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Abstract: This paper proposes a novel soft sensor modeling approach, MIC-TCA-INGO-LSSVM,
to address the decline in performance of soft sensor models during the fermentation process of
Pichia pastoris, caused by changes in working conditions. Initially, the transfer component analysis
(TCA) method is utilized to minimize the differences in data distribution across various working
conditions. Subsequently, a least squares support vector machine (LSSVM) model is constructed using
the dataset adapted by TCA, and strategies for improving the northern goshawk optimization (INGO)
algorithm are proposed to optimize the parameters of the LSSVM model. Finally, to further enhance
the model’s generalization ability and prediction accuracy, considering the transfer of knowledge
from multiple-source working conditions, a sub-model weighted ensemble scheme is proposed
based on the maximum information coefficient (MIC) algorithm. The proposed soft sensor model
is employed to predict cell and product concentrations during the fermentation process of Pichia
pastoris. Simulation results indicate that the RMSE of the INGO-LSSVM model in predicting cell and
product concentrations is reduced by 47.3% and 42.1%, respectively, compared to the NGO-LSSVM
model. Additionally, TCA significantly enhances the model’s adaptability when working conditions
change. Moreover, the soft sensor model based on TCA and the MIC-weighted ensemble method
achieves a reduction of 41.6% and 31.3% in the RMSE for predicting cell and product concentrations,
respectively, compared to the single-source condition transfer model TCA-INGO-LSSVM. These
results demonstrate the high reliability and predictive performance of the proposed soft sensor
method under varying working conditions.

Keywords: soft sensor; Pichia pastoris; transfer component analysis; maximal information coefficient;
least squares support vector machine; improved northern goshawk optimization

1. Introduction

As one of the most widely used protein expression systems in current applications,
the Pichia pastoris expression system has been extensively employed for expressing various
exogenous proteins such as serum proteins, insulin, and epidermal growth factor, among
others [1]. Among these, cell concentration and product concentration are crucial process
variables in the fermentation process, and the real-time and accurate detection of their
values are essential for improving production efficiency and optimizing control [2]. For
the measurement of key biological parameters during the fermentation process, offline
sampling and laboratory analysis are mostly adopted [3]. However, these approaches not
only contaminate the fermentation environment but also fail to provide real-time results.
Therefore, the real-time and accurate acquisition of key biological parameters during the
fermentation process of Pichia pastoris has become an important research topic.

Soft sensor technology emerges as a solution to the aforementioned issues [4]. It has been
widely utilized globally and extensively researched by scholars, yielding fruitful results. For
instance, Lu et al. [5] proposed a weighted ensemble learning soft sensor modeling method
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based on an improved seagull optimization algorithm and Gaussian process regression to
address the issue of traditional single methods failing to describe the nonlinear characteristics
of the entire fermentation process. Applying this soft sensor method to predict key biochemical
parameters in the fermentation process of marine lysozyme, the results indicate relatively
small errors. Song et al. [6] proposed a virtual sample generation method based on data
augmentation and weighted interpolation to expand the soft sensor dataset with high-quality
samples. To verify the effect of the proposed method, simulations of the numerical function
and the actual chemical processing of pure terephthalic acid were performed, and correlation
analysis was introduced as a measure of whether the generated samples were consistent with
the real ones. The results showed that the proposed model can boost the predictive power of
the soft sensor by generating higher quality and more reasonable samples compared to other
advanced methods.

However, in the fermentation process of Pichia pastoris, variations in working condi-
tions arise from factors such as environmental changes and feeding practices [7]. These
variations result in different distributions of fermentation process data under various work-
ing conditions, failing to meet the assumption of identical distribution between testing
and modeling data required by the models discussed above. This discrepancy challenges
the adaptability of traditional soft sensor models to changing working conditions. Con-
sequently, applying a soft sensor model established under the source working condition
to new working conditions results in diminished predictive performance. To address this
issue, it is essential to enhance the soft sensor model to ensure that it maintains excellent
predictive performance under varying working conditions.

