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Abstract: In low-voltage AC distribution systems, when a series arc fault occurs in a branch with
multiple loads operating in parallel, it will be significantly more difficult to identify. Existing arc fault
detection methods make it difficult to effectively detect faults occurring in the lower-level branch. This
study introduces a novel series arc fault detection approach based on the improved northern goshawk
optimization adaptive base class LogitBoost (INGO-ABCLogitBoost) algorithm. Considering the
zero-rest, intermittent, and random fluctuation and high-frequency features of the arc current, the
zero-rest coefficient, discrete coefficient, harmonic amplitude, and wavelet entropy are proposed
to establish the high-dimensional feature matrix of the arc current. The ReliefF feature selection
algorithm is used to optimize feature quality and decrease feature dimensionality. Subsequently, the
ABCLogitBoost fault detection model is proposed, with the INGO algorithm applied to optimize the
model parameters, thus enhancing the model’s diagnostic capabilities. The efficacy of the proposed
diagnostic model is validated through the construction of a multi-load arc simulation system. The
simulation results show that the overall fault diagnosis accuracy of the proposed method reaches
99.01% and can effectively identify the fault load types, which helps to locate the fault location.

Keywords: series fault arc; branch circuit fault; feature extraction; feature selection; ABCLogitBoost

1. Introduction

With the rapid development of the electric power system, the household power
distribution system presents a wide variety of electrical equipment and line connection
points. For this reason, the rate of occurrence of electrical fires has greatly increased, causing
significant economic losses and human casualties and seriously threatening the safety of
people’s lives and properties. During the use of domestic appliances, arc faults may be
induced due to such problems as line aging, poor contact, external damage, and so on. In
the discharge process of the arc, a large amount of heat will be emitted, further deteriorating
the insulation performance of electrical equipment [1]. When series arc faults occur, the
current is generally low, and the current waveforms of certain electrical appliances are
similar in normal and faulty conditions. That makes it difficult to detect arc faults [2].
Numerous studies have shown that arcing faults in low-voltage distribution lines are the
main cause of electrical fires. Therefore, the effective detection of series arc faults is of great
practical significance.

In recent years, scholars from various countries have extensively discussed the field of
arc faults from different perspectives. In terms of feature extraction of arc fault signals, the
use of analytical methods based on time and frequency domains to process arc currents
are the main means currently used. To name a few, reference [3] used improved complete
ensemble empirical mode decomposition adaptive noise (ICEEMDAN) to obtain the IMF
component of the signal and constructed detection variables to distinguish between arc
fault and normal states. Reference [4] applied the entropy feature of the variational modal
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decomposition (VMD) as the indicator for arc fault detection. Reference [5] utilized the
correlation coefficient of the signal as the indicator for the detection of an arc with different
loads. Reference [6] identified arc faults by comparing the peak or average values of the arc
and normal currents. Reference [7] detected arc faults based on the Fourier transform FFT
of the fifth harmonic value of the current.

Feature extraction is followed by classifier selection. Specifically, the time and fre-
quency domain feature signals serve as model inputs, and then machine learning, neural
networks, or data-driven related algorithms are utilized to distinguish the sample types
and output classification results [8]. Reference [9] used the light gradient boosting machine
(LightGBM) to process the redundant features in the feature set and input the optimized
feature set into a decision tree (DT) and k-nearest neighbor (KNN) to achieve fast detection
of arc faults. Reference [10] used the maximum mutual information coefficient for mining
highly recognizable features and implemented series arc fault detection based on a support
vector machine (SVM). Reference [11] applied raw data as the input to the lightweight
residual network (LRN) to detect arc faults. Reference [12] utilized a discrete wavelet
transform and color map indexing to obtain the image features of arc signals, and then
a deep residual network (DRN) was used to identify arc faults. Reference [13] proposed
the ECMC feature selection algorithm to construct the optimal set of features, and the
stochastic configuration network (SCN) was used to realize the detection of arc faults.
Reference [14] proposed a fault detection method based on sparse representation and fully
connected neural networks (SRFCNN). This method extracts the features of current signals
through dictionary learning and sparse coding, then combines them with neural networks
to identify arc faults.

