Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = enhanced coalbed methane (ECBM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8410 KiB  
Review
CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook
by Yinan Cui, Chao Li, Yuchen Tian, Bin Miao, Yanzhi Liu, Zekun Yue, Xuguang Dai, Jinghui Zhao, Hequn Gao, Hui Li, Yaozu Zhang, Guangrong Zhang, Bei Zhang, Shiqi Liu and Sijian Zheng
Energies 2025, 18(11), 2841; https://doi.org/10.3390/en18112841 - 29 May 2025
Viewed by 511
Abstract
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from [...] Read more.
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from a full-chain perspective (Mechanism, Practices, and Outlook), covering fundamental mechanisms and key engineering practices. It highlights the complex multi-physics processes involved, including competitive adsorption–desorption, diffusion and seepage, thermal effects, stress responses, and geochemical interactions. Recent progress in laboratory experiments, capacity assessments, site evaluations, monitoring techniques, and numerical simulations are systematically reviewed. Field studies indicate that CO2-ECBM performance is strongly influenced by reservoir pressure, temperature, injection rate, and coal seam properties. Structural conditions and multi-field coupling further affect storage efficiency and long-term security. This work also addresses major technical challenges such as real-time monitoring limitations, environmental risks, injection-induced seismicity, and economic constraints. Future research directions emphasize the need to deepen understanding of coupling mechanisms, improve monitoring frameworks, and advance integrated engineering optimization. By synthesizing recent advances and identifying research priorities, this review aims to provide theoretical support and practical guidance for the scalable deployment of CO2-ECBM, contributing to global energy transition and carbon neutrality goals. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

17 pages, 2125 KiB  
Article
Competitive Adsorption Behavior of CO2 and CH4 in Coal Under Varying Pressures and Temperatures
by Yijin Zhu, Haijian Li, Jiahong Liu, Caiwen Zhou and Yunpeng Zhao
Separations 2025, 12(4), 75; https://doi.org/10.3390/separations12040075 - 27 Mar 2025
Cited by 1 | Viewed by 586
Abstract
The CO2 injection technology for replacing CH4 to enhance coalbed methane (CBM) recovery (CO2-ECBM) offers dual benefits, i.e., reducing CO2 emissions through sequestration and increasing CBM recovery, thereby leading to economic gains. However, there is no clear consensus [...] Read more.
The CO2 injection technology for replacing CH4 to enhance coalbed methane (CBM) recovery (CO2-ECBM) offers dual benefits, i.e., reducing CO2 emissions through sequestration and increasing CBM recovery, thereby leading to economic gains. However, there is no clear consensus on how temperature and pressure affect the competitive adsorption characteristics of CO2 and CH4 mixed gases in coal. Therefore, the competitive adsorption behavior of CO2 and CH4 mixed gases at various pressures and temperatures were investigated using the breakthrough curve method. Anthracite was selected for the adsorption experiment conducted under three gas injection pressure levels (0.1 MPa, 0.5 MPa, and 1 MPa) and at three temperature levels (20 °C, 40 °C, and 60 °C). This study showed that, when the temperature remained constant and the pressure ranged from 0.1 to 1 MPa, the adsorption rates of CO2 and CH4 increased as pressure rose. Additionally, the selectivity coefficient for CO2/CH4 decreased with an increase in pressure, suggesting that higher pressures within this range are not conducive to the replacement efficiency of CH4 by CO2. As the temperature increased from 20 to 60 °C under constant pressure conditions, both the selectivity coefficients for CO2/CH4 and the adsorption rates of CO2 and CH4 exhibited a downward trend. These findings imply that, within this temperature range, a reduced temperature improves the ability of CO2 to efficiently displace CH4. Moreover, CO2 exhibits a higher isosteric heat of adsorption compared to CH4. Full article
(This article belongs to the Topic Carbon Capture Science and Technology (CCST), 2nd Edition)
Show Figures

