using real-time IoT data, offering a scalable and practical solution for urban EV transportation. Full article
Show Figures

Figure 1

23 pages, 14688 KiB  
Article
Research on Signal Noise Reduction and Leakage Localization in Urban Water Supply Pipelines Based on Northern Goshawk Optimization
by Xin Chen, Zhu Jiang, Jiale Li, Zhendong Zhao and Yunyun Cao
Sensors 2024, 24(18), 6091; https://doi.org/10.3390/s24186091 - 20 Sep 2024
Cited by 2 | Viewed by 938
Abstract
In order to enhance the accuracy and adaptability of urban water supply pipeline leak localization, based on the Northern Goshawk Optimization, a novel joint denoising method is proposed in this paper to reduce noise in negative pressure wave signals caused by leaks. Firstly, [...] Read more.
In order to enhance the accuracy and adaptability of urban water supply pipeline leak localization, based on the Northern Goshawk Optimization, a novel joint denoising method is proposed in this paper to reduce noise in negative pressure wave signals caused by leaks. Firstly, the Northern Goshawk Optimization optimizes the decomposition levels and penalty factors of Variational Mode Decomposition, and obtains their optimal combination. Subsequently, the optimized parameters are used to decompose the pressure signals into modal components, and the effective components and noise components are distinguished according to the correlation coefficients. Then, an optimized wavelet thresholding method is applied to the selected effective components for secondary denoising. Finally, the signal components that have been denoised twice are reconstructed with the effective signal components, and the denoised negative pressure wave signals are obtained. Simulation experiments demonstrate that compared to wavelet transforms and Empirical Mode Decomposition, our method achieves the highest signal-to-noise ratio improvement of 12.23 dB and normalized cross correlation of 0.991. It effectively preserves useful leak information in the signal while suppressing noise, laying a solid foundation for improving leak localization accuracy. After several leak simulation tests on the leakage simulation test platform, the test results verify the effectiveness of the proposed method. The minimum relative error of the leakage localization is 0.29%, and an average relative error is 1.64%, achieving accurate leakage localization. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

28 pages, 12381 KiB  
Article
Application of Variable Universe Fuzzy PID Controller Based on ISSA in Bridge Crane Control
by Youyuan Zhang, Lisang Liu and Dongwei He
Electronics 2024, 13(17), 3534; https://doi.org/10.3390/electronics13173534 - 5 Sep 2024
Cited by 4 | Viewed by 1394
Abstract
Bridge crane control systems are complex, multivariable, and nonlinear. However, traditional fuzzy PID control methods rely heavily on expert experience for initial parameter tuning and lack adaptive adjustment for the fuzzy universe. To address these issues, we propose a variable universe fuzzy PID [...] Read more.
Bridge crane control systems are complex, multivariable, and nonlinear. However, traditional fuzzy PID control methods rely heavily on expert experience for initial parameter tuning and lack adaptive adjustment for the fuzzy universe. To address these issues, we propose a variable universe fuzzy PID controller based on the improved sparrow search algorithm (ISSA-VUFPID). First, tent chaotic mapping is introduced to initialize the sparrow population, enhancing the algorithm’s global search capability. Second, the positioning strategy of the northern goshawk exploration phase is integrated to improve the search thoroughness of sparrow discoverers within the solution space and to accelerate the optimization process. Last, an adaptive t-distribution perturbation strategy is employed to adjust the positions of sparrow followers, enhancing the algorithm’s optimization ability in the early search phase and focusing on local exploitation in the later phase to improve solution accuracy. The improved algorithm is applied to tune the initial parameters of the PID controller. Additionally, system error and its rate of change are introduced as dynamic parameters into the scaling factor, which is used to achieve adaptive adjustment of the fuzzy universe, thereby enhancing the safety and reliability of the control system. Simulation results demonstrate that the proposed ISSA-VUFPID control method outperforms ISSA-FPID and ISSA-PID control methods. It reduces the trolley’s positioning time and minimizes the load’s maximum swing angle, demonstrating strong adaptability and robustness. This approach greatly enhances the robustness and safety of bridge crane operations. Full article
Show Figures