Currently, numerous detection methodologies have been developed to effectively
identify series arc faults within single-load circuits. However, these methods exhibit dimin-
ished diagnostic efficacies when applied to arc faults in circuits with multiple loads. This
study presents a new method for detecting series arc faults in multi-load circuits based
on the INGO-ABCLogitBoost algorithm. This method meticulously considers the fault
characteristics of arc currents across diverse load operations, achieving the acquisition of
the current signal’s fault characteristics through the application of time–frequency domain
feature extraction techniques. The ReliefF feature selection algorithm is utilized to filter
the best subset of features and reduce the feature dimension. The INGO algorithm is intro-
duced to optimize the ABCLogiBoost model parameters, which improves the diagnostic
performance. The proposed method is not only suitable for single-load fault detection but
also has a high diagnostic accuracy for arc faults occurring in multi-load circuits. Finally,
the simulation results verify the feasibility of the algorithm.

2. Arc Signal Feature Extraction

An arc is a form of gas discharge. The discharge process is related to the type of gas,
the material and geometry of the electrode, and the parameters of the load. The current in
the branch circuit where the arc is located is affected by many factors, making the time and
frequency domain characteristics of the arc current complex and diverse. Figure 1 shows
the current waveforms at different loads when arc faults occur. Analyzing the waveform
characteristics of the arc current, it is found that the current waveforms of different loads
after series arc faults contain obvious features such as zero rest, the absence of a semi-period
waveform, random fluctuations of the arc current [15–17], and high-frequency currents
with high amplitudes appearing during the zero rest of inductive load faults [18,19].

For linear loads, there is a standard sinusoidal waveform during normal operation,
and the zero-rest phenomenon at the over-zero point during arc faults is observed, along
with the absence of semi-period waveforms at the intermittent extinguishing of the arc.
This leads to a low current amplitude in this period, which is approximatively close to zero.
The zero rest coefficient z is proposed to denote the arc characteristics; specifically, the ratio



Energies 2024, 17, 954 3 of 16

of the number of sampled points to the total number of sampling points in the threshold
interval [−ε,ε].

z =
n

∑
j=1

k j/n, k j =

{
1,

∣∣Ij
∣∣ ≤ ε

0,
∣∣Ij

∣∣ > ε
(1)

In this formula, kj is the comparison value of the current |Ij| with the threshold value
ε, which is used to determine whether the current of this sample point is in the zero-rest
period. n is the number of sampling points of the current, Ij is the instantaneous value of
the current after normalization, and the threshold ε needs to be set by considering different
load current fluctuations.
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Figure 1. Arc current waveforms after arc faults under different loads. (a) Arc current waveform of
an air compressor; (b) arc current waveform of a vacuum cleaner.

Usually, the waveform is stable and unchanged during the normal operation of elec-
trical equipment. The current amplitude fluctuates randomly in different periods with
the dynamic change of the arc during the arc fault. The discrete coefficient d is proposed
to represent the arc characteristics; specifically, counting the current amplitude in each
half-period and using the variance of the amplitude to express the degree of discretization
of the arc current.

d =
m

∑
h=1

(Xh − Xh)
2/m (2)

In this formula, Xh is the half-period amplitude of the current, Xh is the average value
of the current amplitude, and m is the number of half-periods.

Due to the different settings of various load parameters, the arc current data are
normalized to avoid being affected by variations in the parameters. A time–frequency
analysis can be used to obtain the time domain and frequency domain information of
the signal at the same time, which is an effective method to analyze the characteristics of
nonlinear and nonsmooth signals. In this paper, the maximum overlap discrete wavelet
transform (MODWT) is used to extract the time–frequency domain features.
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The discrete wavelet transform (DWT) is commonly used to analyze the time–frequency
characteristics of non-smooth signals [20]. The DWT can be expressed as follows:

ψj,k(t) =
1√∣∣∣γj

0

∣∣∣ψ(
t − ku0γ

j
0

γ
j
0

) (3)

In this formula, γ0, u0, and ψ are the scaling parameter, the translation parameter, and
the mother wavelet, respectively, and the variables j and k are integer values of the control
scaling and translation parameters, respectively.