Figure 1

13 pages, 7750 KiB  
Article
Mechanical Damage to Coal and Increased Coal Permeability Caused by Water-Based Ultrasonic Cavitation
by Xiaoyang Guo, Yijia Liu, Yanfeng Li, Cunbao Deng, Lemei Zhang and Yu Zhang
Energies 2024, 17(15), 3626; https://doi.org/10.3390/en17153626 - 24 Jul 2024
Cited by 2 | Viewed by 1144
Abstract
Coalbed methane (CBM), recognized as a sustainable and environmentally friendly energy source, plays a crucial role in mitigating global climate change and advancing low-carbon energy solutions. However, the prevalence of low-permeability coal seams poses a significant challenge to effective CBM extraction. Improving coal [...] Read more.
Coalbed methane (CBM), recognized as a sustainable and environmentally friendly energy source, plays a crucial role in mitigating global climate change and advancing low-carbon energy solutions. However, the prevalence of low-permeability coal seams poses a significant challenge to effective CBM extraction. Improving coal permeability has emerged as a viable strategy to address the issue of low-permeability coal. Conventional CBM stimulation methods fall short in overcoming this obstacle. In contrast, the enhanced technique of CBM extraction by water-based ultrasonic cavitation holds great promise due to its use of high energy intensity, safety, and efficiency. Nevertheless, the inadequate theoretical framework for managing this technology impedes its widespread adoption for large-scale applications. This study investigated the impact of water-based ultrasonic cavitation treatment on coal’s properties and permeability through mechanical testing and permeability measurements conducted before and after treatment. This study also explored the process by which this technology, known as WUC-ECBM, improves coal’s mechanical properties and permeability. The findings suggest a potential stimulation technique (WUC-ECBM) for use in CBM extraction, and its physical mechanism. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Figure 1

19 pages, 6809 KiB  
Article
Quantitative Analysis of Fracture Roughness and Multi-Field Effects for CO2-ECBM Projects
by Lingshuo Zhang and Yafei Shan
Energies 2024, 17(12), 2851; https://doi.org/10.3390/en17122851 - 10 Jun 2024
Cited by 2 | Viewed by 944
Abstract
Carbon Dioxide-Enhanced Coalbed Methane (CO2-ECBM), a progressive technique for extracting coalbed methane, substantially boosts gas recovery and simultaneously reduces greenhouse gas emissions. In this process, the dynamics of coalbed fractures, crucial for CO2 and methane migration, significantly affect carbon storage [...] Read more.
Carbon Dioxide-Enhanced Coalbed Methane (CO2-ECBM), a progressive technique for extracting coalbed methane, substantially boosts gas recovery and simultaneously reduces greenhouse gas emissions. In this process, the dynamics of coalbed fractures, crucial for CO2 and methane migration, significantly affect carbon storage and methane retrieval. However, the extent to which fracture roughness, under the coupled thermal-hydro-mechanic effects, impacts engineering efficiency remains ambiguous. Addressing this, our study introduces a pioneering, cross-disciplinary mathematical model. This model innovatively quantifies fracture roughness, incorporating it with gas flow dynamics under multifaceted field conditions in coalbeds. This comprehensive approach examines the synergistic impact of CO2 and methane adsorption/desorption, their pressure changes, adsorption-induced coalbed stress, ambient stress, temperature variations, deformation, and fracture roughness. Finite element analysis of the model demonstrates its alignment with real-world data, precisely depicting fracture roughness in coalbed networks. The application of finite element analysis to the proposed mathematical model reveals that (1) fracture roughness ξ markedly influences residual coalbed methane and injected CO2 pressures; (2) coalbed permeability and porosity are inversely proportional to ξ; and (3) adsorption/desorption reactions are highly sensitive to ξ. This research offers novel insights into fracture behavior quantification in coalbed methane extraction engineering. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