In order to address the problem of the soft sensor model’s degraded predictive ability
under the target working condition, researchers have introduced transfer learning. Transfer
learning aims to improve the performance of target learners on target domains by trans-
ferring the knowledge contained in different but related source domains [8]. For instance,
Chai et al. [9] introduced deep transfer learning to soft sensor modeling and proposed a
deep probabilistic transfer regression framework to enhance the target soft sensor perfor-
mance. The effectiveness of the proposed method was validated through an industrial
multiphase flow process. Li et al. [10] proposed an adversarial transfer learning methodol-
ogy to enhance soft sensor learning to acquire more training data. The effectiveness of the
proposed soft sensor and the rationale analyzer was validated in a simulated wastewater
plant, benchmark simulation model No.2, and a full-scale oxidation ditch wastewater plant.
Wang et al. [11] proposed a soft sensor modeling method combining a long short-term
memory network and balanced distribution adaptation method, which solves the problem
of soft sensor modeling under unknown modes of multiple working conditions in the Pichia
pastoris biochemical reaction process, achieving the prediction of key parameters under
different working conditions. Zhang et al. [12] proposed an online transfer kernel recursive
algorithm for soft sensor modeling under changing working conditions. The proposed
method incorporates the concept of online transfer learning and takes into account the
nonlinearity of the process. This allows for the establishment of a kernel online recursive
method in the latent variable space, integrating parameter transfer and sample transfer.
Experimental results conducted on multiple industrial datasets validated the effectiveness
of the proposed approach. The above studies have introduced the idea of transfer learning
into soft sensor methods and successfully improved the predictive performance of soft
sensor models under various working conditions. As a classical transfer learning algorithm,
TCA tries to learn some transfer components across domains in a reproducing kernel
Hilbert space using maximum mean discrepancy [13]. In the subspace spanned by these
transfer components, data properties are preserved, and data distributions in different
domains are close to each other. Recently, TCA has been widely used in fault detection [14],
image categorization [15], sentiment detection [16], healthcare [17], and so on. However, in
practice, labeled data may be collected from multiple sources, while naive application of
the single-source TL algorithms may lead to suboptimal solutions [18].
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Based on the above analysis, this paper proposes a soft sensor modeling method based
on TCA and the MIC-weighted ensemble method to predict the cell concentration and
product concentration in the fermentation process of Pichia pastoris under the target working
condition. First, considering the inconsistency in the distribution of data between source and
target working conditions of the fermentation process of Pichia pastoris, TCA is employed to
reduce the difference in the distribution of data between the source and target fermentation
processes, and the LSSVM optimized with the INGO algorithm is utilized as the regression
modeling algorithm. Secondly, labeled data originate from multiple working conditions;
thus, knowledge transfer solely from a single-source condition cannot achieve the desired
predictive performance. As a result, this paper establishes sub-models on multiple-source
condition datasets and proposes a novel weighting allocation method based on the MIC
to assign appropriate weights to each sub-model, facilitating a weighted ensemble. The
proposed method is applied to predict the cell concentration and product concentration
under the target working condition, and the simulation results demonstrate that the INGO
algorithm, compared to the NGO algorithm, is capable of seeking superior parameters for
the LSSVM, thereby effectively enhancing the prediction accuracy. Furthermore, the transfer
soft sensor modeling method based on the MIC-weighted ensemble proves suitable for the
fermentation process of Pichia pastoris under various working conditions. Compared to
existing soft sensor models, the proposed method exhibits superior generalization ability
and predictive performance, enabling precise real-time monitoring of cell concentration and
product concentration under different working conditions.

The following is the chapter organization of the paper:

1. Introduction: This section introduces the research background and significance of the
paper. It analyzes the disadvantages of existing soft sensor models when working con-
ditions change and proposes a new soft sensor model to address these shortcomings.

2. Materials and Methods: this section describes the relevant algorithms of the soft
sensor model and explains the reasons for using these algorithms in the context of the
fermentation process of Pichia pastoris.

3. Results: this section applies the proposed soft sensor model to predict cell concen-
tration and product concentration in the fermentation process of Pichia pastoris and
compares and analyzes the simulation results.

4. Discussion: this section discusses the results, explores their impact on the industrial
application of the fermentation process of Pichia pastoris, identifies limitations of the
current model, and outlines potential future research directions.

5. Conclusions: this section provides a summary of the research content and conclusions
of the paper.

2. Materials and Methods
2.1. Transfer Component Analysis

Traditional machine learning is characterized by training data and testing data with
the same input feature space and the same data distribution; however, when there is a
difference in data distribution between the training data and testing data, the results of a
predictive learner can be degraded [19]. In the case of the fermentation process data under
different working conditions of Pichia pastoris, distribution variances arise due to variations
in fermentation environments. Consequently, the soft sensor model established under the
source working condition demonstrates unsatisfactory predictive capability when applied
to the target working condition. Transfer component analysis, by integrating cross-domain
knowledge transfer strategies, effectively addresses the generalization shortcomings of
traditional methods in new domains. This technique enhances the model performance in
the target domain by precisely analyzing and aligning components between the source
and target domains, thereby improving the predictive accuracy and adaptability of the
model [20]. Therefore, this paper will employ transfer component analysis to enhance the
predictive performance of the soft sensor model under the target working condition.
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In 2011, Pan et al. proposed transfer component analysis (TCA), which is a classic
method based on adaptive data distribution [21]. Primarily, it achieves transfer learning
by minimizing the disparity in marginal probability distributions between the source and
target domains. The main principles of TCA are as follows.

