Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = energy-saving habits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 207
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

23 pages, 5432 KiB  
Article
Efficient Heating System Management Through IoT Smart Devices
by Álvaro de la Puente-Gil, Alberto González-Martínez, Enrique Rosales-Asensio, Ana-María Diez-Suárez and Jorge-Juan Blanes Peiró
Machines 2025, 13(8), 643; https://doi.org/10.3390/machines13080643 - 23 Jul 2025
Viewed by 234
Abstract
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer [...] Read more.
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer a favorable payback period, positioning the solution as both sustainable and economically viable. Efficient heating management is increasingly critical amid growing energy and environmental concerns. This strategy uses IoT devices to collect real-time data on prices, consumption, and user preferences. Based on this data, the system adjusts heating settings intelligently to balance comfort and cost savings. IoT connectivity manages continuous monitoring and dynamic optimization in response to changing conditions. This study includes a real-case comparison between a conventional central heating system and an IoT-managed electric radiator setup. By applying automation rules linked to energy pricing and user habits, the system enhances energy efficiency, especially in cold climates. The economic evaluation shows that using low-cost IoT devices yields meaningful savings and achieves equipment payback within approximately three years. The results demonstrate the system’s effectiveness, demonstrating that smart, adaptive heating solutions can cut energy expenses without sacrificing comfort, while offering environmental and financial benefits. Full article
Show Figures

Figure 1

16 pages, 1007 KiB  
Article
Evaluation of the Electricity Consumption Index Based on a Level Two Energy Audit: A Case Study of University Facilities in Mexico
by Héctor A. Álvarez Macías, Rafael Peña Gallardo, José Ángel Pecina Sánchez, Carlos Soubervielle Montalvo, Aurelio Hernández Rodríguez and Juan Carlos Arellano González
Sustainability 2025, 17(13), 5892; https://doi.org/10.3390/su17135892 - 26 Jun 2025
Viewed by 274
Abstract
As global energy consumption continues to rise, it is essential to adopt measures that regulate electricity use while still meeting the demands of modern society. These efforts align with the United Nations Sustainable Development Goals and are supported by various organizations. This study [...] Read more.
As global energy consumption continues to rise, it is essential to adopt measures that regulate electricity use while still meeting the demands of modern society. These efforts align with the United Nations Sustainable Development Goals and are supported by various organizations. This study applies a methodology that combines the implementation of a Level 2 Energy Audit with the evaluation of the Electricity Consumption Index (ECI) at the Department of English of the Multidisciplinary Academic Unit of the Altiplano Region, Universidad Autónoma de San Luis Potosí. The study identifies strategies to reduce electricity consumption related to lighting systems and equipment operation throughout the department. Additionally, it assesses the percentage of users who promote and practice energy-saving habits. Key recommendations include transitioning the lighting system to LED technology, expected to reduce electricity consumption by 15, and implementing power factor correction measures, projected to yield an additional 6.17% in energy and cost savings. Together, these strategies could result in an estimated annual electricity savings of 21.17%, making them attractive to institutional decision-makers. Furthermore, by comparing the department’s ECI with a reference index established for educational institutions in temperate climate regions of Mexico, the study determines whether the proposed strategies should be implemented immediately or planned for the medium to long term. This decision-making framework represents the main contribution of the case study. Full article
(This article belongs to the Special Issue Sustainability in Cities and Campuses)
Show Figures