14 pages, 3994 KiB  
Article
Adsorption and Diffusion Characteristics of CO2 and CH4 in Anthracite Pores: Molecular Dynamics Simulation
by Yufei Gao, Yaqing Wang and Xiaolong Chen
Processes 2024, 12(6), 1131; https://doi.org/10.3390/pr12061131 - 30 May 2024
Cited by 7 | Viewed by 1494
Abstract
CO2-enhanced coalbed methane recovery (CO2-ECBM) has been demonstrated as an effective enhanced oil recovery (EOR) technique that enhances the production of coalbed methane (CBM) while achieving the goal of CO2 sequestration. In this paper, the grand canonical Monte [...] Read more.
CO2-enhanced coalbed methane recovery (CO2-ECBM) has been demonstrated as an effective enhanced oil recovery (EOR) technique that enhances the production of coalbed methane (CBM) while achieving the goal of CO2 sequestration. In this paper, the grand canonical Monte Carlo simulation is used to investigate the dynamic mechanism of CO2-ECBM in anthracite pores. First, an anthracite pore containing both organic and inorganic matter was constructed, and the adsorption and diffusion characteristics of CO2 and CH4 in the coal pores under different temperature and pressure conditions were studied by molecular dynamics (MD) simulations. The results indicate that the interaction energy of coal molecules with CO2 and CH4 is positively associated with pressure but negatively associated with temperature. At 307.15 K and 101.35 kPa, the interaction energies of coal adsorption of single-component CO2 and CH4 are −1273.92 kJ·mol−1 and −761.53 kJ·mol−1, respectively. The interaction energy between anthracite molecules and CO2 is significantly higher compared to CH4, indicating that coal has a greater adsorption capacity for CO2 than for CH4. Furthermore, the distribution characteristics of gas in the pores before and after injection indicate that CO2 mainly adsorbs and displaces CH4 by occupying adsorption sites. Under identical conditions, the diffusion coefficient of CH4 surpasses that of CO2. Additionally, the growth rate of the CH4 diffusion coefficient as the temperature increases is higher than that of CO2, which indicates that CO2-ECBM is applicable to high-temperature coal seams. The presence of oxygen functional groups in anthracite molecules greatly influences the distribution of gas molecules within the pores of coal. The hydroxyl group significantly influences the adsorption of both CH4 and CO2, while the ether group has a propensity to impact CH4 adsorption, and the carbonyl group is inclined to influence CO2 adsorption. The research findings are expected to provide technical support for the effective promotion of CO2-ECBM technology. Full article
(This article belongs to the Special Issue Shale Gas and Coalbed Methane Exploration and Practice)
Show Figures