Given a source domain Qs = {xsi , ysi}
n
i=1 and a target domain Qt =

{
xtj , ytj

}m

j=1
,

suppose the feature space Xs = Xt and label space Qt =
{

xtj , ytj

}m

j=1
are the same for both

domains, but the marginal probability distributions and conditional probability distribu-
tions are different, i.e., P(xs) ̸= P(xt); P(ys | xs) ̸= P(yt | xt). The core idea of TCA is to
assume the existence of a feature mapping matrix ϕ, where the mapped data can achieve
P(ϕ(xs)) ≈ P(ϕ(xt)). When the marginal probability distributions of data in both domains
are similar, it is assumed that the conditional probability distributions are also similar, i.e.,
P(ys | ϕ(xs)) ≈ P(yt | ϕ(xt)). Therefore, the goal of TCA is to find a suitable ϕ.

Essentially, minimizing the difference in marginal probability distributions between
the source and target domains involves finding a transformation that diminishes the
distance between the two domains. TCA leverages the maximum mean discrepancy
(MMD) to approximate the dissimilarity between the source and target domains. Assuming
there are n samples in the source domain and m samples in the target domain, the MMD
distance between these two domains can be expressed as:

Dis(Qs, Qt) =
1
n

n

∑
i=1

ϕ(xsi )−
1
m

m

∑
j=1

ϕ
(

xtj

)2

H
(1)

To solve for ϕ, TCA introduces the kernel matrix K and the MMD matrix L, transform-
ing the distance into the following form:

tr(KL)− δtr(K) (2)

where tr(·) denotes the trace of the matrix, and the elements of matrix L are calculated
as follows:

(L)i,j =


1

n2 , xi, xj ∈ Qs
1

m2 , xi, xj ∈ Qt
−1
nm , otherwise

(3)

At this point, the authors of TCA propose constructing the result using a matrix W
with a lower dimensionality than the kernel matrix K:

~
K =

(
KK− 1

2
~

W
)(

~
W

T
K− 1

2 K
)
= KWWTK (4)

Finally, the optimization objective of TCA is:

min
W

tr
(

WTKLKW
)
+ λtr

(
WTW

)
s.t.WTKHKW = Im

(5)

where H is the centering matrix, and H = In+m − 1
n+m 11T.

When given two feature matrices as inputs, the first step is to compute matrices L and
H. Subsequently, utilizing the kernel function for mapping, matrix K is calculated, and
finally, W is derived to obtain the solution to the problem.

2.2. Improved Northern Goshawk–Least Squares Support Vector Machine Algorithm
2.2.1. Least Squares Support Vector Machine

To achieve real-time and accurate monitoring of key biological parameters, such as cell
concentration and product concentration, in the fermentation process of Pichia pastoris, it is
imperative to establish a regression model between auxiliary variables and main variables.



Sensors 2024, 24, 3017 5 of 18

Given the nonlinear characteristics in the fermentation process of Pichia pastoris, the least
squares support vector machine (LSSVM) is deemed suitable for the nonlinear, small sample
datasets. Consequently, this paper adopts the LSSVM as the regression modeling algorithm.

For the given dataset T = {(x1, y1), (x2, y2), · · · , (xn, yn)}, the regression function can
be defined as f (x) = wT + b, where x represents the sample inputs and y represents the
sample outputs. Here, w and b are, respectively, the normal vector and the intercept of the
hyperplane in a high-dimensional space. According to the principle of risk minimization,
the regression problem can be transformed into a constrained optimization problem: min

ω,e
J(ω, e) = 1

2 ωTω + 1
2 γ

N
∑

i=1
e2

i

s.t. yi = ωT φ(xi) + b + ei, i = 1, 2, · · · , N
(6)

where ei represents the slack variable and γ denotes the regularization factor. By introduc-
ing Lagrange multipliers α:

L(ω, b, e, α) = J(ω, e)−
N

∑
i=1

αiω
T φ(xi) + b + ei − yi (7)

Through partial differentiation with respect to w, b, e, α the optimal values can be
obtained, and the regression function established as follows:

y(x) =
N

∑
i=1

αiK(x, xi) + b (8)

where K(xi, x) is the kernel function, which comes in various types such as radial ba-
sis function (RBF) and polynomial function. In this paper, the RBF is employed as the
kernel function:

K(xi, x) = exp
(
− 1

2σ2 x − xi
2
)

(9)

In the equation, there is only one parameter σ to be determined, representing the
width of the radial basis function. According to the LSSVM regression theory, the LSSVM
involves an adjustable parameter γ [22]. Therefore, when applying the LSSVM method
with the RBF kernel function, there are two adjustable parameters. However, the traditional
parameter selection methods are typically based on experience and experimentation, which
may not guarantee the accuracy and computational efficiency of the regression model.
Therefore, in order to enhance the prediction accuracy of the LSSVM, this paper proposes
an improvement to the NGO algorithm for optimizing the parameters of LSSVM.

2.2.2. Improved Northern Goshawk Optimization Algorithm

The northern goshawk optimization (NGO) algorithm was proposed by Mohammad
Dehghani et al. in 2021 [23]. This algorithm simulates the hunting process of the northern
goshawk and consists of two phases: prey identification (global search) and chase and
escape operation (local search).