Figure 1

19 pages, 3079 KiB  
Article
A Short-Term Wind Speed Forecasting Framework Coupling a Maximum Information Coefficient, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Shared Weight Gated Memory Network with Improved Northern Goshawk Optimization for Numerical Weather Prediction Correction
by Yanghe Liu, Hairong Zhang, Chuanfeng Wu, Mengxin Shao, Liting Zhou and Wenlong Fu
Sustainability 2024, 16(16), 6782; https://doi.org/10.3390/su16166782 - 7 Aug 2024
Cited by 3 | Viewed by 1434
Abstract
In line with global carbon-neutral policies, wind power generation has received widespread public attention, which can enhance the security of supply and social sustainability. Since wind with non-stationarity and randomness makes power systems unstable, precise wind speed forecasting is an integral part of [...] Read more.
In line with global carbon-neutral policies, wind power generation has received widespread public attention, which can enhance the security of supply and social sustainability. Since wind with non-stationarity and randomness makes power systems unstable, precise wind speed forecasting is an integral part of wind farm scheduling and management. Therefore, a compound short-term wind speed forecasting framework based on numerical weather prediction (NWP) is proposed coupling a maximum information coefficient (MIC), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), shared weight gated memory network (SWGMN) with improved northern goshawk optimization (INGO). Firstly, numerical weather prediction is adopted to acquire the predicted variables with different domains, including the predicted wind speed and other predicted meteorological variables, after which the error is calculated using the predicted and actual wind speeds. Then, the correlation between the predicted variables and the error is obtained using the MIC to select the correlation factors. Subsequently, CEEMDAN is employed to decompose the correlation factors, corresponding the actual factors and the error into a series of subsequences, which are regarded as the input series. After that, the input series is fed into the proposed SWGMN to forecast each subsequent error, respectively, in which the shared gate is proposed to replace the input gate, the forgetting gate and the output gate. Meanwhile, the proposed INGO based on northern goshawk optimization (NGO), the levy flight disturbance strategy and the nonlinear contraction strategy is applied to calibrate the parameters of the SWGMN. Finally, the forecasting values are acquired by summing the forecasted error and the predicted wind speed from the NWP. The experimental results depict that the errors are small among all the models. Compared with the traditional method, the proposed framework achieves higher prediction accuracy and efficiency. The application of this framework not only assists in optimizing the operation and management of wind farms, but also reduces the dependence on fossil fuels, thereby promoting environmental protection and the sustainable use of resources. Full article
Show Figures

Figure 1

22 pages, 6538 KiB  
Article
A Method for Predicting Tool Remaining Useful Life: Utilizing BiLSTM Optimized by an Enhanced NGO Algorithm
by Jianwei Wu, Jiaqi Wang and Huanguo Chen
Mathematics 2024, 12(15), 2404; https://doi.org/10.3390/math12152404 - 2 Aug 2024
Cited by 3 | Viewed by 1427
Abstract
Predicting remaining useful life (RUL) is crucial for tool condition monitoring (TCM) systems. Inaccurate predictions can lead to premature tool replacements or excessive usage, resulting in resource wastage and potential equipment failures. This study introduces a novel tool RUL prediction method that integrates [...] Read more.
Predicting remaining useful life (RUL) is crucial for tool condition monitoring (TCM) systems. Inaccurate predictions can lead to premature tool replacements or excessive usage, resulting in resource wastage and potential equipment failures. This study introduces a novel tool RUL prediction method that integrates the enhanced northern goshawk optimization (MSANGO) algorithm with a bidirectional long short-term memory (BiLSTM) network. Initially, key statistical features are extracted from collected signal data using multivariate variational mode decomposition. This is followed by effective feature reduction, facilitated by the uniform information coefficient and Mann–Kendall trend tests. The RUL predictions are subsequently refined through a BiLSTM network, with the MSANGO algorithm optimizing the network parameters. Comparative evaluations with BiLSTM, BiGRU, and NGO-BiLSTM models, as well as tests on real-world datasets, demonstrate this method’s superior accuracy and generalizability in RUL prediction, enhancing the efficacy of tool management systems. Full article
Show Figures

Figure 1

27 pages, 9023 KiB  
Article
Application of Improved Sparrow Search Algorithm to Path Planning of Mobile Robots
by Yong Xu, Bicong Sang and Yi Zhang
Biomimetics 2024, 9(6), 351; https://doi.org/10.3390/biomimetics9060351 - 11 Jun 2024
Cited by 9 | Viewed by 1776
Abstract
Path planning is an important research direction in the field of robotics; however, with the advancement of modern science and technology, the study of efficient, stable, and safe path-planning technology has become a realistic need in the field of robotics research. This paper [...] Read more.
Path planning is an important research direction in the field of robotics; however, with the advancement of modern science and technology, the study of efficient, stable, and safe path-planning technology has become a realistic need in the field of robotics research. This paper introduces an improved sparrow search algorithm (ISSA) with a fusion strategy to further improve the ability to solve challenging tasks. First, the sparrow population is initialized using circle chaotic mapping to enhance diversity. Second, the location update formula of the northern goshawk is used in the exploration phase to replace the sparrow search algorithm’s location update formula in the security situation. This improves the discoverer model’s search breadth in the solution space and optimizes the problem-solving efficiency. Third, the algorithm adopts the Lévy flight strategy to improve the global optimization ability, so that the sparrow jumps out of the local optimum in the later stage of iteration. Finally, the adaptive T-distribution mutation strategy enhances the local exploration ability in late iterations, thus improving the sparrow search algorithm’s convergence speed. This was applied to the CEC2021 function set and compared with other standard intelligent optimization algorithms to test its performance. In addition, the ISSA was implemented in the path-planning problem of mobile robots. The comparative study shows that the proposed algorithm is superior to the SSA in terms of path length, running time, path optimality, and stability. The results show that the proposed method is more effective, robust, and feasible in mobile robot path planning. Full article
(This article belongs to the Section Development of Biomimetic Methodology)
Show Figures

