Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = energy-saving and emission-reducing areas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3505 KiB  
Review
Solar Energy Solutions for Healthcare in Rural Areas of Developing Countries: Technologies, Challenges, and Opportunities
by Surafel Kifle Teklemariam, Rachele Schiasselloni, Luca Cattani and Fabio Bozzoli
Energies 2025, 18(15), 3908; https://doi.org/10.3390/en18153908 - 22 Jul 2025
Viewed by 391
Abstract
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to [...] Read more.
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to patient safety. This review explores the transformative potential of solar energy as a sustainable solution for powering healthcare facilities, reducing dependence on fossil fuels, and improving health outcomes. Consequently, energy harvesting is a vital renewable energy source that captures abundant solar and thermal energy, which can sustain medical centers by ensuring the continuous operation of life-saving equipment, lighting, vaccine refrigeration, sanitation, and waste management. Beyond healthcare, it reduces greenhouse gas emissions, lowers operational costs, and enhances community resilience. To address this issue, the paper reviews critical solar energy technologies, energy storage systems, challenges of energy access, and successful solar energy implementations in rural healthcare systems, providing strategic recommendations to overcome adoption challenges. To fulfill the aims of this study, a focused literature review was conducted, covering publications from 2005 to 2025 in the Scopus, ScienceDirect, MDPI, and Google Scholar databases. With targeted investments, policy support, and community engagement, solar energy can significantly improve healthcare access in underserved regions and contribute to sustainable development. Full article
Show Figures

Figure 1

27 pages, 4254 KiB  
Review
Dynamic Skin: A Systematic Review of Energy-Saving Design for Building Facades
by Jian Wang, Shengcai Li and Peng Ye
Buildings 2025, 15(14), 2572; https://doi.org/10.3390/buildings15142572 - 21 Jul 2025
Viewed by 333
Abstract
The construction industry is one of the main areas of energy consumption and carbon emissions, and strengthening research on the thermal performance of building facades can effectively promote energy conservation and emission reduction. Compared with traditional static enclosure structures, dynamic skin can adapt [...] Read more.
The construction industry is one of the main areas of energy consumption and carbon emissions, and strengthening research on the thermal performance of building facades can effectively promote energy conservation and emission reduction. Compared with traditional static enclosure structures, dynamic skin can adapt its functions, characteristics, and methods based on constantly changing environmental conditions and performance requirements. It has great potential in adapting to the environment, reducing energy consumption, adjusting shading and natural ventilation, and improving human thermal and visual comfort. To comprehensively understand the key technologies of dynamic skin energy-saving design, previous research results were comprehensively compiled from relevant databases. The research results indicate that various types of dynamic skins, intelligent materials, multi-layer facades, dynamic shading, and biomimetic facades are commonly used core technologies for dynamic facades. Parametric modeling, computer simulation, and multi-objective algorithms are commonly used to optimize the performance of dynamic skin. In addition, integrated technology design, interaction design, and lifecycle design should be effective methods for improving dynamic skin energy efficiency, resident satisfaction, and economic benefits. Despite current challenges, dynamic skin energy-saving technology remains one of the most effective solutions for future sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 601
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

23 pages, 615 KiB  
Article
Can New Quality Productivity Drive the Low-Carbon Transformation of Carbon-Intensive Industries? Macro and Micro Evidence from China
by Hui Wang, Jie Zhou, Kuiying Gu and Feng Dong
Energies 2025, 18(13), 3278; https://doi.org/10.3390/en18133278 - 23 Jun 2025
Viewed by 344
Abstract
Reducing carbon dioxide emissions within carbon-intensive industries is a critical strategy to effectively combat global warming. The accelerated cultivation and enhancement of new quality productivity has created new momentum directed towards industrial low-carbon transformation. Using data from a sample of Chinese provinces and [...] Read more.
Reducing carbon dioxide emissions within carbon-intensive industries is a critical strategy to effectively combat global warming. The accelerated cultivation and enhancement of new quality productivity has created new momentum directed towards industrial low-carbon transformation. Using data from a sample of Chinese provinces and enterprises between 2011 and 2022, this study quantifies, evaluates, and explores the influence and mechanisms of new quality productivity on the low-carbon transformation of carbon-intensive industries. The research findings show that: (1) Fostering new quality productivity effectively promotes the low-carbon transformation of carbon-intensive industries and plays a positive, empowering role. Industrial innovation, digital stimulation, technological innovation, and green empowerment all support the low-carbon transformation of carbon-intensive industries, with their respective impacts gradually decreasing in turn. (2) Mechanism analysis confirms a chain transmission mechanism of “new quality productivity—environmental protection investment—green innovation—the transformation of carbon-intensive industries” at the macro-provincial level. In micro-level carbon-intensive enterprises, a positive U-shaped relationship between new quality productivity and low-carbon transformation of carbon-intensive industries is evident, and the main pathways include increasing low-carbon, energy-saving investment and improving the ESG performance of high-carbon emission enterprises. (3) Advancing transformation is more pronounced in central and western areas, high-carbon areas, non-carbon trading pilot areas, and non-energy-rich ecologically fragile areas. The government and enterprises should take advantage of the development opportunities of new quality productivity and adopt low-carbon behaviors to promote transformational development. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