(1) Phase 1: Prey Identification (Exploration)

The northern goshawk, in the first phase of hunting, randomly selects a prey and
then quickly attacks it. This phase increases the exploration power of the NGO due to the
random selection of prey in the search space. This phase leads to a global search of the
search space with the aim of identifying the optimal area. The mathematical model of the
first phase is described as follows:

Pi = Xk, i = 1, 2, . . . , N, k = 1, 2, . . . , i − 1, i + 1, . . . , N (10)
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xnew,P1
i,j =

{
xi,j + r

(
pi,j − Ixi,j

)
, FPi < Fi,

xi,j + r
(
xi,j − pi,j

)
, FPi ≥ Fi,

(11)

Xi =

{
Xnew,P1

i , Fnew,P1
i < Fi

Xi, Fnew,P1
i ≥ Fi

(12)

where Pi is the position of prey for the i-th northern goshawk, FPi is its objective function
value, k is a random natural number in interval [1, N], Xnew,P1

i is the new status for the i-th
proposed solution, xnew,P1

i,j is its j-th dimension, Fnew,P1
i is its objective function value based

on the first phase of NGO, r is a random number in interval [0, 1], and I is a random number
that can be 1 or 2. Parameters r and I are random numbers used to generate random NGO
behavior in search and update.

(2) Phase 2: Chase and Escape Operation (Exploitation)

After the northern goshawk attacks the prey, the prey tries to escape. Therefore,
in a tail and chase process, the northern goshawk continues to chase the prey. Due to
the high speed of northern goshawks, they can chase their prey in almost any situation
and eventually hunt. Simulation of this behavior increases the exploitation power of the
algorithm to a local search of the search space. In the NGO algorithm, it is assumed that
this hunting is closed to an attack position with radius R. The mathematical model of the
second phase is as follows:

xnew,P2
i,j = xi,j + R(2r − 1)xi,j (13)

R = 0.02
(

1 − t
T

)
(14)

Xi =

{
Xnew,P2

i , Fnew,P2
i < Fi

Xi, Fnew,P2
i ≥ Fi

(15)

where t is the iteration counter, T is the maximum number of iterations, Xnew,P2
i is the new

status for i-th proposed solution, xnew,P2
i,j is its j-th dimension, and Fnew,P2

i is its objective
function value based on the second phase of NGO.

Through the above solving process, NGO demonstrates relatively high convergence
accuracy and good stability, yet it still has several limitations [24]. Firstly, during the
initialization of the population, more random distributions and uneven initial solutions are
generated, which may decrease the diversity of the population, leading to the algorithm’s
inability to find the optimal solution. Secondly, during the search, each dimension of
the individual eagle decreases, gradually narrowing the search space and increasing the
probability of the algorithm falling into local space. Thirdly, northern goshawks chase their
escaping prey at a high speed, causing the algorithm to search too fast in the later stages
and falling into local optima.

In response to the above-mentioned issues, this paper proposes improvements to
the NGO algorithm using cubic chaotic mapping, a hybrid sine–cosine algorithm, and a
random differential perturbation strategy, respectively.

(1) Cubic chaotic mapping

Chaotic mapping is utilized to enhance the traversal and uniformity of initial solutions,
thus improving the algorithm’s global search capability. Consequently, this paper employs
cubic chaotic mapping to initialize the population individuals of the NGO algorithm. Its
formula is described as follows:

xn+1 = ρxn

(
1 − xn

2
)

(16)

(2) Hybrid sine–cosine algorithm
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The hybrid sine–cosine algorithm utilizes the concept of sine and cosine functions to
accomplish global exploration and local exploitation of the search space. Furthermore, the
introduction of the cosine factor helps enhance the algorithm’s local exploitation capability,
thereby avoiding the risk of falling into local optima. The mathematical formula for
the cosine factor and the improved expression for the goshawk position are presented
as follows:

ω = cos
(

π
t3

T3

)
(ωmax − ωmin) + ωmin (17)

xnew,P3
i,j =


(1 − ω)xi,j + ω · sin(r1)

(
r2 pi,j − xi,j

)
FPi < Fi
(1 − ω)xi,j + ω · cos(r1)

(
xi,j − r2 pi,j

)
FPi ⩾ Fi

(18)

(3) Random differential perturbation strategy

In the later stages of the algorithm, the northern goshawk tends to confuse local optima
with global optima during its pursuit of prey, leading the algorithm to fall into local optima.
To overcome this drawback, the random differential perturbation strategy is introduced.

Xt+1 = r × (Xbest − Xi) + r × (Xrand − Xi) (19)

2.3. The Weight Allocation Method Based on the MIC

Due to labeled data originating from multiple working conditions, utilizing a small
amount of labeled data from a single condition alone for knowledge transfer cannot achieve
the desired predictive performance. Therefore, this paper considers knowledge transfer
from multiple source conditions. The fermentation process data under a source condition
are considered as a subset. The model established on this subset after TCA adaptation is
referred to as a sub-model. This paper establishes multiple sub-models and introduces
a weighted ensemble strategy based on the MIC to allocate weights more reasonably to
each sub-model. The weighted ensemble strategy based on the MIC proposed in this paper
mainly consists of two key points. Firstly, it involves utilizing the MIC to compute the
centroid of each subset. Secondly, it utilizes the MIC to calculate the correlation between
the test sample and the centroid of each subset in order to allocate suitable weight for each
sub-model.