Figure 1

19 pages, 6342 KiB  
Article
Modeling and Optimization of an Enhanced Soft Sensor for the Fermentation Process of Pichia pastoris
by Bo Wang, Ameng Yu, Haibo Wang and Jun Liu
Sensors 2024, 24(10), 3017; https://doi.org/10.3390/s24103017 - 9 May 2024
Viewed by 1632
Abstract
This paper proposes a novel soft sensor modeling approach, MIC-TCA-INGO-LSSVM, to address the decline in performance of soft sensor models during the fermentation process of Pichia pastoris, caused by changes in working conditions. Initially, the transfer component analysis (TCA) method is utilized [...] Read more.
This paper proposes a novel soft sensor modeling approach, MIC-TCA-INGO-LSSVM, to address the decline in performance of soft sensor models during the fermentation process of Pichia pastoris, caused by changes in working conditions. Initially, the transfer component analysis (TCA) method is utilized to minimize the differences in data distribution across various working conditions. Subsequently, a least squares support vector machine (LSSVM) model is constructed using the dataset adapted by TCA, and strategies for improving the northern goshawk optimization (INGO) algorithm are proposed to optimize the parameters of the LSSVM model. Finally, to further enhance the model’s generalization ability and prediction accuracy, considering the transfer of knowledge from multiple-source working conditions, a sub-model weighted ensemble scheme is proposed based on the maximum information coefficient (MIC) algorithm. The proposed soft sensor model is employed to predict cell and product concentrations during the fermentation process of Pichia pastoris. Simulation results indicate that the RMSE of the INGO-LSSVM model in predicting cell and product concentrations is reduced by 47.3% and 42.1%, respectively, compared to the NGO-LSSVM model. Additionally, TCA significantly enhances the model’s adaptability when working conditions change. Moreover, the soft sensor model based on TCA and the MIC-weighted ensemble method achieves a reduction of 41.6% and 31.3% in the RMSE for predicting cell and product concentrations, respectively, compared to the single-source condition transfer model TCA-INGO-LSSVM. These results demonstrate the high reliability and predictive performance of the proposed soft sensor method under varying working conditions. Full article
(This article belongs to the Special Issue Sensors-Based Biomarker Detection and Bioinformatics Analysis)
Show Figures

Figure 1

16 pages, 11415 KiB  
Article
Multi-Branch Line Fault Arc Detection Method Based on the Improved Northern Goshawk Optimization Adaptive Base Class LogitBoost Algorithm
by Xue Wang and Yu Zhao
Energies 2024, 17(4), 954; https://doi.org/10.3390/en17040954 - 19 Feb 2024
Cited by 4 | Viewed by 1555
Abstract
In low-voltage AC distribution systems, when a series arc fault occurs in a branch with multiple loads operating in parallel, it will be significantly more difficult to identify. Existing arc fault detection methods make it difficult to effectively detect faults occurring in the [...] Read more.
In low-voltage AC distribution systems, when a series arc fault occurs in a branch with multiple loads operating in parallel, it will be significantly more difficult to identify. Existing arc fault detection methods make it difficult to effectively detect faults occurring in the lower-level branch. This study introduces a novel series arc fault detection approach based on the improved northern goshawk optimization adaptive base class LogitBoost (INGO-ABCLogitBoost) algorithm. Considering the zero-rest, intermittent, and random fluctuation and high-frequency features of the arc current, the zero-rest coefficient, discrete coefficient, harmonic amplitude, and wavelet entropy are proposed to establish the high-dimensional feature matrix of the arc current. The ReliefF feature selection algorithm is used to optimize feature quality and decrease feature dimensionality. Subsequently, the ABCLogitBoost fault detection model is proposed, with the INGO algorithm applied to optimize the model parameters, thus enhancing the model’s diagnostic capabilities. The efficacy of the proposed diagnostic model is validated through the construction of a multi-load arc simulation system. The simulation results show that the overall fault diagnosis accuracy of the proposed method reaches 99.01% and can effectively identify the fault load types, which helps to locate the fault location. Full article
Show Figures

Figure 1

Back to TopTop