Figure 1

23 pages, 8141 KiB  
Article
Multiscale Fractal Characterization of Pore–Fracture Structure of Tectonically Deformed Coal Compared to Primary Undeformed Coal: Implications for CO2 Geological Sequestration in Coal Seams
by Kun Zhang, Huihu Liu, Mengya Ma, Hongjie Xu and Huihuang Fang
Processes 2023, 11(10), 2934; https://doi.org/10.3390/pr11102934 - 9 Oct 2023
Cited by 4 | Viewed by 1725
Abstract
The tectonically deformed coal (TDC) reservoirs with abundant gas resources and low permeability are expected to become one of the target coal seams for carbon dioxide geological storage-enhanced coalbed methane recovery (CO2-ECBM). The pore–fracture structure plays a crucial role in determining [...] Read more.
The tectonically deformed coal (TDC) reservoirs with abundant gas resources and low permeability are expected to become one of the target coal seams for carbon dioxide geological storage-enhanced coalbed methane recovery (CO2-ECBM). The pore–fracture structure plays a crucial role in determining the effectiveness of CO2 storage. Fractal analysis provides a valuable approach to quantitatively describe the complex and heterogeneous pore–fracture structures across various scales in coal matrixes. Accordingly, the TDC samples in the Huainan–Huaibei coalfield and primary-undeformed coal (PUC) samples in the Qinshui Basin were selected for pore–fracture structure parameter tests using the mercury intrusion porosimetry (MIP) and low–temperature nitrogen adsorption (LNA) methods. Their multiscale pore–fracture parameters were analyzed using different fractal methods based on pore diameter. According to the fractal results, a multiscale classification standard for pore–fracture structures was devised in this study that is suitable for the controlling gas migration process. A parameter of 8 nm is set as the separating pore diameter for gas migration and storage. It was observed that the connectivity of migration pores (>8 nm) in TDC samples was stronger compared to PUC samples, reflected in larger pore volumes and smaller fractal dimensions. However, its complex development of seepage pores (150–300 nm) may hinder the flow of CO2 injection. As for the storage pores (<8 nm), the fractal dimension of the 2–8 nm pores in TDC was found to be similar to that of PUC but with larger pore volumes. The fractal dimension of the filling pores (<2 nm) in TDC samples was relatively lower, which facilitates efficient gas volume filling. Therefore, the pore–fracture structure of the TDC samples is found to be more advantages for CO2 injection and storage compared to the PUC. This suggests that TDC reservoirs holds promising geological potential for CO2-ECBM implementation. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 3314 KiB  
Article
Changes in Physicochemical Properties of Coal and Their Mechanism Due to Supercritical CO2–H2O Treatment
by Run Chen, Yajun Zhang, Kunpeng Hu, Guanglong Tu and Tianzheng Dou
Minerals 2023, 13(10), 1262; https://doi.org/10.3390/min13101262 - 27 Sep 2023
Cited by 2 | Viewed by 1484
Abstract
The dissolution of supercritical carbon dioxide (ScCO2) in water forms a ScCO2–H2O system, which exerts a transformative influence on the physicochemical characteristics of coal and significantly impacts the CO2-driven enhanced coalbed methane (CO2-ECBM) [...] Read more.
The dissolution of supercritical carbon dioxide (ScCO2) in water forms a ScCO2–H2O system, which exerts a transformative influence on the physicochemical characteristics of coal and significantly impacts the CO2-driven enhanced coalbed methane (CO2-ECBM) recovery process. Herein, the effect of ScCO2–H2O treatment on the physicochemical properties of coal was simulated in a high-pressure reactor. The migration of major elements, change in the pore structure, and change in the CH4 adsorption capacity of coal after the ScCO2–H2O treatment were detected using plasma emission spectroscopy, the low-temperature liquid nitrogen adsorption method, and the CH4 adsorption method, respectively. The results show that (1) the ScCO2–H2O treatment led to mineral reactions causing a significant migration of constant elements in the coal. The migration of Ca ions was the most significant, with an increase in their concentration in treated water from 0 to 16–970 mg·L−1, followed by Na, Mg, and K. Al migrated the least, from 0 to 0.004–2.555 mg·L−1. (2) The ScCO2–H2O treatment increased the pore volume and pore-specific surface area (SSA) of the coal via the dissolution and precipitation of minerals in the coal pores. The total pore volume increased from 0.000795–0.011543 to 0.001274–0.014644 cm3·g−1, and the total pore SSA increased from 0.084–3.332 to 0.400–6.061 m2·g−1. (3) Changes in the CH4 adsorption capacity were affected by the combined effects of a mineral reaction and pore structure change. The dissolved precipitates of the minerals in the coal pores after the ScCO2–H2O treatment caused elemental migration, which not only decreased the mineral content in the coal pores but also increased the total pore volume and total pore SSA, thus improving the CH4 adsorption capacity of the coal. This study provides theoretical support for CO2 sequestration and ECBM recovery. Full article
(This article belongs to the Special Issue Micro-Mechanism and Characteristics of Coal Reservoirs)
Show Figures