MODWT is the deformed extension of the DWT, which is a highly redundant non-
orthogonal transform [21,22]. Compared with DWT, MODWT has no down-sampling
process, which maintains the integrity of the coefficients and avoids the omission of impor-
tant information. It can quickly detect faults and transients in electrical quantities. MODWT
is translation invariant, which allows it to more accurately locate the moment of the fault.

To better describe the differences between different loads during normal operation
and arc faults, this paper utilizes the advantages of entropy feature theory in dealing
with uncertain signals and carries out multi-scale entropy calculations on the five-layer
high-frequency wavelet coefficients obtained from decomposition. The calculated entropy
features are fuzzy entropy, envelope entropy, and permutation entropy.

Fuzzy entropy, envelope entropy, and permutation entropy have physically similar
meanings. They are used to measure the probability of generating new patterns in a time
series. If the probability of generating new patterns is higher, then the complexity of the
sequence is higher [23–25]. Fuzzy entropy introduces a fuzzy affiliation function based
on sample entropy to deal with the similarity measure of a time series. Envelope entropy
reflects the sparse characteristics of the signal, and its size is inversely correlated with
the periodicity of the signal. The stronger the periodicity of the signal, then the smaller
the value of the envelope entropy. Permutation entropy is based on the probability of
permutation of the sub-sequence of the entropy calculation, and it has a high degree of
sensitivity to the changes in the time series. Five layers of wavelet coefficients are used to
seek the three kinds of entropy for a total of fifteen dimensional features.

To comprehensively reflect the complex characteristics of the arc signal, different
computational methods are combined to fully explore the potential characteristics of arc
faults from different perspectives. The time–domain features are selected with zero-rest
coefficients and discrete coefficients. The frequency–domain features are selected based on
the amplitude of the first twenty harmonics. The time–frequency features are selected with
fifteen dimensional wavelet entropies, and a total of 37 dimensional features are extracted.

3. ReliefF Feature Selection

Not all features in the feature space of the arc current are favorable. If all of them
are used as inputs during classification without selection, the subsequent fault diagnosis
will be time consuming and will affect the accuracy of the diagnostic results. Optimizing
the original feature set can reduce the amount of computation needed and improve the
diagnostic accuracy of the model.

The ReliefF algorithm is a typical filtered feature selection method that is computa-
tionally simple and widely used. When analyzing the classification problem, each time a
sample R is randomly taken out from the training sample set, k-nearest neighbor samples K
are identified from the set of similar samples, k-nearest neighbor samples M are identified
from the set of dissimilar samples, and the score of each feature is updated according to
Equation (4) [26]. Feature selection follows the principle of “aggregation within classes and
dispersion between classes.” If the features have small differences among samples of the
same class and large differences among samples of different classes, the features have a
strong discriminatory ability, and their feature scores are also larger.
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Wm+1(A) = Wm(A)−
k
∑

j=1
d(A, R, Hj)/(m · k)+

∑ [ p(c)
1−p(c(R))

k
∑

j=1
d(A, R, Mj)]/(m · k)

(4)

In this formula, c denotes the category to which the sample R belongs, d(A, R1, R2)
denotes the distance between the samples R1 and R2 on the feature A, p(c) denotes the prior
probability of the category c, and m is the number of samples.

4. Arc Fault Detection
4.1. ABCLogitBoost Algorithm

The ensemble learning (EL) algorithm combines weak learners, resulting in a better
performance than single models in most cases. ABCLogitBoost is one of the Boosting
ensemble learning algorithms, proposed by Ping Li, which has certain advantages in
solving problems with noise or with the presence of misclassified labels. It is mainly used
for solving the problem of multi-class classification [27–29].

Compared with other algorithms, ABCLogitBoost uses the adaptive binning algorithm
(ABA) to preprocess the feature values and discretize the continuous floating-point feature
values into n integers from small to large, which not only reduces the memory consumption
but also decreases the time complexity. At the same time, based on the commonly used loss
function, ABCLogitBoost improves the loss function so that the sum of the loss function is 0
as a constraint. The ABCLogitBoost algorithm adaptively selects the class with the smallest
loss value as the base class according to the training loss to improve the training efficiency
and model performance.