22 pages, 6810 KiB  
Article
Provincial-Level Carbon-Reduction Potential for Agricultural Irrigation in China
by Yuncheng Xu
Sustainability 2025, 17(12), 5501; https://doi.org/10.3390/su17125501 - 14 Jun 2025
Viewed by 452
Abstract
Globally, agricultural irrigation accounts for the majority of freshwater use and 15% of annual agricultural greenhouse gas emissions, highlighting its critical mitigation potential amid climate change. While localized Chinese studies have analyzed the water–energy–carbon nexus, nationwide assessments of irrigation carbon-reduction potential, integrating crop [...] Read more.
Globally, agricultural irrigation accounts for the majority of freshwater use and 15% of annual agricultural greenhouse gas emissions, highlighting its critical mitigation potential amid climate change. While localized Chinese studies have analyzed the water–energy–carbon nexus, nationwide assessments of irrigation carbon-reduction potential, integrating crop water requirements, water use, and energy consumption, remain limited due to scarce longitudinal panel data. This study fills this gap by evaluating provincial-level potentials in China (2004–2020) using national/provincial statistical data on crop areas, irrigation water, energy use, and climate parameters. Findings reveal pronounced spatial–temporal variations: Henan, Heilongjiang, and Shandong exhibit the highest crop water demands (driven by rice/maize/wheat), while Heilongjiang, Jiangsu, and Guangdong show substantial water-saving opportunities. Xinjiang has the largest amount of irrigation-related carbon emissions, whereas the northeastern provinces offer the greatest reduction potential. A positive correlation between irrigation-carbon efficiency and groundwater utilization underscores the need for improved groundwater management. By linking crop water requirements to emission reductions through a nationally representative dataset, this study provides empirical evidence for region-specific strategies to enhance water-use efficiency and reduce irrigation’s environmental footprint. The findings inform policymakers on balancing agricultural productivity with sustainability goals, addressing both local water scarcity and global decarbonization imperatives. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

36 pages, 1130 KiB  
Review
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
by Klaus Günter Steinhäuser and Markus Große Ophoff
Sustain. Chem. 2025, 6(2), 16; https://doi.org/10.3390/suschem6020016 - 10 Jun 2025
Viewed by 1408
Abstract
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite [...] Read more.
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas, while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear, with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality, oil, gas, and coal must be replaced by recycling plastics, renewable biomaterials, or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis, biotechnology, microreactors, and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD), meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity, reducing overall material flows is essential to stay within planetary boundaries. This shift requires political, economic, and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry, governments, and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation, but international agreements are necessary to establish a binding framework for action. Full article
Show Figures

