Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = energy harvesting floor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3047 KiB  
Review
Microgeneration of Electricity in Gyms—A Review and Conceptual Study
by Waldemar Moska and Andrzej Łebkowski
Energies 2025, 18(11), 2912; https://doi.org/10.3390/en18112912 - 2 Jun 2025
Viewed by 636
Abstract
This article presents a comprehensive analysis of the potential for microgeneration of electrical energy from human physical activity and reviews current commercial and research solutions, including stationary bicycles, treadmills, rowing ergometers, strength equipment, and kinetic floor systems. The physiological foundations of human energy [...] Read more.
This article presents a comprehensive analysis of the potential for microgeneration of electrical energy from human physical activity and reviews current commercial and research solutions, including stationary bicycles, treadmills, rowing ergometers, strength equipment, and kinetic floor systems. The physiological foundations of human energy generation are examined, with attention to key factors such as age, gender, fitness level, maximum oxygen uptake, heart rate, and hydration. The study includes mathematical models of energy conversion from metabolic to electrical output, incorporating fatigue as a limiting factor in long-duration performance. Available energy storage technologies (e.g., lithium-ion batteries, supercapacitors, and flywheels) and intelligent energy management systems (EMS) for use in sports facilities and net-zero energy buildings are also reviewed. As part of the study, a conceptual design of a multifunctional training and diagnostic device is proposed to illustrate potential technological directions. This device integrates microgeneration with dynamic physiological monitoring and adaptive load control through power electronic conversion. The paper highlights both the opportunities and limitations of harvesting human-generated energy and outlines future directions for sustainable energy applications in fitness environments. A preliminary economic analysis is also included, showing that while the energy payback alone is limited, the device offers commercial potential when combined with diagnostic and smart fitness services and may contribute to broader building energy efficiency strategies through integration with intelligent energy systems. Full article
(This article belongs to the Special Issue Advanced Technologies for Energy-Efficient Buildings)
Show Figures

Figure 1

13 pages, 12433 KiB  
Article
Piezoelectric Sensors Pressed by Human Footsteps for Energy Harvesting
by Kyrillos K. Selim, Idris H. Smaili, Hossam M. Yehia, M. M. R. Ahmed and Demyana A. Saleeb
Energies 2024, 17(10), 2297; https://doi.org/10.3390/en17102297 - 10 May 2024
Cited by 3 | Viewed by 11307
Abstract
Human footsteps are a sustainable energy source that is derived from kinetic energy. As a result, in this study, piezoelectric sensors placed beneath floor tiles were excited by human footsteps to provide practical electrical energy. A simple rectifying circuit with a filter was [...] Read more.
Human footsteps are a sustainable energy source that is derived from kinetic energy. As a result, in this study, piezoelectric sensors placed beneath floor tiles were excited by human footsteps to provide practical electrical energy. A simple rectifying circuit with a filter was used to capture electrical power. The floor tile is 455 mm in length and 405 mm in width. Two light-emitted diodes were lit up as the actual load by utilising electrical energy obtained from the kinetic energy generated by human footsteps. The greatest attainable power that could be extracted from the suggested floor tile was 249.6 milliwatts, with an approximate cost of $10.2. Full article
Show Figures

Figure 1

6 pages, 1873 KiB  
Proceeding Paper
A Novel Low-Cost Mechanism for Energy Generation through Footsteps
by Syed Azfar Imam Zaidi, Shahid Iqbal, Fahad Hussain, Muhammad Hammad Ikram, Waqas Javid and Muhammad Mateen
Mater. Proc. 2024, 17(1), 18; https://doi.org/10.3390/materproc2024017018 - 15 Apr 2024
Cited by 1 | Viewed by 2617
Abstract
Energy is the primary concern of the modern era and the requirement of energy is being increased day by day; energy resources are not sufficiently available for sustainable development. It is crucial to generate affordable and pollution-free sources of energy to meet this [...] Read more.
Energy is the primary concern of the modern era and the requirement of energy is being increased day by day; energy resources are not sufficiently available for sustainable development. It is crucial to generate affordable and pollution-free sources of energy to meet this required demand. Walking is a common daily activity for humans; the kinetic energy from walking is converted into mechanical energy. Moreover, this energy is converted into electrical power using a rack-and-pinion mechanism which is simply a non-conventional method of producing electric current. In this research study, a simple and low-cost rack-and-pinion mechanism with a flywheel is introduced to enhance the performance and efficiency of energy conversion from kinetic energy to mechanical energy and subsequently into electrical energy. The results showed that the proposed footstep floor tile generated an average power of 3 watts for a 0.5 s duration with a peak load of 60 kg. The electrical energy produced per step was noted as 1.8 Joules. A percentage of 75% of the total potential energy theoretically accessible was transmitted by the energy-harvesting paver, and 50% of it was successfully converted into electricity. The generated energy is stored in a backup battery bank system and can be used to charge smart devices, providing a cost-effective and pollution-free solution. Full article
(This article belongs to the Proceedings of CEMP 2023)
Show Figures