The performance of the ABCLogitBoost algorithm is mainly affected by three key
parameters, including the number of decision trees N, the maximum number of splits J,
and the shrinkage rate η. Typically, if the number of decision trees N is too small, it may
lead to difficulty in the convergence of the model, which weakens its generalization ability.
Conversely, if N is too large, the model may be overfitted. The maximum number of splits J
and the contraction rate η have a greater impact on the generalization ability of the model.

These three parameters have a large impact on the model performance, and the
optimization algorithm can optimize the objective function to train a better model [30]. To
reasonably configure these parameters, this paper uses the improved northern goshawk
optimization algorithm to perform parameter optimization on the ABCLogitBoost model
to improve the diagnostic accuracy of the model.

4.2. Optimization of ABCLogitBoost Parameters Based on the INGO Algorithm

The northern goshawk optimization (NGO) algorithm is an intelligent optimization
algorithm established by Mohammad Dehghani et al. in 2021 based on the hunting behavior
of northern goshawks [31]. In the original NGO algorithm, the initial population position is
randomly distributed, and the position distribution is not uniform. Cubic chaotic mapping
can generate sequences with a more uniform distribution. In this paper, the NGO algorithm
is improved, and cubic chaotic mapping is chosen to initialize the population. The iterative
optimization process of the algorithm is divided into a prey identification phase and a
pursuit phase, and its mathematical model is as follows:

In the first phase of northern goshawk hunting, it will randomly select a prey and then
quickly attack it. During this phase, its position is updated with the following formula:

Pi = Xk, i = 1, 2, ..., k = 1, 2, ..., i − 1, i + 1, ..., N (5)

xnew,P1
i,j =

{
xi,j + r(pi,j − Ixi,j), FPi < Fi
xi,j + r(xi,j − pi,j), FPi ≥ Fi

(6)
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Xi =

{
Xnew,P1

i , Fnew,P1
i < Fi

Xi, Fnew,P1
i ≥ Fi

(7)

In this formula, Pi is the position of the prey chosen by the ith northern goshawk, FPi
is the fitness value, k is a random number belonging to [1, N], Xi

new, P1 is the new state of
the ith northern goshawk, xi,j

new,P1 is its new state in the jth dimension, and Fi
new,P1 is the

fitness value corresponding to it. r is a random number belonging to [0, 1], and the value of
I is 1 or 2. r and I are used to generate random numbers in the search and update phase.

After a northern goshawk attacks its prey, the prey will attempt to escape. Assuming
this prey is in the attack position at radius R, the position update formula for the second
phase is:

xnew,P2
i,j = xi,j + R(2r − 1)xi,j (8)

R = 0.02(1 − t
T
) (9)

Xi =

{
Xnew,P2

i , Fnew,P2
i < Fi

Xi, Fnew,P2
i ≥ Fi

(10)

In this formula, t is the current number of iterations, T is the maximum number of
iterations, Xi

new,P2 is the new state of the ith northern goshawk in the second hunting
phase, xi,j

new,P2 is its new state in the jth dimension, and Fi
new,P2 is the value of fitness

corresponding to it.
The process of series arc fault detection is shown in Figure 2:
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5. Simulation Verification
5.1. Dynamic Arc Model

The Cassie arc model takes into account the convective heat dissipation effect of the
arc. It is assumed that the energy dissipated from the electrode and the diffusion of energy
caused by the process of arc column change is negligible. With the change in energy, the
larger the cross-sectional area of the arc column, the greater the rate of energy diffusion [32].
The model equation is as follows:

1
g

dg
dt

=
1
τ
(

U2
arc

U2
c

− 1) (11)
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In this formula, g is the arc conductance, τ is the arc time constant, Uc is the arc voltage
constant, and Uarc denotes the arc instantaneous voltage.

The normal resistive load and fault arc current waveforms are shown in Figures 3 and 4.
The normal current is a stable sinusoidal waveform, while the current waveform after the
fault exhibits distortion, and the phenomenon of current crossing the zero point becomes
apparent during the zero-rest period.