The maximum information coefficient (MIC) is mainly used to measure the degree
of correlation between two variables, which is an excellent method of data correlation
calculation [25].

2.3.1. Determination of the Centroid of Each Subset

Assuming that there are q subsets, X =
{

xi; i = 1, 2, · · · nq
}

represents q subsets, where
xi ∈ Rd, d represents the input dimension, and nq represents the number of samples of
each subset. Now, assuming each sample serves as a reference sequence once, with the
remaining samples acting as comparison sequences, the MIC is computed using mutual
information and grid partitioning, with the formula:

I(x0; xi) =
∫

p(x0, xi) log2
p(x0, xi)

p(x0)p(xi)
dx0dxi (20)

where p(x0, xi) represents the joint probability between (x0, xi). Considering
D = {(x0(1), xi(1)), · · · , (x0(d), xi(d))} as the comparison sequence, the scatter plot formed
by (x0, xi) in D is partitioned into grids, calculating the probability of each grid, and deter-
mining the maximum mutual information value.

φi = max
ab<B

I(x0; xi)

log2 min(a, b)
(21)
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where a, b represents the number of grid divisions in the (x0, xi) direction and B is the
upper limit value for grid partitioning. According to Formula (24), the correlation matrix
generated by nq samples is as follows:

ϕ =


1 φ12 · · · φ1nq

φ21 1 · · · φ2nq
...

...
. . .

...
φnq1 φnq2 · · · 1

 (22)

The sample with the highest correlation with all comparison sequences is chosen as
the initial centroid Z∗ of the subset. The sample is xk, where k ∈

[
1, nq

]
is determined

according to Formula (25) to calculate the mutual information of each feature variable
under the maximum correlated sequence, denoting the mutual information value of the
d-th feature vector of the i-th sample I[xk(d); xi(d)] as Ii(d); then, the correlation coefficient
matrix of each indicator can be represented as follows:

ψ =


I1(1) I1(2) · · · I1(d)
I2(1) I2(2) · · · I2(d)

...
...

. . .
...

Inq(1) Inq(2) · · · Inq(d)

 (23)

In order to obtain a more objective centroid for the subset, information entropy is
introduced to assign corresponding weights to feature variables. In general, there is an
inverse relationship between the information entropy of feature variables and the assigned
weights; smaller information entropy indicates a greater amount of information carried by
the data, hence correspondingly larger weights, and vice versa. According to Formula (26),
the proportional representation of feature value weights for the i-th sample under the d-th
feature vector can be expressed as:

ρid =
Inq(d)

nq

∑
i=1

Inq(d)
(24)

The corresponding entropy value is: Ed = −

nq
∑

i=1
ρid log ρid

log d , ρid ̸= 0
lim

ρid→0
ρid log ρid = 0, ρid ̸= 0

(25)

Then, the weight of each feature variable is

ωd =
1 − Ed

d −
d
∑

i=1
Ed

(26)

Ultimately, the weighted centroid set Zq = ωdZ∗ can be obtained, representing q
centroids of the q subsets.

2.3.2. The Selection and Weighting Allocation Strategy for Sub-Models

Above, the method of obtaining centroids that best represent each subset is introduced
and obtains q centroids for q subsets. Then, by calculating the correlation between the sample
to be tested and these centroids, an appropriate weight is assigned to each sub-model.

The q sub-models are denoted as M =
[
M1, M2, · · · , Mq

]
. To improve predictive

performance, ensemble models should be constructed by selecting the sub-models corre-
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sponding to subsets which exhibit the highest correlation with the test sample. Therefore,
by treating the test sample x* under the target condition as the reference sequence and the
q centroids Zq as the comparison sequences, the correlation set O =

[
w1, w2, · · · , wq

]
can

be obtained by calculating the correlation between the test sample x* and q centroids Zq.
When wq ≥ θ, θ ∈

[
min

(
wq

)
, max

(
wq

)]
is determined, the corresponding sub-models are

selected for weighted ensemble.
Assuming the selected sub-models are denoted as M′ = [M1, M2, · · · , Mδ], δ ∈ [1, q],

and the corresponding correlation set is O′ = [w1, w2, · · · , wδ], δ ∈ [1, q], then the predictive
results of the model based on the MIC-weighted ensemble are:

y∗ =
w1

∑ wδ
f1(x∗) +

w2

∑ wδ
f2(x∗) + · · ·+ wδ

∑ wδ
fδ(x∗) (27)

where, fδ(x∗) represents the prediction result of the δ-th sub-model.