Figure 1

3 pages, 327 KiB  
Abstract
Energy-Harvesting Smart Tiles for Human–Machine Interface Applications
by Alessandro Zompanti, Paolo Romeo, Anna Sabatini, Luca Vollero, Marco Santonico and Giorgio Pennazza
Proceedings 2024, 97(1), 35; https://doi.org/10.3390/proceedings2024097035 - 18 Mar 2024
Viewed by 880
Abstract
In this work, a human–machine interface with energy harvesting capabilities was developed and a modular floor made of tiles equipped with piezoelectric elements was produced. The developed platform was tested as a position-tracking system for a human user, allowing the tracking of the [...] Read more.
In this work, a human–machine interface with energy harvesting capabilities was developed and a modular floor made of tiles equipped with piezoelectric elements was produced. The developed platform was tested as a position-tracking system for a human user, allowing the tracking of the lower body in a virtual reality environment. Moreover, the energy collected by the device was evaluated. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

10 pages, 5374 KiB  
Communication
A High-Reliability Piezoelectric Tile Transducer for Converting Bridge Vibration to Electrical Energy for Smart Transportation
by Thanh Huyen Pham, Thanh Danh Bui and Toan Thanh Dao
Micromachines 2023, 14(5), 1058; https://doi.org/10.3390/mi14051058 - 17 May 2023
Cited by 9 | Viewed by 6312
Abstract
Piezoelectric energy transducers offer great potential for converting the vibrations of pedestrian footsteps or cars moving on a bridge or road into electricity. However, existing piezoelectric energy-harvesting transducers are limited by their poor durability. In this paper, to enhance this durability, a piezoelectric [...] Read more.
Piezoelectric energy transducers offer great potential for converting the vibrations of pedestrian footsteps or cars moving on a bridge or road into electricity. However, existing piezoelectric energy-harvesting transducers are limited by their poor durability. In this paper, to enhance this durability, a piezoelectric energy transducer with a flexible piezoelectric sensor is fabricated in a tile protype with indirect touch points and a protective spring. The electrical output of the proposed transducer is examined as a function of pressure, frequency, displacement, and load resistance. The maximum output voltage and maximum output power obtained were 6.8 V and 4.5 mW, respectively, at a pressure of 70 kPa, a displacement of 2.5 mm, and a load resistance of 15 kΩ. The designed structure limits the risk of destroying the piezoelectric sensor during operation. The harvesting tile transducer can work properly even after 1000 cycles. Furthermore, to demonstrate its practical applications, the tile was placed on the floor of an overpass and a walking tunnel. Consequently, it was observed that the electrical energy harvested from the pedestrian footsteps could power an LED light fixture. The findings suggest that the proposed tile offers promise with respect to harvesting energy produced during transportation. Full article
(This article belongs to the Special Issue Smart Sensing)
Show Figures