Energies 2024, 17, x FOR PEER REVIEW 7 of 16 
 

 

5. Simulation Verification 
5.1. Dynamic Arc Model 

The Cassie arc model takes into account the convective heat dissipation effect of the 
arc. It is assumed that the energy dissipated from the electrode and the diffusion of energy 
caused by the process of arc column change is negligible. With the change in energy, the 
larger the cross-sectional area of the arc column, the greater the rate of energy diffusion 
[32]. The model equation is as follows: 

2

2
1 1 ( 1)arc

c

Udg
g dt Uτ

= −  (11)

In this formula, g is the arc conductance, τ is the arc time constant, Uc is the arc voltage 
constant, and Uarc denotes the arc instantaneous voltage. 

The normal resistive load and fault arc current waveforms are shown in Figures 3 
and 4. The normal current is a stable sinusoidal waveform, while the current waveform 
after the fault exhibits distortion, and the phenomenon of current crossing the zero point 
becomes apparent during the zero-rest period. 

 
Figure 3. Analysis of normal working current of resistive load. 

 
Figure 4. Analysis of arc fault current of resistive load. 

The classical arc model exhibits a continuous and unchanging arc waveform, which 
cannot reflect the characteristics of the actual arc such as randomness, intermittency, and 
the appearance of high-frequency components when inductive load faults occur 
[15,16,18,19]. This makes it more in line with the actual situation. The following three im-
provements are made to the arc model based on the Cassie model: 

1. The arc parameters of the Cassie model are fixed constants, while the magnetic 
field, temperature, external electric field, air resistance, and other factors affect the arc 
length through random nonlinear changes. To fully describe the arc length variation pro-
cess, the change in the arc length introduced to improve the Cassie model, which can more 
truly reflect the combustion process of the arc and fault characteristics [33]. The expression 
is as follows: 

Figure 3. Analysis of normal working current of resistive load.

Energies 2024, 17, x FOR PEER REVIEW 7 of 16 
 

 

5. Simulation Verification 
5.1. Dynamic Arc Model 

The Cassie arc model takes into account the convective heat dissipation effect of the 
arc. It is assumed that the energy dissipated from the electrode and the diffusion of energy 
caused by the process of arc column change is negligible. With the change in energy, the 
larger the cross-sectional area of the arc column, the greater the rate of energy diffusion 
[32]. The model equation is as follows: 

2

2
1 1 ( 1)arc

c

Udg
g dt Uτ

= −  (11)

In this formula, g is the arc conductance, τ is the arc time constant, Uc is the arc voltage 
constant, and Uarc denotes the arc instantaneous voltage. 

The normal resistive load and fault arc current waveforms are shown in Figures 3 
and 4. The normal current is a stable sinusoidal waveform, while the current waveform 
after the fault exhibits distortion, and the phenomenon of current crossing the zero point 
becomes apparent during the zero-rest period. 

 
Figure 3. Analysis of normal working current of resistive load. 

 
Figure 4. Analysis of arc fault current of resistive load. 

The classical arc model exhibits a continuous and unchanging arc waveform, which 
cannot reflect the characteristics of the actual arc such as randomness, intermittency, and 
the appearance of high-frequency components when inductive load faults occur 
[15,16,18,19]. This makes it more in line with the actual situation. The following three im-
provements are made to the arc model based on the Cassie model: 

1. The arc parameters of the Cassie model are fixed constants, while the magnetic 
field, temperature, external electric field, air resistance, and other factors affect the arc 
length through random nonlinear changes. To fully describe the arc length variation pro-
cess, the change in the arc length introduced to improve the Cassie model, which can more 
truly reflect the combustion process of the arc and fault characteristics [33]. The expression 
is as follows: 

Figure 4. Analysis of arc fault current of resistive load.