2.4. Data Acquisition and Soft Sensor Modeling
2.4.1. The Fermentation Process and Data Acquisition of Pichia Pastoris

To validate the effectiveness of the proposed soft sensor method, Pichia pastoris strains
GS115 and MutsHis+ were selected as the research subjects. The fermentation setup uti-
lized the RTY-C-100L fermenter. Following an in-depth analysis of absolute correlation
within the Pichia pastoris fermentation process, the input variables for the soft sensing
model were meticulously chosen. These encompassed parameters such as stirring speed
(v), temperature (T), airflow rate (q), pH of the culture medium (Ph), dissolved oxygen con-
centration (Do), and fermenter pressure (P). Concurrently, product concentration and cell
concentration were designated as the output variables, as depicted in Figure 1. The precise
procedures involved in acquiring the experimental data for Pichia pastoris fermentation are
outlined below.
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Figure 1. Pichia pastoris fermentation system.

Step 1. In adherence to the fermentation process specifications for Pichia pastoris, the
fermentation system underwent sterilization and inoculation steps. The culture medium
was sterilized at 130 ◦C for 30 min, followed by inoculation of strains at 30 ◦C using a flame.
Initial fermentation conditions were set as follows: tank pressure maintained between 0.02
and 0.05 MPa, pH at 5.0, temperature at 28 ◦C, stirring speed ranging from 300 to 400 rpm,
and airflow rate regulated between 150 and 300 L/min.
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Step 2. Using correlation analysis, variables including stirring speed (v), temperature
(T), airflow rate (q), pH (Ph), dissolved oxygen (Do), and fermenter pressure (P) were
selected. These variables were transmitted to the database via a distributed control system,
with sampling conducted every half-hour.

Step 3. Owing to the 90 h fermentation cycle of Pichia pastoris, 180 data points were
collected for each batch of the fermentation process. Fermentation process data from
different batches were collected to represent the fermentation process under different
working conditions.

2.4.2. Soft Sensor Modeling Based on MIC-TCA-INGO-LSSVM

In this paper, a novel soft sensor model based on MIC-TCA-INGO-LSSVM is proposed
to address the issue of soft sensor model failure caused by inconsistent data distribution
during the fermentation process of Pichia pastoris under different working conditions. The
proposed strategy integrates the principles of transfer learning and ensemble learning. It
utilizes TCA to adapt the marginal probability distributions of fermentation process data
from both the source and target working conditions. Additionally, a weighted ensemble
scheme based on the MIC is introduced to transfer knowledge from multiple source
conditions, thereby enhancing the model’s generalization ability and predictive accuracy
under the target working condition. Furthermore, an INGO algorithm is proposed to
enhance the optimization capability of the NGO algorithm for optimizing the LSSVM
model. Algorithm 1 gives a description of the proposed method MIC-TCA-INGO-LSSVM.

q subsets with known labels are selected as the source domain modeling data, and
fermentation process data under the target working condition are chosen as the target
domain test data with unknown labels. The steps for building a soft sensor model based
on MIC-TCA-INGO-LSSVM, with the source domain and target domain data denoted as
Ds = {Xsi, Ysi; i = 1, 2 . . . q} and Dt = {Xt} respectively, are as follows:

Step 1. Utilize TCA to obtain the optimal feature mapping matrix, adapting the
marginal distributions of the source and target data: (X′

si, X′
t) = TCA(Xsi, Xt), i = 1, 2 . . . q.

Where X′
si represents the i-th new source domain subset and X′

t represents the new target
domain data after being adapted by TCA, respectively.

Step 3. Combining with INGO-optimized LSSVM, establish a sub-model for each new
subset along with their corresponding labels (X′

s1, Ysl), (X′
s2, Ys2). . .

(
X′

sq, Ysq

)
.

Step 4. Compute the centroid of each new source domain subset using the MIC-based
method introduced in Section 2.3.1. Finally, obtain q centroids, denoted as Z1, Z2 . . . Zq.

Step 5. Calculate the maximum information coefficient between the test sample x′t
under the target working condition and the centroids of each subset, forming a set of
correlation degrees, denoted as O =

[
w1, w2, · · · , wq

]
. Select sub-models with correlation

coefficients greater than θ. Use the method described in Section 2.3.2 to assign corre-
sponding weights to each sub-model. Input the test sample x′t into the ensemble transfer
soft sensor model MIC-TCA-INGO-LSSVM to obtain the cell concentration and product
concentration results Yt.

In order to display the soft sensor model more intuitively, Figure 2 shows the frame-
work of the model.

To quantify the predictive capabilities of various models, this study selects three
metrics for comparison: root mean square error (RMSE), correlation coefficient (R2), and
mean absolute error (MAE). The computational formulas for these metrics are provided
as follows:

RMSE =

√
1
n

n

∑
i=1

(
y(i)t − y(i)pre

)2
(28)

R2 = 1 −

n
∑

i=1

(
y(i)pre − y(i)real

)2

n
∑

i=1

(
y(i)real − ŷreal

)2 (29)
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MAE =
1
n

n

∑
i=1

∣∣∣y(i)t − y(i)pre

∣∣∣ (30)

Algorithm 1: Soft Sensor Modeling Method MIC-TCA-INGO-LSSVM.