Figure 1

11 pages, 2770 KiB  
Proceeding Paper
Adaptive Smart System for Energy-Saving Campus
by Ziling Chen, Ray-I Chang and Quincy Wu
Eng. Proc. 2025, 92(1), 36; https://doi.org/10.3390/engproc2025092036 - 29 Apr 2025
Viewed by 417
Abstract
Due to the increasing severity of global warming and climate change, more attention is being paid to environmental problems caused by human activities. Although energy saving and carbon reduction have become a global ambition, the implementation of energy-saving mechanisms remains limited. To address [...] Read more.
Due to the increasing severity of global warming and climate change, more attention is being paid to environmental problems caused by human activities. Although energy saving and carbon reduction have become a global ambition, the implementation of energy-saving mechanisms remains limited. To address this, an adaptive smart energy-saving campus system is developed in this study to improve students’ electricity usage habits. In this system, the Internet of Things (IoT) with control interfaces is integrated to enhance convenience. Using expert system rules, the system regulates the operation of the IoT for the efficient energy-saving control of a classroom. Additionally, by incorporating a random forest classifier, the system learns users’ electricity usage habits to create a tailored energy-saving environment. Gamification is also introduced to create a reward system that stimulates users’ desire to achieve goals, thus promoting autonomous energy saving. An experiment was conducted on 62 students. In total, 59 out of 62 participants responded with a sampling error of ±2.8% at a 95% confidence level. The average system usability scale (SUS) score reached 84, surpassing the cross-industry average standard, indicating that the system is user-friendly. The average self-efficacy score for energy saving reached 4.28 (σ = 3). The system significantly impacted the participant’s motivation to enhance energy saving. The net promoter score (NPS) was 29. This indicated that, although users are generally satisfied with the system, there is still room for improvement. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

21 pages, 10818 KiB  
Article
Research on Design of Collective Housing with Air-Circulation Central Air-Conditioning System Based on Solar Energy Utilization
by Chuan Shi, Zhen Wang, Qian Liang, Ziwei Wan and Qingsong Ma
Sustainability 2025, 17(5), 2089; https://doi.org/10.3390/su17052089 - 28 Feb 2025
Viewed by 702
Abstract
The article presents an innovative design schema for air circulation within collective housing, which effectively reduces energy consumption and improves the indoor environment. It also solves the problem of the high operating and maintenance costs caused by the simultaneous installation of air conditioners [...] Read more.
The article presents an innovative design schema for air circulation within collective housing, which effectively reduces energy consumption and improves the indoor environment. It also solves the problem of the high operating and maintenance costs caused by the simultaneous installation of air conditioners and radiators. Employing dynamic energy consumption calculation software THERB for HAM, the energy-saving benefits of this design are simulated. The strategy involves capturing heat within the sunspace and transferring it to the conditioning chamber, from where the air is tempered and circulated throughout the habitable spaces to minimize heating. The findings suggest that by strategically using sunspace heat, heating energy can be significantly reduced by 43%. It helps to promote the development of sustainable building design. A comparative analysis of window materials in the sunspace, including single glazing, double glazing, and low-e double glazing, indicates that windows with enhanced insulation properties can substantially decrease the heating energy. Considering both energy efficiency and economic feasibility, low-e double glazing is identified as a particularly advantageous choice. Full article
Show Figures

Figure 1

40 pages, 3051 KiB  
Review
Navigating the Challenges of Sustainability in the Food Processing Chain: Insights into Energy Interventions to Reduce Footprint
by Orlando Corigliano, Pietropaolo Morrone and Angelo Algieri
Energies 2025, 18(2), 296; https://doi.org/10.3390/en18020296 - 10 Jan 2025
Cited by 4 | Viewed by 3116
Abstract
This review paper examines the critical intersection of energy consumption and environmental impacts within the global food system, emphasizing the substantial footprint (including land usage, costs, food loss and waste, and carbon and water footprints) associated with current practices. The study delineates the [...] Read more.
This review paper examines the critical intersection of energy consumption and environmental impacts within the global food system, emphasizing the substantial footprint (including land usage, costs, food loss and waste, and carbon and water footprints) associated with current practices. The study delineates the high energy demands and ecological burdens of food production, trade, and consumption through a comprehensive bibliographic analysis of high-impact research papers, authoritative reports, and databases. The paper systematically analyzes and synthesizes data to characterize the food industry’s current energy use patterns and environmental impacts. The results underscore a pressing need for strategic interventions to enhance food system efficiency and reduce the footprint. In light of the projected population growth and increasing food demand, the study advocates for a paradigm shift towards more sustainable and resilient food production practices, adopting energy-efficient technologies, promoting sustainable dietary habits, and strengthening global cooperation among stakeholders to achieve the Sustainable Development Goals. Investigations have revealed that the food system is highly energy-intensive, accounting for approximately 30% of total energy consumption (200 EJ per year). The sector remains heavily reliant on fossil fuels. Associated greenhouse gas (GHG) emissions, which constitute 26% of all anthropogenic emissions, have shown a linear growth trend, reaching 16.6 GtCO2eq in 2015 and projected to approach 18.6 GtCO2eq in the coming years. Notably, 6% of these emissions result from food never consumed. While the water footprint has slightly decreased recently, its demand is expected to increase by 20% to 30%, potentially reaching between 5500 and 6000 km3 annually by 2050. Energy efficiency interventions are estimated to save up to 20%, with a favorable payback period, as evidenced by several practical implementations. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