The classical arc model exhibits a continuous and unchanging arc waveform, which
cannot reflect the characteristics of the actual arc such as randomness, intermittency, and the
appearance of high-frequency components when inductive load faults occur [15,16,18,19].
This makes it more in line with the actual situation. The following three improvements are
made to the arc model based on the Cassie model:

1. The arc parameters of the Cassie model are fixed constants, while the magnetic field,
temperature, external electric field, air resistance, and other factors affect the arc length
through random nonlinear changes. To fully describe the arc length variation process, the
change in the arc length introduced to improve the Cassie model, which can more truly
reflect the combustion process of the arc and fault characteristics [33]. The expression is
as follows:

U′
c = Uc · r(t) (12)

Uc = E · L (13)

In this formula, Uc is the arc voltage constant, r(t) is a dynamically varying random
number, E is the static arc voltage drop, and L is the static arc length.

2. The actual arc is not always stable. The arc burning period is accompanied by an
intermittent re-ignition phenomenon of the arc, resulting in the current waveform missing
a semi-period waveform. This will affect the accurate identification of arc faults. In this
paper, the phenomenon of intermittent re-ignition of the arc is simulated by modifying the
duration of the arc combustion time.

3. The high-frequency oscillatory component appears during the zero-rest period
when an arc fault occurs in the inductive load under the influence of an inductive com-
ponent. The high-frequency oscillation characteristics are simulated by modeling the
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high-frequency oscillation of the arc and controlling the moment of appearance of the
high-frequency component.

5.2. Load Modeling

Considering the use of electrical equipment in ordinary households and according to
the working characteristics of different electrical appliances, this paper builds simulation
models for four types of loads: resistive loads, inductive loads, phase-angle controllable
loads, and switching power supply loads [34]. Resistive loads mainly include cooking,
heating, and lighting electrical devices, which are represented using resistive elements.
Inductive loads include some electrical devices that work based on the principle of electro-
magnetic induction. To simplify the model, inductive loads are composed of resistors and
inductors in series. Phase-angle controllable loads regulate the load current by controlling
the trigger angle of controllable devices such as thyristors, power-adjustable lighting appli-
ances, heaters, and fans. The specific model of phase-angle controllable loads is shown in
Figure 5.
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Switching power supply loads usually requires a DC power supply for downstream
devices, so a rectifier link is needed to convert AC power into DC power. Such loads mainly
include computer monitors, cell phone chargers, etc. The specific model for switching
power supply loads is shown in Figure 6.
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To simulate the occurrence of arc faults in residential households, four types of loads
are arranged in different branches, and each load is connected in series with an ideal
switch to control the switching state of the load through the on–off of the ideal switch.
When the load is running, the arcing fault occurs at different branches. The trunk current
will appear with different degrees of distortion, with each load and its upstream branch
modeled in series, denoted as Arc 1~6. When the arc fault occurs, only one arc model is
put into operation, while the remaining arc models are short-circuited. The total circuit
simulation model is shown in Figure 7. The simulation step size is 1 × 10−5 s. The supply
voltage Us = 220 V. The internal resistance of the power supply Rs = 0.2 Ω. In the arc
model, UC = 50 V, g(0) = 1.7 × 10−4 [35]. The solver is set to auto (automatic solver
selection) because auto allows for the selection of different numerical methods in different
situations, improving the performance and accuracy of the simulation compared to setting
a fixed solver.
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5.3. Simulation Program

Fault arc simulation programs are carried out in single-load, two-load, three-load,
and four-load operations, respectively. With arc faults occurring in the trunk and branch
locations, the load operating states are obtained using the Latin hypercube sampling (LHS)
algorithm, which collects the trunk currents of different loads in the normal and fault states,
with a total of 5768 samples collected.

The trunk currents are analyzed, and the output statuses are coded according to
whether the current sample contains fault information for a particular type of load. The
indication “1” signifies that an arc fault has occurred in that type of load, and “0” indicates
that that type of load is normal or not in operation. The output status is a four-digit binary
number composed of four types of loads in sequence, namely a resistive load, phase-angle
controllable load, inductive load, and switching power supply load. There are 16 output
states in total. Among them, the code 0000 indicates the normal state, and the remaining
15 output states indicate the sample code of the arc fault.