Figure 1

20 pages, 2429 KiB  
Article
Optimization and Comparative Analysis of Different CCUS Systems in China: The Case of Shanxi Province
by Wenyue Zhou, Lingying Pan and Xiaohui Mao
Sustainability 2023, 15(18), 13455; https://doi.org/10.3390/su151813455 - 8 Sep 2023
Cited by 7 | Viewed by 2717
Abstract
As an effective technology to reduce carbon dioxide emissions, carbon capture, utilization, and storage (CCUS) technology has been a major strategic choice and has received widespread attention. Meanwhile, the high cost and strict requirements of carbon dioxide storage and utilization on geographical conditions, [...] Read more.
As an effective technology to reduce carbon dioxide emissions, carbon capture, utilization, and storage (CCUS) technology has been a major strategic choice and has received widespread attention. Meanwhile, the high cost and strict requirements of carbon dioxide storage and utilization on geographical conditions, industrial equipment, and other aspects limit large-scale applications of CCUS. Taking Shanxi Province as an example, in this paper, we study the economic and environmental characteristics of carbon dioxide capture, storage, and utilization under different combinations of technical routes. Steel, power, cement, and chemical industries are considered. Deep saline aquifers and CO2-enhanced coalbed methane (CO2-ECBM) recovery are selected as the two types of sequestration sinks. Urea production, methanol production, microalgae cultivation, and cement curing are selected as the four potential utilization methods. Then, a mixed-integer linear programming (MILP) model is used to optimize the CO2 utilization pathway based on the principle of least cost, to select the best emission sources, CO2 pipelines, intermediate transportation nodes, utilization, and storage nodes to achieve reasonable deployment of CCS/CCU projects in Shanxi Province. The results show that CCU with urea production has the lowest cost and is the most economically viable with over 50% reduction in emissions. The second option is CCS which includes CO2-ECBM and achieves a 50% reduction in emissions. In addition, there is little difference between the cost of cement-cured CCU and that of methanol-produced CCU. CCU for microalgae cultivation has the highest cost. Therefore, the latter three utilization pathways are currently not economical. Full article
Show Figures

Figure 1

18 pages, 5048 KiB  
Article
Critical Conditions for Wellbore Failure during CO2-ECBM Considering Sorption Stress
by Hecheng Xiao, Wenda Li, Zaiyong Wang, Shuai Yang and Peng Tan
Sustainability 2023, 15(4), 3696; https://doi.org/10.3390/su15043696 - 16 Feb 2023
Cited by 1 | Viewed by 1753
Abstract
Significant stress changes caused by sorption-induced swelling raise the coal wellbore failure potential, which directly impacts the safety and sustainability of CO2 enhanced coalbed methane (CO2-ECBM). Additionally, a mixture gas (CO2/N2) injection is recommended due to [...] Read more.
Significant stress changes caused by sorption-induced swelling raise the coal wellbore failure potential, which directly impacts the safety and sustainability of CO2 enhanced coalbed methane (CO2-ECBM). Additionally, a mixture gas (CO2/N2) injection is recommended due to the sharp decline of permeability with pure CO2 injection. In this study, incorporating the impacts of mixture gas adsorption and poroelastic effects, a semi-analytical model of coal wellbore stability during mixture gas injection is proposed. Model results indicate that the stress field is significantly influenced by the boundary condition and sorption effect. In addition, parametric studies are performed to determine the influence of adsorption parameters, mechanical properties, and gas composition on the stress distribution and then on the wellbore failure index. Furthermore, mixture gas injection with a large proportion of CO2 or N2 both cause wellbore instability. Significant compressive hoop stress and shear failure are caused by the mixture gas injection with a large proportion of CO2. In contrast, the displacement of CH4 with weakly adsorptive N2 will result in less compressive and even tensile hoop stress, so shear or tensile failure may occur. Thus, mixture gas (including pure CO2/N2) injection must be controlled by coal wellbore failure, providing an accurate estimation of in-situ coal seams’ CO2 storage capacity from the perspective of wellbore stability. Full article
Show Figures