31 pages, 9374 KiB  
Article
Evaluation and Optimization Strategies of the Living Environment in One Resettlement Area of the South-to-North Water Diversion Project
by Dong Yan, Jingxin Zhao, Ran Chen and Biao Wang
Sustainability 2025, 17(1), 202; https://doi.org/10.3390/su17010202 - 30 Dec 2024
Viewed by 937
Abstract
Taking Yunyu New Village in Nanyang City, a typical newly built resettlement area of the South-to-North Water Diversion Project of China, as an example, this paper tries to construct a health environment evaluation index system for the resettlement area and determines the priority [...] Read more.
Taking Yunyu New Village in Nanyang City, a typical newly built resettlement area of the South-to-North Water Diversion Project of China, as an example, this paper tries to construct a health environment evaluation index system for the resettlement area and determines the priority and content of residential environment renovation in the resettlement area through residents’ health satisfaction evaluation and IPA analysis. The results revealed that six factors, namely, winter insulation, summer heat insulation, quality of domestic drinking water, indoor natural light environment, humanized design, and architectural plane function design, need to be renovated first. For the indoor environment, which is the focus of renovation, the light and heat environments were evaluated via field measurements and simulation experiments. The results show that the indoor comfort, daylighting, and energy savings of the surveyed buildings all fail to meet Chinese building design standards. Corresponding optimization strategies for indoor ventilation, thermal insulation performance of the envelope structure, and window wall ratio are proposed and verified via relevant software simulations and immigrants’ wishes. For the outdoor environment, we investigate the living habits and renovation needs of immigrants from the aspects of public space and courtyard space in the resettlement area and propose corresponding optimization strategies. The results of this research can help enhance the sense of gain and happiness of immigrants in the resettlement and provide a reference for improving the living environment of the same type of immigrant resettlement area. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

17 pages, 1726 KiB  
Article
Rationalization of Energy Expenditure: Household Behavior in Poland
by Elżbieta Stańczyk, Katarzyna Szalonka, Małgorzata Niklewicz-Pijaczyńska, Wioletta Nowak, Piotr Stańczyk, Katarzyna Witczyńska and Justyna Ziobrowska-Sztuczka
Energies 2024, 17(21), 5329; https://doi.org/10.3390/en17215329 - 26 Oct 2024
Cited by 2 | Viewed by 1219
Abstract
Background: The implementation of the EU climate and energy policy, along with changes in the legal environment, has led to a significant increase in energy prices in Poland. Consequently, energy expenditures are now a larger part of household budgets. These rising energy costs [...] Read more.
Background: The implementation of the EU climate and energy policy, along with changes in the legal environment, has led to a significant increase in energy prices in Poland. Consequently, energy expenditures are now a larger part of household budgets. These rising energy costs and the evolving legal landscape are compelling households to invest in energy-saving solutions and modify their energy consumption habits. This article aims to identify the activities of households in Poland regarding the rationalization of energy expenditures. It formulates the following research hypothesis: households invest in energy-saving appliances to rationalize energy expenditures and/or change their behaviors to reduce energy consumption. Methods: The paper is based on primary research conducted using an online questionnaire survey on a sample of 331 respondents in Poland in March and April 2023. Results: A classification tree algorithm was used to identify the level of investment activities and behavioral changes made by households to reduce energy expenditures. The authors found that low-income households and people who fear further energy price increases are the first of all to change their behaviors for more energy-efficient ones. Medium- and high-income households take investment measures. They replace household appliances with more energy-efficient ones and install heat pumps and photovoltaic panels. These investments are motivated by responsible consumption, environmental protection, cleanliness, and the ease of use of the appliances. Full article
Show Figures