5.4. Analysis of the Simulation Results

For the single-load current waveforms shown in Figure 8, the resistive load and
inductive load are to linear loads, and the normal current waveform is an ideal sinusoidal
waveform. When the arc fault occurs, in addition to random fluctuations in current and
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intermittent disconnection, the resistive load exhibits a significant zero-rest phenomenon
at each zero crossing. Due to the influence of the inductive components, the zero-rest
phenomenon of the inductive load is not obvious, and a high-frequency pulse occurs near
the zero crossing point. The phase-angle controllable load and switching power supply
load belong to nonlinear loads. Affected by the load structures, their normal current
waveform appears similar to the zero-rest phenomenon of the linear loads arc fault, and
the time-domain waveforms undergo different degrees of aberration during the arc fault.
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Figure 8. Single-load operation current waveforms. (a) Resistive load normal operation; (b) resistive
load arc fault; (c) inductive load normal operation; (d) inductive load arc fault; (e) phase-angle
controllable load normal operation; (f) phase-angle controllable load arc fault; (g) switching power
supply load normal operation; (h) switching power supply load arc fault.

The waveforms of the trunk-circuit current during the simultaneous operation of the
four types of loads are shown in Figure 9. During normal operation, the current waveform
of each cyclicality is stable and unchanged. The zero-rest phenomenon occurs at the point
of current over zero after resistive branch failure, but due to the influence of other branch
currents, the zero-rest feature is weakened, which is manifested as a reduction in the slope
of the current during the zero-rest period. The current amplitude of the section is lower due
to the intermittent arcing at 0.04–0.05 s. The fault current of the branch of the phase-angle
controllable load appears to not be significantly changed. The high-frequency component
increases near the zero-crossing point when the inductive load branch circuit faults. The
trunk arc fault is equivalent to the simultaneous fault of all the branch loads, and the
waveform distortion is the most obvious.

Taking the normal and phase-angle controllable load branch fault signals during four-
load operation as examples, the sym5 wavelet basis function is selected for its five-layer
MODWT decomposition, and the results are shown in Figure 10. From Figure 10, it can
be seen that both the normal and fault current signals contain obvious high-frequency
components. Compared with the current signals during normal operation, the degree of
irregularity of the signals in each frequency band changes after the arc fault.

5.5. Validation of the Effectiveness of the ReliefF Algorithm

The ReliefF algorithm is used to sort and filter the features of the training set samples
and to determine the optimal number of features k. The feature sets under different k
values are input into the ABCLogitBoost model, and the optimal k value is selected by
comparing the effects of the k value on the accuracy of the model. Meanwhile, in order
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to compare the performance of the ReliefF algorithm, this paper selects different feature
selection algorithms for comparison, and the results are shown in Figure 11 and Table 1.
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As can be seen in Figure 11, the trend of model accuracy with the k value is similar
under the three algorithms: ReliefF, mRMR, and LDA. Under the ReliefF algorithm, when
the number of features k is 2~15, the model accuracy rate gradually increases with increases
in the k value. And when k > 15, the model accuracy rate tends to stabilize and fluctuates
near 93%. When k is 17, the accuracy rate is the highest. The 17 features consist of
2 time–domain features, 4 frequency–domain features, and 11 time–frequency domain
entropy features.

Table 1 presents the computed results of the maximum accuracy using various feature
selection algorithms and the corresponding number of features. The superior performance
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of the feature selection algorithms results in a higher accuracy coupled with lower count of
features. The ReliefF algorithm is significantly better than the mRMR and the LDA feature
selection algorithms, which also verifies the validity of the algorithms selected in this paper.
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Table 1. Comparison of calculation results of different feature selection algorithms.

Feature Selection Algorithm k Accuracy

ReliefF 17 93.03%
mRMR 27 93.03%

LDA 23 92.92%

5.6. Performance Evaluation of INGO-ABCLogitBoost Fault Diagnosis Model

The number of decision trees N, the maximum number of splits J, and the shrinkage
rate η in the ABCLogitBoost model are optimized by using the INGO algorithm. The initial
parameter settings of the INGO algorithm are shown in Table 2.

Table 2. INGO parameters.

INGO Parameters Value

Population 10
Number of iterations 50

Optimization dimensions 3

Considering the degree of influence of the above hyperparameters on the model,
their optimization ranges are set, and the optimization searches are carried out within the
allowable range. The optimization results are shown in Table 3.