Figure 1

15 pages, 1375 KiB  
Article
Investigation on Key Parameters of N2 Injection to Enhance Coal Seam Gas Drainage (N2-ECGD)
by Xin Yang, Gongda Wang, Mingqi Ni, Longyong Shu, Haoran Gong and Zhie Wang
Energies 2022, 15(14), 5064; https://doi.org/10.3390/en15145064 - 11 Jul 2022
Cited by 7 | Viewed by 2016
Abstract
Practice shows that CO2/N2-ECBM is an effective technology to enhance coalbed methane. However, there are few field tests in which the technology is applied to enhance the gas drainage in underground coal mines, and the effect is uncertain. In [...] Read more.
Practice shows that CO2/N2-ECBM is an effective technology to enhance coalbed methane. However, there are few field tests in which the technology is applied to enhance the gas drainage in underground coal mines, and the effect is uncertain. In this study, firstly, the reasons for the decrease of gas drainage efficiency in the exhaustion period were analyzed based on the theory of fluid mechanics. Secondly, the mechanism of N2 injection to enhance coal seam gas drainage (N2-ECGD) was discussed: with the gradual decrease of gas pressure in the drainage process, coal seam gas enters a low-pressure state, the driving force of flow is insufficient, and the drainage enters the exhaustion period. The nitrogen injection technology has triple effects of “promoting flow”, “increasing permeability” and “replacing”. Thirdly, the numerical simulations of the nitrogen pressure on drainage effect were carried out based on the fully coupled model. The results show that the higher the nitrogen pressure, the greater the displacement effect between injection and drainage boreholes, the larger the effective range. Finally, a field test of N2-ECGD was carried out in the Liu Zhuang coal mine in Huainan Coalfield, China. The results show that N2 injection can significantly enhance the gas flow rate and CH4 flow rate in the drainage boreholes, and the coal seam gas content decreased 39.73% during N2 injection, which is about 2.6–3.3 times that of the conventional drainage. The research results provide an important guidance for promoting the application of N2-ECGD in underground coal mines. Full article
(This article belongs to the Special Issue Innovative Technology in Deep Coal Development)
Show Figures

Figure 1

19 pages, 6515 KiB  
Article
Interpretation of Gas/Water Relative Permeability of Coal Using the Hybrid Bayesian-Assisted History Matching: New Insights
by Jiyuan Zhang, Bin Zhang, Shiqian Xu, Qihong Feng, Xianmin Zhang and Derek Elsworth
Energies 2021, 14(3), 626; https://doi.org/10.3390/en14030626 - 26 Jan 2021
Cited by 11 | Viewed by 2868
Abstract
The relative permeability of coal to gas and water exerts a profound influence on fluid transport in coal seams in both primary and enhanced coalbed methane (ECBM) recovery processes where multiphase flow occurs. Unsteady-state core-flooding tests interpreted by the Johnson–Bossler–Naumann (JBN) method are [...] Read more.
The relative permeability of coal to gas and water exerts a profound influence on fluid transport in coal seams in both primary and enhanced coalbed methane (ECBM) recovery processes where multiphase flow occurs. Unsteady-state core-flooding tests interpreted by the Johnson–Bossler–Naumann (JBN) method are commonly used to obtain the relative permeability of coal. However, the JBN method fails to capture multiple gas–water–coal interaction mechanisms, which inevitably results in inaccurate estimations of relative permeability. This paper proposes an improved assisted history matching framework using the Bayesian adaptive direct search (BADS) algorithm to interpret the relative permeability of coal from unsteady-state flooding test data. The validation results show that the BADS algorithm is significantly faster than previous algorithms in terms of convergence speed. The proposed method can accurately reproduce the true relative permeability curves without a presumption of the endpoint saturations given a small end-effect number of <0.56. As a comparison, the routine JBN method produces abnormal interpretation results (with the estimated connate water saturation ≈33% higher than and the endpoint water/gas relative permeability only ≈0.02 of the true value) under comparable conditions. The proposed framework is a promising computationally effective alternative to the JBN method to accurately derive relative permeability relations for gas–water–coal systems with multiple fluid–rock interaction mechanisms. Full article
Show Figures