Input:
S: Source domain data with known labels.
T: Target domain data with unknown labels.
Output:
Predicted cell concentration and product concentration for the target working condition.
Steps:
1. Data Preparation
Collect fermentation process data under multiple-source working conditions and the target
working condition.
Select key biological parameters as input variables (e.g., stirring speed, temperature, and airflow
rate).
2. Transfer Component Analysis (TCA)
Apply TCA to adapt the marginal distributions of the data from source to target working
conditions.
Obtain a feature mapping matrix that minimizes the difference in data distribution between
source and target.
3. Model Construction with LSSVM Optimized by INGO
For each adapted source data subset, construct a least squares support vector machine (LSSVM)
model.
Use the improved northern goshawk optimization (INGO) algorithm to optimize the parameters
of each LSSVM model.
4. Weight Allocation Based on the MIC
Calculate the maximum information coefficient (MIC) to determine the centroid for each source
data subset.
For a given test sample in the target domain, calculate the MIC between the test sample and each
subset centroid.
Assign weights to each sub-model based on the MIC values, facilitating a weighted ensemble.
5. Ensemble Prediction
Combine the predictions from the weighted sub-models to estimate the cell and product
concentrations in the target working condition.
6. Performance Evaluation
Evaluate the model using metrics like Root Mean Square Error (RMSE), Correlation Coefficient
(R2), and Mean Absolute Error (MAE).
End
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3. Results

To validate the effectiveness of the proposed soft sensor model, MIC-TCA-INGO-
LSSVM, based on TL and EL, it is applied to predict the cell concentration and product
concentration under the target working condition of Pichia pastoris.

Firstly, to demonstrate the performance of the INGO algorithm proposed in this
paper, simulation experiments are conducted under the same working condition. Three
models, namely, LSSVM, NGO-LSSVM, and INGO-LSSVM, are employed to predict the
cell concentration and product concentration. The RMSE, MAE, and R2 results obtained for
predicting cell concentration and product concentration by the three models are presented
in Table 1. Figure 3 illustrates the predicted results of cell concentration and the fitness
changes of the optimization algorithms, while Figure 4 illustrates the predicted results
of product concentration and the fitness changes of the optimization algorithms, where
the fitness functions of the NGO and INGO algorithms are defined as the RMSE between
the predicted results and the actual values. From Figures 3 and 4 and Table 1, it can be
seen that compared to NGO, INGO demonstrates faster convergence speed and is capable
of achieving smaller prediction errors, thereby improving the predictive precision of the
LSSVM. It can be proven that the northern goshawk algorithm is improved by using
cubic chaotic mapping and a hybrid sine–cosine algorithm, and a random differential
perturbation strategy is feasible for training and optimizing parameters of the LSSVM
models, and the effect is obvious: it can significantly reduce the prediction error of the
LSSVM. Comparative experiments indicate that under the same working condition, when
the data distribution remains consistent, all three traditional soft sensor models yield
relatively good predictive results.

Table 1. The predictive performance of different models for predicting cell and product concentration
under the same working condition.

RMSE MAE R2

Cell
concentration

LSSVM 2.45 1.84 0.950
NGO-LSSVM 2.05 1.54 0.965
INGO-LSSVM 1.08 0.79 0.991

Product
Concentration

LSSVM 0.099 0.068 0.961
NGO-LSSVM 0.076 0.051 0.977
INGO-LSSVM 0.044 0.032 0.992
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Figure 4. Prediction results of product concentration under the same working condition: (a) prediction
results; (b) the fitness curve of the INGO and NGO algorithm.

Subsequently, simulation comparisons are conducted under different working con-
ditions. Initially, fermentation process data from a single-source working condition are
selected as modeling data. NGO-LSSVM and INGO-LSSVM are applied once again and
compared with TCA-INGO-LSSVM for predicting the cell concentration and product con-
centration under the target working condition. Table 2 presents the predictive performance
of the three models when the working conditions varied. Figures 5 and 6, respectively,
depict the predicted results of cell concentration and product concentration under the
target working condition. By comparing the predictive performance of NGO-LSSVM and
INGO-LSSVM models in Tables 1 and 2, it can be observed that the predictive performance
of traditional soft sensor models decreases when working conditions change. However,
TCA narrows the distribution difference between the fermentation data under the source
working condition and fermentation data under the target working condition by adapting
the marginal probability distribution, thereby mitigating the difference between them.
Therefore, as shown in Table 2, TCA improves the model’s ability to adapt to changes in
working conditions to some extent, thereby reducing the prediction error of the model
under the target condition.

Table 2. The predictive performance of different models for predicting cell and product concentration
with changing working conditions.