Table 3. Hyperparameter optimization results.

Hyperparameters Optimization Range Value

Decision trees (N) [1500] 470
Splits (J) [1, 20] 13

Shrinkage rate (η) [0.001, 0.1] 0.0364

Figure 12 provides a visualization of the confusion matrix of the INGO-ABCLogitBoost
arc fault diagnostic results. The diagonal elements of the matrix indicate the number of
samples correctly predicted for each class. The sum of each row indicates the total number
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of samples of that class, and the sum of each column indicates the total number of samples
predicted to be of that class.
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The diagnostic results have shown that the accuracy rate of all types of labels is
above 84.21%, and the overall accuracy rate is as high as 99.01%. Label 0000 indicates
that all the loads are working in the normal state. The diagnostic accuracy of the samples
in this category is 100%, with no misjudgment or omission, indicating that the model
can accurately distinguish between the normal and faulty states of the system. When
specifically determining which category of load is located in the branch circuit failure, the
diagnostic accuracy decreases due to the influence of different load failure degrees and fault
characteristics. Label 1111 has the lowest category accuracy of 84.21%. This is because label
1111 indicates the case of arcing faults on the trunk. In this condition, four categories of
loads are running simultaneously, which contains more loads and is prone to misjudgment.

5.7. Comparison of Diagnostic Effects of Different Models

To verify the excellent performance of the proposed INGO-ABCLogitBoost arc fault
diagnosis model, the class accuracy and overall accuracy of the model under each class
are calculated as evaluation indexes, and the model is analyzed and compared with the
ELM and XGBoost models that have performed well in the arc fault diagnosis field. The
results are shown in Table 4. The overall accuracy of both the ELM and XGBoost models
is relatively poor, and they have a wide range of variation in accuracy across different
classes of samples (0~97.33%). This indicates that these algorithms are only suitable for
the detection of some classes of samples, and that they perform badly on others. The
original ABCLogitBoost model has a high diagnostic accuracy for the overall samples,
which is up to 93.09%, but the effects of class accuracy for the corresponding samples
are weak. After using the INGO optimization algorithm, the overall accuracy and class
accuracy are significantly improved, which indicates that the optimization algorithm can
effectively improve the diagnostic performance of the model. The classification ability of the
INGO-ABCLogitBoost arc fault diagnosis model proposed in this paper has been verified.
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Table 4. Comparison of diagnostic results of different models.

Model
Accuracy

Class Overall

ELM 0~100% 59.18%
NGO-ELM 0~100% 67.94%
XGBoost 0~97.33% 62.02%

NGO-XGBoost 0~99.88% 71.72%
ABCLogitBoost 11.11~100% 93.09%

NGO-ABCLogitBoost 84.21~100% 98.84%
INGO-ABCLogitBoost 84.21~100% 99.01%

6. Conclusions

The escalation in power equipment complexity and load branches exert a substantial
influence on the diagnostics of series arc faults. This study introduces a novel approach
for series arc fault diagnosis based on the INGO-ABCLogitBoost algorithm, grounded in a
data-driven perspective.

When an arc fault occurs in a power system, the arc current signal undergoes varying
degrees of distortion. In this paper, the time–frequency domain features of the arc current
signal are extracted to fully exploit its signal characteristics. The ReliefF feature dimension-
ality reduction algorithm is employed to efficiently eliminate non-essential features, thereby
enhancing recognition efficacy. Arc fault detection is conducted by utilizing the ABCLogit-
Boost model, with the model parameters being meticulously optimized through integration
with the INGO algorithm. This optimization enhances both the detection accuracy and
the generalization capacity of the model. The efficacy of the proposed methodology is
corroborated through simulation analyses.

Arc fault diagnosis is an important issue in different types of electrical networks.
The arc fault characteristics of different electrical networks are varied due to diverse
equipment and topologies. The method proposed in this paper can provide a basis for arc
fault diagnosis in different electrical networks, and researchers can select the appropriate
features and adjust the model parameters according to the actual situation to apply the
method in different electrical networks.
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