Figure 1

23 pages, 8773 KiB  
Article
Numerical Simulation of the Effect of Injected CO2 Temperature and Pressure on CO2-Enhanced Coalbed Methane
by Hou Yudong, Huang Saipeng, Han Jian, Liu Xingbin, Han Lianfu and Fu Changfeng
Appl. Sci. 2020, 10(4), 1385; https://doi.org/10.3390/app10041385 - 19 Feb 2020
Cited by 30 | Viewed by 3438
Abstract
The injection of CO2 to displace CH4 in coal seams is an effective method to exploit coalbed methane (CBM), for which the CO2 injection temperature and pressure are important influential factors. We performed simulations, using COMSOL Multiphysics to determine the [...] Read more.
The injection of CO2 to displace CH4 in coal seams is an effective method to exploit coalbed methane (CBM), for which the CO2 injection temperature and pressure are important influential factors. We performed simulations, using COMSOL Multiphysics to determine the effect of CO2 injection temperature and pressure on CO2-enhanced coalbed methane (CO2-ECBM) recovery, according to adsorption/desorption, seepage, and diffusion of binary gas (CO2 and CH4) in the coal seam, and deriver a thermal–hydraulic–mechanical coupling equation of CO2-ECBM. The simulation results show that, as CO2 injection pressure in CO2-ECBM increases, the molar concentration and displacement time of CH4 in the coal seam significantly decrease. With increasing injection temperature, the binary gas adsorption capacity in the coal seam decreases, and CO2 reserves and CH4 production decrease. High temperatures are therefore not conducive for CH4 production. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 5790 KiB  
Article
Research on the Processes of Injecting CO2 into Coal Seams with CH4 Recovery Using Horizontal Wells
by Jarosław Chećko, Tomasz Urych, Małgorzata Magdziarczyk and Adam Smolinski
Energies 2020, 13(2), 416; https://doi.org/10.3390/en13020416 - 15 Jan 2020
Cited by 24 | Viewed by 3427
Abstract
The paper presents a research study on modeling and computer simulation of injecting CO2 into the coal seams of the Upper Silesian Coal Basin, Poland connected with enhanced coal bed methane (ECBM) recovery. In the initial stage of the research activities, a [...] Read more.
The paper presents a research study on modeling and computer simulation of injecting CO2 into the coal seams of the Upper Silesian Coal Basin, Poland connected with enhanced coal bed methane (ECBM) recovery. In the initial stage of the research activities, a structural parameter model was developed specifically with reference to the coal-bearing formations of the Upper Carboniferous for which basic parameters of coal quality and the distribution of methane content were estimated. In addition, a lithological model of the overall reservoir structure was developed and the reservoir parameters of the storage site were analyzed. In the next stage of the research, the static model was supplemented with detailed reservoir parameters as well as the thermodynamic properties of fluids and complex gases. The paper discusses a series of simulations of an enhanced coalbed methane recovery process with a simultaneous injection of carbon dioxide. The analyses were performed using the ECLIPSE software designed for simulating coal seam processes. The results of the simulations demonstrated that the total volume of CO2 injected to a designated seam in a coal mine during the period of one year equaled 1,954,213 sm3. The total amount of water obtained from the production wells during the whole period of the simulations (6.5 years) was 9867 sm3. At the same time, 15,558,906 sm3 of gas was recovered, out of which 14,445,424 sm3 was methane. The remaining 7% of the extracted gas was carbon dioxide as a result of reverse production of the previously injected CO2. However, taking into consideration the phenomena of coal matrix shrinking and swelling, the total amount of injected CO2 decreased to approximately 625,000 sm3. Full article
(This article belongs to the Special Issue Coal Conversion Processes)
Show Figures