Figure 1

31 pages, 3767 KiB  
Article
Curing Sustainability Assessment in Concrete Pavements: A 20-Year Simulation-Based Analysis in Urban Road Contexts
by Julián Pulecio-Díaz
Sustainability 2025, 17(12), 5299; https://doi.org/10.3390/su17125299 - 8 Jun 2025
Viewed by 608
Abstract
In urban areas with warm climates, a lack of proper curing during concrete pavement construction can significantly reduce service life, increase maintenance needs, and compromise sustainability goals. Despite its relevance, the comprehensive impact of curing has been poorly quantified from a multidimensional perspective. [...] Read more.
In urban areas with warm climates, a lack of proper curing during concrete pavement construction can significantly reduce service life, increase maintenance needs, and compromise sustainability goals. Despite its relevance, the comprehensive impact of curing has been poorly quantified from a multidimensional perspective. This study aims to evaluate the effect of applying a liquid curing compound on the sustainability of concrete slab pavements over a 20-year horizon using a simulation-based approach. Two scenarios, cured and uncured, were modeled with HIPERPAV®, incorporating site-specific climatic, structural, and material parameters. Based on projected maintenance cycles, nine sustainability indicators were calculated and grouped into environmental (CO2 emissions, energy, water, and waste), social (accidents, travel time, satisfaction, and jobs), and economic (life-cycle maintenance cost) dimensions. Statistical tests (ANOVA, Welch ANOVA, and Kruskal–Wallis) were applied to assess significance. Results showed that curing reduced CO2 emissions (−13.7%), energy consumption (−12.5%), and waste (−20.7%), while improving accident rates (−40.3%), user satisfaction (+17.8%), and maintenance cost savings (−9.5%). The findings support curing as a cost-effective and sustainability-enhancing strategy for urban pavement design and management. Full article
Show Figures

Figure 1

25 pages, 1848 KiB  
Article
Impact of Zero-Waste City Pilot Policies on Urban Energy Consumption Intensity: Causal Inference Based on Double Machine Learning
by Bingnan Guo, Yuren Qian, Xinyan Guo and Hao Zhang
Sustainability 2025, 17(11), 5039; https://doi.org/10.3390/su17115039 - 30 May 2025
Cited by 4 | Viewed by 488
Abstract
To scientifically assess the energy-saving effects of China’s zero-waste city pilot (ZWCP) policies and provide empirical evidence and policy insights for advancing pilot policies and accelerating energy conservation and emission reduction goals, this study selected 274 cities in China from 2010 to 2022 [...] Read more.
To scientifically assess the energy-saving effects of China’s zero-waste city pilot (ZWCP) policies and provide empirical evidence and policy insights for advancing pilot policies and accelerating energy conservation and emission reduction goals, this study selected 274 cities in China from 2010 to 2022 as the research sample, employing a double machine learning model to empirically analyze the impact of pilot policies on urban energy consumption intensity. The research results demonstrate that the ZWCP policies significantly reduced energy consumption intensity in pilot areas. Channel analysis reveals that this policy exerted a restraining effect on energy consumption intensity through industrial structure upgrading, green technology innovation, and enhanced environmental awareness. Heterogeneity analysis shows that policy effects were more pronounced in non-urban agglomeration regions, inland areas, and small-to-medium-sized cities. This study provides crucial decision-making references for the promotion and implementation of ZWCP policies during the “14th Five-Year Plan” period. Full article
Show Figures

Figure 1

16 pages, 4064 KiB  
Article
Environmental Benefits Evaluation of a Bike-Sharing System in the Boston Area: A Longitudinal Study
by Mengzhen Ding, Shaohua Zhang, Lemei Li, Yishuang Wu, Qiyao Yang and Jun Cai
Urban Sci. 2025, 9(5), 159; https://doi.org/10.3390/urbansci9050159 - 8 May 2025
Viewed by 734
Abstract
With increasing concerns over climate change and air pollution, sustainable transportation has become a critical component of modern city planning. Bike-sharing systems have emerged as an eco-friendly alternative to motorized transport, contributing to energy conservation and emission reduction. To elaborate on bike-sharing’s contribution [...] Read more.
With increasing concerns over climate change and air pollution, sustainable transportation has become a critical component of modern city planning. Bike-sharing systems have emerged as an eco-friendly alternative to motorized transport, contributing to energy conservation and emission reduction. To elaborate on bike-sharing’s contribution to urban sustainable development, this study conducts a quantitative analysis of its environmental benefits through a case study of the Bluebikes program in the Boston area, using a longitudinal dataset of 20.07 million bike trips from January 2015 to December 2024, with data between January 2020 and December 2021 excluded. A combination of Scheiner’s model and Multinomial Logit model was adopted to evaluate the substitution of Bluebikes trips, an optimized Seasonal Autoregressive Integrated Moving Average (SARIMA) model was employed to predict future usage, while energy savings were calculated by estimating reductions in gasoline and diesel consumption. The findings reveal that during the analyzed period, Bluebikes trips saved 2616.44 tons of oil equivalent and reduced CO2 and NOX emissions by 7614.96 and 16.43 tons, respectively. Furthermore, based on the historical trends, it is forecasted that the Bluebikes program will annually save an average of 723.66 tons of oil equivalent and decrease CO2 and NOX emissions by 2422.65 and 4.52 tons between 2025 and 2027. The results highlight the substantial environmental impact of Bluebikes and support policies that encourage their usage. Full article
Show Figures