Figure 1

30 pages, 7144 KiB  
Article
Performance-Oriented Parametric Optimization Design for Energy Efficiency of Rural Residential Buildings: A Case Study from China’s Hot Summer and Cold Winter Zone
by Meiyan Wang, Ying Xu, Runtian Shen and Yun Wu
Sustainability 2024, 16(19), 8330; https://doi.org/10.3390/su16198330 - 25 Sep 2024
Cited by 5 | Viewed by 2743
Abstract
With the implementation of the rural revitalization strategy, rural residences have become an essential component of China’s building energy conservation efforts. However, most existing research has focused more on urban buildings, with less attention given to rural residences. This study, taking rural residential [...] Read more.
With the implementation of the rural revitalization strategy, rural residences have become an essential component of China’s building energy conservation efforts. However, most existing research has focused more on urban buildings, with less attention given to rural residences. This study, taking rural residential buildings (RRBs) in the hot summer and cold winter zones in China as an example, proposes a more precise, two-stage optimization design framework using Rhino-Grasshopper for the overall optimization of RRBs. First, field surveys and numerical analysis of collected rural residential design drawings were conducted to clarify spatial characteristics and air conditioning usage. The parametric optimization design of RRBs was then conducted in two steps. The first step involves room function positioning, where spatial geometric models are established. Annual dynamic simulation analyses of AC (air conditioning) and AL (artificial lighting) energy consumption are performed to obtain energy intensity distribution maps. Based on the principle that “space with higher energy consumption is set in the location with lower energy consumption intensity” and the habit of functional space distribution, room function positioning, and adjustments are made. In the second step, the SPEA-2 genetic algorithm was applied for multi-objective optimization of room width, depth, WWR (window-to-wall ratio), SHGC (solar heat gain coefficient), and VLT (visible light transmittance), all based on the logical relationships of the building structure. The final Pareto front solution sets were obtained by multi-objective optimization simulation (MOO). A typical three-bay RRB was selected for application in this study, and the optimized design led to a total energy savings rate of 11% in annual AC and AL energy consumption. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

17 pages, 2358 KiB  
Article
Energy Efficiency—Case Study for Households in Poland
by Arkadiusz Gromada and Paulina Trębska
Energies 2024, 17(18), 4592; https://doi.org/10.3390/en17184592 - 13 Sep 2024
Viewed by 2020
Abstract
This article aimed to identify actions to improve energy efficiency in households. A household’s energy efficiency is aimed at obtaining the same or more services with lower energy input. The article presents energy consumption in households in Poland according to Statistics Poland and [...] Read more.
This article aimed to identify actions to improve energy efficiency in households. A household’s energy efficiency is aimed at obtaining the same or more services with lower energy input. The article presents energy consumption in households in Poland according to Statistics Poland and then discusses the results of the survey, where respondents were asked how they improve their energy efficiency. Improving households’ energy efficiency has gained importance due to increased energy prices in recent years. The most common methods of improving energy efficiency in a household include energy-saving devices and LED lighting, thermal modernization of the building, replacement of the heating system, and changing habits. The results were presented using the documentation and comparative methods. The article uses data from Statistics Poland and surveys conducted among 1112 representatives of households in Poland. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

16 pages, 4356 KiB  
Article
Thermal Performance Analysis of Aluminum Alloy Phase Change Panels for Regions with Hot Summers and Warm Winters
by Baoshi Jiang and Chen Yang
Appl. Sci. 2024, 14(16), 6936; https://doi.org/10.3390/app14166936 - 8 Aug 2024
Cited by 1 | Viewed by 1428
Abstract
Utilizing phase change materials (PCMs) in passive energy-saving wall panels to regulate indoor temperatures during hot seasons can improve people’s thermal comfort and reduce the energy consumption of air conditioning systems. This study is based on the hot summer and warm winter climatic [...] Read more.
Utilizing phase change materials (PCMs) in passive energy-saving wall panels to regulate indoor temperatures during hot seasons can improve people’s thermal comfort and reduce the energy consumption of air conditioning systems. This study is based on the hot summer and warm winter climatic characteristics of Hainan. According to local meteorological data and residents’ living habits, a suitable phase change temperature of approximately 28 °C was determined. A composite PCM of paraffin and stearic acid n-butyl ester was prepared and tested for thermal performance. Encased in an aluminum box with non-penetrating aluminum rods to enhance heat transfer, the phase change panel was applied to the inner side of exterior walls. Thermal tests demonstrated that increasing the mass ratio of stearic acid n-butyl ester to paraffin lowers the melting point and latent heat. At a 3:7 mass ratio, the melting point of the composite PCM was 28.30 °C, and the latent heat was 128.26 J/g. The 20 mm thick panel maintained a stable phase change process, with unheated surface temperatures between 28 °C and 29 °C for up to 180 min. Compared to panels without aluminum rods, those with rods exhibited a 20% longer phase change time, extended heat transfer paths, and reduced liquid-phase convective heat transfer rates, demonstrating improved PCM utilization. Therefore, the phase change panel with non-penetrating aluminum rods exhibits excellent insulation and temperature control properties. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