Figure 1

21 pages, 9641 KiB  
Article
Molecular Dynamics Simulation of Diffusion Behavior of CH4, CO2, and N2 in Mid-Rank Coal Vitrinite
by Jing Liu, Shike Li and Yang Wang
Energies 2019, 12(19), 3744; https://doi.org/10.3390/en12193744 - 30 Sep 2019
Cited by 24 | Viewed by 4394
Abstract
The diffusion characteristics of CH4, CO2, and N2 in coal are important for the study of CO2-enhanced coalbed methane (CO2-ECBM) recovery, which has become the most potential method for carbon sequestration and natural gas [...] Read more.
The diffusion characteristics of CH4, CO2, and N2 in coal are important for the study of CO2-enhanced coalbed methane (CO2-ECBM) recovery, which has become the most potential method for carbon sequestration and natural gas recovery. However, quantitative research on the diffusion characteristics of CH4 and the invasive gases (CO2 and N2) in coal, especially those in micropores, still faces enormous challenges. In this paper, the self-, Maxwell’s, and transport diffusions of CO2, CH4, and N2 in mid-rank coal vitrinite (MRCV) macromolecules were simulated based on the molecular dynamics method. The effects of the gas concentration, temperature, and pressure on the diffusion coefficients were examined via the comparison of various ranks. The results indicated that the diffusion coefficients have the order of D(N2) > D(CO2) > D(CH4) in their saturated adsorption states. However, when MRCV adsorbed the same amounts of CH4, CO2, and N2, the self- and transport diffusion coefficients followed the order of DS(N2) > DS(CO2) > DS(CH4) and Dt(CO2) > Dt(N2) > Dt(CH4), respectively. Independent of the gas species, all these diffusion coefficients decreased with increasing gas concentration and increased with increasing temperature. In the saturated adsorption state, the diffusion activation energies of CH4, CO2, and N2 were ordered as CH4 (27.388 kJ/mol) > CO2 (11.832 kJ/mol) > N2 (10.396 kJ/mol), indicating that the diffusion processes of CO2 and N2 occur more easily than CH4. The increase of temperature was more conducive to the swelling equilibrium of coal. For the pressure dependence, the diffusion coefficients first increased until the peak pressure (3 MPa) and then decreased with increasing pressure. In contrast, the diffusion activation energy first decreased and then increased with increasing pressure, in which the peak pressure was also 3 MPa. The swelling rate changed more obviously in high-pressure conditions. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Graphical abstract

20 pages, 4203 KiB  
Article
A Thermo-Hydro-Mechanical-Chemical Coupling Model and Its Application in Acid Fracturing Enhanced Coalbed Methane Recovery Simulation
by Chaojun Fan, Mingkun Luo, Sheng Li, Haohao Zhang, Zhenhua Yang and Zheng Liu
Energies 2019, 12(4), 626; https://doi.org/10.3390/en12040626 - 15 Feb 2019
Cited by 70 | Viewed by 5629
Abstract
The reservoir permeability dominates the transport of gas and water in coal seam. However, coal seams rich in gas usually contain various pores and fractures blocked by a large amount of minerals, which leads to an ultra-low permeability and gas extraction rate, and [...] Read more.
The reservoir permeability dominates the transport of gas and water in coal seam. However, coal seams rich in gas usually contain various pores and fractures blocked by a large amount of minerals, which leads to an ultra-low permeability and gas extraction rate, and thus an increase of drilling workload. We first propose a thermo-hydro-mechanical-chemical coupled model (THMC) for the acid fracturing enhanced coalbed methane recovery (AF-ECBM). Then, this model is applied to simulate the variation of key parameters during AF-ECBM using a 2D geometry. The effect of different extraction schedules are comparatively analyzed to give an insight into these complex coupling responses in coal seam. Result confirms that the AF-ECBM is an effective way to increase the reservoir permeability and improve the gas production using the proposed model. The range of permeability increment zone increases most dramatically in the way of acid fracturing, followed by none-acid fracturing and acidizing over time. The gas production in order is: acid fracturing (AF-ECBM) > fracturing (F-ECBM) > acidification (A-ECBM)> direct extraction (D-CBM). Full article
Show Figures

Figure 1

Back to TopTop