Figure 1

24 pages, 4359 KiB  
Review
MSW Incineration Bottom Ash-Based Alkali-Activated Binders as an Eco-Efficient Alternative for Urban Furniture and Paving: Closing the Loop Towards Sustainable Construction Solutions
by Josep Maria Chimenos, Fabian Cuspoca, Alex Maldonado-Alameda, Jofre Mañosa, Joan Ramon Rosell, Ana Andrés, Gerard Faneca and Luisa F. Cabeza
Buildings 2025, 15(9), 1571; https://doi.org/10.3390/buildings15091571 - 7 May 2025
Viewed by 687
Abstract
Innovative approaches in the Portland cement industry, aligned with circular economy principles, offer a promising solution to reduce the environmental impacts. These methods can initially target the architectural elements with lower structural demands, such as urban furniture and paving, before being applied to [...] Read more.
Innovative approaches in the Portland cement industry, aligned with circular economy principles, offer a promising solution to reduce the environmental impacts. These methods can initially target the architectural elements with lower structural demands, such as urban furniture and paving, before being applied to areas with higher cement usage. Alkali-activated binders (AABs) made from secondary resources present a sustainable alternative to Portland cement (PC), promoting resource recovery, conservation, and a low-carbon economy. Incinerator bottom ash (IBA), traditionally landfilled, has shown potential as a precursor for AABs due to its aluminosilicate content. Repurposing IBA for urban furniture and paving transforms it into a valuable secondary resource. Accordingly, this is the first study to utilize IBA as the sole precursor for urban furniture or paving applications. Research, including state-of-the-art studies and proof of concept developed in this work, demonstrates that IBA-based AABs can produce cast concrete suitable for non-structural urban elements, meeting the technical, environmental, and ecotoxicological standards. Using IBA in AAB formulations not only reduces the reliance on primary raw materials but also contributes to significant energy savings in binder production and lowers greenhouse gas (GHG) emissions, resulting in a reduced carbon footprint. Furthermore, producing concrete from local residual resources, such as IBA, facilitates the reintegration of municipal waste into the production cycle at its point of origin, fostering a sustainable approach to urban development and supporting the circular economy. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

30 pages, 4100 KiB  
Article
Carbon Neutrality and Resilient Districts, a Common Strategy in European Union Countries in 2050
by Modeste Kameni Nematchoua, Minoson Sendrahasina Rakotomalala and Sigrid Reiter
Atmosphere 2025, 16(5), 508; https://doi.org/10.3390/atmos16050508 - 28 Apr 2025
Cited by 1 | Viewed by 630
Abstract
Confronted with the climate emergency, reducing CO2 emissions has become a priority for all nations of the world because the follow-up of humanity depends on it. Most European Union (EU) member states have pledged to cut their net greenhouse gas emissions by [...] Read more.
Confronted with the climate emergency, reducing CO2 emissions has become a priority for all nations of the world because the follow-up of humanity depends on it. Most European Union (EU) member states have pledged to cut their net greenhouse gas emissions by at least 55% by 2030 and reach full carbon neutrality by 2050, using 1990 as the baseline year. Despite this common effort, there is still a lack of effective decision-making on carbon neutrality strategies applied throughout the life cycle of a building in all EU countries. A common strategy is proposed in this study to fill this gap in the literature. The building sector is a real lever for reducing the carbon footprint and saving energy. Currently, the methodology for achieving large-scale carbon neutrality is well established. However, there is only a limited number of experts worldwide who have mastered this technology, making it challenging to develop a standardized approach for all nations. The absence of extensive, regular, and consistent data on carbon emissions has considerably hindered the understanding of the root causes of climate change at both the building and neighborhood levels. Is it not it time to break this barrier? With this in mind, this study was carried out with the intention of proposing a common method to achieve carbon neutrality at the neighborhood scale in European Union countries. The most significant parameters having a direct impact on carbon emissions have facilitated the adaptation of the three types of neighborhood in the different capitals of the EU countries, in particular, local building materials, microclimate, the energy mix of each country, and the mode of daily transport. The life cycle assessment of the three districts was conducted using the Plaides LCAv6.25.3 tool in combination with Meteonorm software version 8.2.0, considering a 100-year lifespan for the buildings. In addition, the cost of the various environmental impacts is assessed based on the monetary indicators for European Committee for Standardization indicators method. The main results showed that the distribution of carbon dioxide is 73.3% higher in urban areas than in sustainable neighborhoods and 39.0% higher in urban districts than in rural districts. Nearly zero emissions in the next decade are again possible by applying the scenario involves global warming combined with the complete (100%) renovation of all buildings and the transition to 100% electric vehicles along with the use of solar panels. This strategy makes it possible to reduce between 90.1% and 99.9% of the emission rate in residential districts regarding EU countries. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