RMSE MAE R2

Cell
concentration

NGO-LSSVM 3.71 2.83 0.883
INGO-LSSVM 2.85 2.14 0.921

TCA-INGO-LSSVM 2.02 1.52 0.967

Product
Concentration

NGO-LSSVM 0.146 0.100 0.915
INGO-LSSVM 0.091 0.061 0.966

TCA-INGO-LSSVM 0.067 0.047 0.982

Nevertheless, solely conducting knowledge transfer from a single-source working
condition restricts the model’s generalization and predictive capabilities under the target
working condition. Therefore, the proposed soft sensor model, MIC-TCA-INGO-LSSVM,
based on transfer learning and ensemble learning, is applied to predict cell concentration
and product concentration under the target working condition. Figures 7 and 8 respectively
illustrate the predicted results of cell concentration and product concentration. Where,
subplot ‘a’ represents the equally weighted ensemble approach of multiple sub-models,
while subplot ‘b’ represents the MIC-based weighted ensemble method proposed in this
study. Table 3 compares the predictive performance of the two models. By comparing
Tables 2 and 3, it is evident that transferring knowledge from multiple working conditions
yields better predictive outcomes compared to transferring from a single working condition.
Particularly, the proposed MIC-based weighted ensemble method effectively allocates
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suitable weights to each sub-model, resulting in smaller prediction errors compared to the
equally weighted ensemble approach.
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Table 3. The performance of the soft sensor method, integrating multiple sub-models, in predicting
cell and product concentration under the target working condition.

RMSE MAE R2

Cell
concentration

equal ensemble 1.67 1.31 0.977
weighted ensemble 1.18 0.88 0.989

Product
concentration

equal ensemble 0.058 0.045 0.987
weighted ensemble 0.046 0.034 0.991

4. Discussion

This paper proposes a novel soft sensor modeling method for the fermentation process
of Pichia pastoris, named MIC-TCA-INGO-LSSVM. Simulation results indicate that this
method significantly reduces the prediction error of traditional soft sensor models under
varying working conditions, aligning with the expectations outlined in the paper.

Under stable working conditions, traditional soft sensor models demonstrate robust pre-
dictive performance [26,27]. However, as industrial demands evolve, the working conditions for
the fermentation process of Pichia pastoris are subject to change, leading to a noticeable increase
in the predictive error of conventional models. Consequently, researchers have proposed soft
sensor modeling methods based on transfer learning, which have proven effective in mitigating
model errors amidst changing conditions [9–11,28,29]. Further, this paper hypothesizes that with
limited labeled samples available from a single-source working condition, knowledge transfer
from just one source is insufficient to effectively enhance predictive performance under target
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conditions. It is experimentally demonstrated that knowledge transfer from multiple-source
working conditions and model ensemble weighting more reasonably enhance the model’s gener-
alization capability and predictive accuracy under unknown working conditions. This suggests
that when there are few labeled samples in a single working condition, the multi-condition
transfer soft sensor modeling method proposed in this paper is more effective compared to
existing methods, serving as a valuable reference.

However, the fermentation process of Pichia pastoris exhibits multi-stage characteristics,
and the global single soft sensor model proposed in this paper cannot fully describe
the dynamic characteristics of the entire fermentation process. Therefore, theoretically,
combining the proposed modeling method with local modeling strategies in future research
could enhance the predictive capability of the model. Moreover, the transfer component
analysis used in this paper is a transfer learning algorithm that can be directly applied to
regression problems but shows suboptimal transfer effectiveness. Thus, future research
could consider improving and applying more efficient transfer learning algorithms in soft
sensor modeling.

5. Conclusions

Given the varied data distribution under different working conditions of the fermenta-
tion process of Pichia pastoris, which results in a decline in the performance of traditional
soft sensor models, this study proposes a soft sensor modeling method based on TCA and
EL. Firstly, TCA is employed to adapt the marginal probability distributions of model-
ing data under the source working condition and testing data under the target working
condition. Then, a regression model is established using the LSSVM on the new source
working condition data after adapting, with an INGO algorithm proposed for optimiz-
ing the parameters of the LSSVM. Secondly, considering that knowledge transfer from a
single-source working condition would limit the model’s generalization and predictive
performance under the target working condition, multiple sub-models are established
on multiple-source working condition datasets and a weighting allocation method based
on the MIC is proposed to assign suitable weights to each sub-model. The proposed
soft sensor model, MIC-TCA-INGO-LSSVM, is then applied to predict cell concentration
and product concentration under the target working condition. Results demonstrate:
(1) Compared to NGO, INGO demonstrates a faster convergence speed and is capable
of achieving smaller prediction errors, thereby improving the predictive precision of the
LSSVM. (2) The transfer soft sensor model integrated with multiple sub-models signifi-
cantly enhances the model’s adaptability and predictive capability under different working
conditions. Moreover, compared to the average weighting allocation method, the MIC-
based weighting allocation method achieves smaller prediction errors. In conclusion, the
soft sensor model MIC-TCA-INGO-LSSVM proposed in this paper can be applied for
real-time and accurate detection of cell concentration and product concentration in the
fermentation processes of Pichia pastoris under different working conditions.
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