36 pages, 3292 KiB  
Article
Energy and Carbon Savings in European Households Resulting from Behavioral Changes
by Barbara Widera
Energies 2024, 17(16), 3888; https://doi.org/10.3390/en17163888 - 7 Aug 2024
Cited by 2 | Viewed by 2282
Abstract
The study evaluates the impact of behavioral changes resulting from climate awareness on energy consumption and carbon emissions in European households based on the results of a two-stage survey addressed to individuals manifesting pro-ecological attitudes. In the first stage, the author analyzed 67 [...] Read more.
The study evaluates the impact of behavioral changes resulting from climate awareness on energy consumption and carbon emissions in European households based on the results of a two-stage survey addressed to individuals manifesting pro-ecological attitudes. In the first stage, the author analyzed 67 pro-environmental behaviors declared by the participants, identified a set of new sustainable choices, and compared them to the conservation habits used in Rasch and Campbell’s models. The 10 most popular initiatives undertaken by over 50% of participants were selected for further analysis. The influence of these initiatives on energy consumption and CO2 emissions was assessed. A total of 24 impact indicators were identified at the building scale. Energy and carbon savings were calculated for 500 participants from 28 European countries and compared to the results computed for the 100 households used as a reference. The main conclusions from the research concern the significance of individual decisions at the building scale in the context of their actual environmental impact calculated for a larger scale. The comparative analysis showed that the highest annual energy (2292.1 MWh) and emission (267.02 tons of CO2) savings resulted from the car-to-bicycle (or walking) transition on short-distance trips (declared by 79%) and from the transition from non-renewable to renewable energy sources (PV panels installed by 65% of respondents). Annual energy and emission savings reached, respectively, 1300 MWh and 262.6 tons of CO2. The research findings help explain the critical importance of transforming the built environment towards renewable energy sources and supporting pedestrian and sustainable transportation. Full article
Show Figures

Figure 1

19 pages, 4587 KiB  
Systematic Review
Exploring Residential Energy Behaviour of the Younger Generation for Sustainable Living: A Systematic Review
by Yehui Peng, Jacopo Gaspari and Lia Marchi
Energies 2024, 17(12), 3043; https://doi.org/10.3390/en17123043 - 20 Jun 2024
Cited by 4 | Viewed by 1788
Abstract
The global energy crisis has spurred increased investments in energy efficiency and clean energy initiatives; however, the results have fallen short of expected effectiveness. Concurrently, population growth and urbanisation drive a persistent surge in energy demands, especially within the residential sector, significant to [...] Read more.
The global energy crisis has spurred increased investments in energy efficiency and clean energy initiatives; however, the results have fallen short of expected effectiveness. Concurrently, population growth and urbanisation drive a persistent surge in energy demands, especially within the residential sector, significant to overall building energy consumption. Current research focuses on residents’ responses to one-shot investments for energy efficiency or clean sources. The renovation wave, involving a massive number of existing buildings, calls for the mobilisation of huge investments that can be hard to afford in the short run. Sustainable behavioural change is complementarily rising as a key asset for maximising the overall estimated energy saving potential. Despite significant efforts to analyse household energy use and promote behavioural transformations, the literature remains gaping about future users, particularly the younger generation, as future leaders of sustainable development who exhibit a more responsible approach towards climate-related issues but also a strong dependency on digital-based solutions, which may influence energy use patterns and living habits, also impacting relations among peers and overall societal sustainability and energy efficiency. This article proposes a systematic literature review to analyse the variables affecting young people’s energy behaviour at home. The aim is to investigate the engines and gaps between strategies or tools for behaviour change and the expected effects, then find potential methods to address that barrier to identify a more promising approach, encouraging the younger generation to translate towards more sustainable energy behaviours. Full article
(This article belongs to the Collection Feature Paper Collection: Energy and Buildings)
Show Figures