28 pages, 4496 KiB  
Article
Revealing the Driving Factors of Household Energy Consumption in High-Density Residential Areas of Beijing Based on Explainable Machine Learning
by Zizhuo Qi, Lu Zhang, Xin Yang and Yanxia Zhao
Buildings 2025, 15(7), 1205; https://doi.org/10.3390/buildings15071205 - 7 Apr 2025
Viewed by 655
Abstract
This study explores the driving factors of household energy consumption in high-density residential areas of Beijing and proposes targeted energy-saving strategies. Data were collected through field surveys, questionnaires, and interviews, covering 16 influencing factors across household, building, environment, and transportation categories. A hyperparameter-optimized [...] Read more.
This study explores the driving factors of household energy consumption in high-density residential areas of Beijing and proposes targeted energy-saving strategies. Data were collected through field surveys, questionnaires, and interviews, covering 16 influencing factors across household, building, environment, and transportation categories. A hyperparameter-optimized ensemble model (XGBoost, RF, GBDT) was employed, with XGBoost combined with genetic algorithm tuning performing best. SHAP analysis revealed that key factors varied by season but included floor level, daily travel distance, building age, greening rate, water bodies, and household age. The findings inform strategies such as optimizing workplace–residence layout, improving building insulation, increasing green spaces, and promoting community energy-saving programs. This study provides refined data support for energy management in high-density residential areas, enhances the application of energy-saving technologies, and encourages low-carbon lifestyles. By effectively reducing energy consumption and carbon emissions during the operational phase of residential areas, it contributes to urban green development and China’s “dual carbon” goals. Full article
Show Figures