Figure 1

26 pages, 9675 KiB  
Article
Improving Green Literacy and Environmental Culture Associated with Youth Participation in the Circular Economy: A Case Study of Vietnam
by Phuong Mai Tran, Thuy Nguyen, Huu-Dung Nguyen, Nguyen An Thinh, Nguyen Duc Lam, Nguyen Thi Huyen and Van Quy Khuc
Urban Sci. 2024, 8(2), 63; https://doi.org/10.3390/urbansci8020063 - 5 Jun 2024
Cited by 9 | Viewed by 5556
Abstract
The circular economy (CE), a sustainability concept that promotes resource efficiency and waste reduction, has garnered significant popularity in recent years due to its potential to address pressing environmental and economic challenges. This study applies the Bayesian Mindsponge Mindspongeconomics (BMM) framework/analytic method, based [...] Read more.
The circular economy (CE), a sustainability concept that promotes resource efficiency and waste reduction, has garnered significant popularity in recent years due to its potential to address pressing environmental and economic challenges. This study applies the Bayesian Mindsponge Mindspongeconomics (BMM) framework/analytic method, based on the Bayesian Mindsponge Framework (BMF), to the factors influencing young adults’ pro-environmental behavior and their purchases of green products at different price levels. The findings indicate that young adults who are knowledgeable about the CE and who value environmental protection and energy conservation are more likely to engage in waste sorting, while the factors that affect their willingness to pay (WTP) more for green and energy-saving products vary at different price tiers. This study demonstrates that knowledge of the CE, daily waste sorting habits, and environmental concern positively impact young adults’ WTP for products that are priced 5%, 10%, and 15% higher, respectively. Furthermore, this study also highlights the potential of educational programs and cultural influences in nurturing a generation that prioritizes environmental value. This research integrates multidisciplinary perspectives and offers practical implications for policymakers, educators, and businesses seeking to promote green literacy and foster an environmental culture among the youth, contributing to the broader goals of green transformation and sustainable development associated with the CE and the green economy, especially in the urban areas of emerging countries and beyond. Full article
Show Figures

Figure 1

23 pages, 7317 KiB  
Article
Intelligent Control Based on Usage Habits in a Domestic Refrigerator with Variable Speed Compressor for Energy-Saving
by Juan M. Belman-Flores, Donato Hernández-Fusilier, Juan J. García-Pabón and David A. Rodríguez-Valderrama
Clean Technol. 2024, 6(2), 528-550; https://doi.org/10.3390/cleantechnol6020028 - 30 Apr 2024
Cited by 4 | Viewed by 2223
Abstract
Maintaining adequate temperatures for preserving food in a domestic refrigerator is a task that is affected by several factors, including the daily use of the appliance. In this sense, this work presents the development of a novel control system based on fuzzy logic [...] Read more.
Maintaining adequate temperatures for preserving food in a domestic refrigerator is a task that is affected by several factors, including the daily use of the appliance. In this sense, this work presents the development of a novel control system based on fuzzy logic that considers usage habits such as the amount of food entering the refrigerator and the frequency of opening doors. Thus, the control comprises input variables corresponding to the internal temperatures of both compartments, the thermal load entered, and the refrigerator door-opening signal. By simulating the usage habits of a refrigerator with a variable-speed compressor, the control performance was evaluated. The results showed that implementing fuzzy control using usage habits was robust enough to maintain adequate thermal conditions within the compartments and a lower thermal fluctuation concerning the reference control of the refrigerator (factory control). In terms of energy, the fuzzy control resulted in an energy saving of 3.20% with the refrigerator empty (without thermal load) compared to the reference control. On the other hand, the individual integration of the thermal load in the fuzzy control resulted in 2.08% energy savings and 5.45% for the integration of the thermal load compared to the reference control. Finally, considering the combination of usage habits, the fuzzy control presented a higher energy consumption than the reference control, around 9.7%. In this case, the fuzzy control maintained more favorable thermal conditions in both compartments, whereas the reference control presented a warmer thermal condition in the freezer. Full article
Show Figures

Figure 1

Back to TopTop