Figure 1

21 pages, 1672 KiB  
Article
Energy Efficiency, CO2 Emission Reduction, and Real Estate Investment in Northern Europe: Trends and Impact on Sustainability
by Laima Okunevičiūtė Neverauskienė, Manuela Tvaronavičienė and Dominykas Linkevičius
Buildings 2025, 15(7), 1195; https://doi.org/10.3390/buildings15071195 - 5 Apr 2025
Viewed by 634
Abstract
Energy efficiency and CO2 emission reduction are key objectives related to climate change mitigation, sustainable development, and energy resource management. In the Nordic context, energy consumption trends in both the residential and industrial sectors are closely linked to European Union policies, technological [...] Read more.
Energy efficiency and CO2 emission reduction are key objectives related to climate change mitigation, sustainable development, and energy resource management. In the Nordic context, energy consumption trends in both the residential and industrial sectors are closely linked to European Union policies, technological innovation, and real estate investments. In recent decades, the development and renovation of the real estate sector has become one of the most important factors determining changes in energy consumption, especially in residential buildings, which remain among the largest energy consumers and polluters. In this context, countries’ efforts to reduce CO2 emissions and increase energy efficiency are inseparable from the real estate sector’s contribution to these processes, by promoting investments in building modernization and energy-saving technologies. However, the real estate sector remains a complex area where economic interests need to be reconciled with environmental objectives, especially in the context of EU strategies such as the Renovation Wave and the Energy Efficiency Directive. This article examines the links between real estate investment, energy efficiency, and CO2 emission reduction, based on quantitative analysis, to assess how the development of the real estate sector and EU policy measures affect sustainable development in Northern Europe. This study uses advanced quantitative methods, including a panel regression model, which helps better reveal the long-term dependencies between investment, energy consumption, and emissions dynamics. This article highlights the importance of the real estate sector in implementing sustainability policies and suggests strategic solutions that can help reconcile economic and environmental priorities. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 4313 KiB  
Systematic Review
Building a Greener Future: How Earth Blocks Are Reshaping Sustainability and Circular Economy in Construction
by Swati Sinha and Jayaraman Sethuraman Sudarsan
Architecture 2025, 5(2), 25; https://doi.org/10.3390/architecture5020025 - 31 Mar 2025
Cited by 1 | Viewed by 1506
Abstract
Sustainability has become an important focus in the construction industry due to growing environmental concerns, resource depletion, and the urgency to reduce greenhouse gas emissions. The construction sector contributes significantly to the world’s carbon emissions and energy consumption, making it a prime candidate [...] Read more.
Sustainability has become an important focus in the construction industry due to growing environmental concerns, resource depletion, and the urgency to reduce greenhouse gas emissions. The construction sector contributes significantly to the world’s carbon emissions and energy consumption, making it a prime candidate for sustainable transformation. In response to these challenges, there has been a shift towards utilizing earth-based products, especially earth blocks, as sustainable alternatives. Compressed stabilized earth blocks (CSEBs) are garnering increased attention because of their ability to lower environmental impact. These blocks are made from locally sourced materials, reducing the transportation-related emissions and energy use. Their production processes typically require far less energy than traditional building blocks, which results in reduced carbon footprints. Earth blocks also contribute to sustainability through their thermal performance, which can enhance energy efficiency in buildings by naturally regulating indoor temperatures. As a result, less artificial heating and cooling is required, leading to further energy savings. Furthermore, CSEBs and other earth blocks can incorporate waste materials promoting a circular economy and resource efficiency. This paper explores the multifaceted role of earth blocks in sustainable construction by conducting a comprehensive systematic and bibliometric analysis. By evaluating research trends, the evolution of the field, and the broader impact of these materials, this study aims to provide a deeper understanding of the contributions of earth blocks to sustainability. Key areas of focus include identifying prominent research themes, emerging technologies, and future opportunities for incorporating earth blocks into mainstream construction practices. This approach aligns with the vision of advancing sustainable architecture and green buildings to minimize environmental pollution and resource consumption while supporting the transition to a circular economy in the built environment. Full article
Show Figures

Figure 1

24 pages, 10204 KiB  
Review
Decarbonization of Shipping and Progressing Towards Reducing Greenhouse Gas Emissions to Net Zero: A Bibliometric Analysis
by Mohan Anantharaman, Abdullah Sardar and Rabiul Islam
Sustainability 2025, 17(7), 2936; https://doi.org/10.3390/su17072936 - 26 Mar 2025
Cited by 2 | Viewed by 1467
Abstract
The International Maritime Organization (IMO) is the regulator for the safety and pollution prevention of ships. They have set an ambitious target of driving International Shipping to achieve net-zero greenhouse gas (GHG) emissions in 2050 by the process of decarbonization of shipping. Decarbonization [...] Read more.
The International Maritime Organization (IMO) is the regulator for the safety and pollution prevention of ships. They have set an ambitious target of driving International Shipping to achieve net-zero greenhouse gas (GHG) emissions in 2050 by the process of decarbonization of shipping. Decarbonization of shipping is integral to sustainability, as it can reduce GHG emissions and provide a clean environment in a world that is conducive to the good health and well-being of our future kith and kin. Decarbonization of shipping may be achieved using alternate low-carbon fuels, a more efficient ship operation to save energy, or redesigning the ship’s hull. The purpose of this article is to conduct a bibliometric analysis of the research papers conducted in the past decade on the initiatives adopted by the shipping industry to work towards the net-zero goal. This study utilizes the Scopus database, renowned for its extensive collection of scientific papers. Moreover, to analyze and visualize the data, the bibliometric software tools VOSviewer 1.6.20, Bibliometrix 4.4.0, and Harzings’ 8.17.4863 have been used. These tools facilitated the assessment of the research output in this bibliometric study. Our findings reveal a steady increase in publications over the years, with a notable rise in research interest from 2015 onward. The most frequently discussed topics include greenhouse gases, emission control, and energy efficiency, with notable contributions from the United Kingdom, China, and Scandinavian countries. The study also highlights the leading journals publishing about this research area. Future research directions include exploring alternative fuels and more inclusive policy frameworks for maritime decarbonization. Full article
(This article belongs to the Special Issue Control of Traffic-Related Emissions to Improve Air Quality)
Show Figures

Figure 1

Back to TopTop