Figure 1

16 pages, 6376 KiB  
Article
Triboelectric Energy-Harvesting Floor Tile
by Panu Thainiramit, Subhawat Jayasvasti, Phonexai Yingyong, Songmoung Nandrakwang and Don Isarakorn
Materials 2022, 15(24), 8853; https://doi.org/10.3390/ma15248853 - 12 Dec 2022
Cited by 2 | Viewed by 4314
Abstract
The aim of this study was to investigate the real-world electrical parameters that strongly affected the performance of a triboelectric energy-harvesting floor tile design: triboelectric material thickness, cover plate displacement distance or gap width, and cover plate pressing frequency, so that real-world specifications [...] Read more.
The aim of this study was to investigate the real-world electrical parameters that strongly affected the performance of a triboelectric energy-harvesting floor tile design: triboelectric material thickness, cover plate displacement distance or gap width, and cover plate pressing frequency, so that real-world specifications of the harvesting floor tile can be accurately specified. The structure of the designed triboelectric energy harvester, with readily available polytetrafluoroethylene (PTFE) film and aluminum foil, was simple and hence easy to fabricate, and the material cost was low. A square wave was used to simulate the pressing frequency on the test bench’s cover plate. The results showed that the voltage and current were proportional to the gap width, and the thinner the triboelectric layer thickness, the higher the output voltage and current. A test bench with a 0.2 mm thick PTFE triboelectric layer generated the highest energy output. In a later experiment, a triboelectric energy-harvesting floor tile (TEHFT) prototype was constructed with 0.1 and 0.2 mm thick PTFE layers. We found that at 2 Hz stepping frequency and 0.1 mm PTFE thickness, the optimal load and cumulative energy of the TEHFT were 0.8 MΩ and 3.81 mJ, respectively, while with 0.2 mm PTFE thickness, these two parameters were 1.1 MΩ and 7.69 mJ, respectively. The TEHFT with 0.2 mm thick PTFE layer was able to illuminate a series of 100 to 150 LEDs, sufficient power to drive small electronics and sensor nodes. This discovery provides important data on the structure, material, and contact surface area of a TEHFT that can be adjusted to suit specific requirements of a special function triboelectric energy harvester. Full article
(This article belongs to the Special Issue Smart Materials and Devices for Energy Harvesting, Volume II)
Show Figures

Figure 1

14 pages, 4415 KiB  
Article
Fabrication of Metasurfaces on Building Construction Materials for Potential Electromagnetic Applications in the Microwave Band
by Zacharias Viskadourakis, Konstantinos Grammatikakis, Klytaimnistra Katsara, Argyri Drymiskianaki and George Kenanakis
Materials 2022, 15(20), 7315; https://doi.org/10.3390/ma15207315 - 19 Oct 2022
Cited by 5 | Viewed by 2443
Abstract
Energy self-sufficiency, as well as optimal management of power in buildings is gaining importance, while obtaining power from traditional fossil energy sources is becoming more and more expensive. In this context, millimeter-scale metasurfaces can be employed to harvest energy from microwave sources. They [...] Read more.
Energy self-sufficiency, as well as optimal management of power in buildings is gaining importance, while obtaining power from traditional fossil energy sources is becoming more and more expensive. In this context, millimeter-scale metasurfaces can be employed to harvest energy from microwave sources. They can also be used as sensors in the microwave regime for efficient power management solutions. In the current study, a simple spray printing method is proposed to develop metasurfaces in construction materials, i.e., plasterboard and wood. Such materials are used in the interior design of buildings; therefore, the implementation of metasurfaces in large areas, such as walls, doors and floors, is realized. The fabricated metasurfaces were characterized regarding their electromagnetic performance. It is hereby shown that the investigated metasurfaces exhibit an efficient electromagnetic response in the frequency range (4–7 GHz), depending on the MS. Thus, spray-printed metasurfaces integrated on construction materials can potentially be used for electromagnetic applications, for buildings’ power self-efficiency and management. Full article
(This article belongs to the Special Issue Theory and Applications of Metamaterials)
Show Figures

Graphical abstract

18 pages, 6564 KiB  
Article
Design of a More Efficient Rotating-EM Energy Floor with Lead-Screw and Clutch Mechanism
by Thitima Jintanawan, Gridsada Phanomchoeng, Surapong Suwankawin, Weeraphat Thamwiphat, Varinthorn Khunkiat and Wasu Watanasiri
Energies 2022, 15(18), 6539; https://doi.org/10.3390/en15186539 - 7 Sep 2022
Cited by 9 | Viewed by 3289
Abstract
There is an interest in harvesting energy from people’s footsteps in crowded areas to power smart electronic devices with low consumption. The average power consumption of these devices is approximately 10 μW. The energy from our footsteps is green and free, because walking [...] Read more.
There is an interest in harvesting energy from people’s footsteps in crowded areas to power smart electronic devices with low consumption. The average power consumption of these devices is approximately 10 μW. The energy from our footsteps is green and free, because walking is a routine activity in everyday life. The energy floor is one of the most efficient pieces of equipment in vibration-based energy harvesting. The paper aims to improve the previous design of the energy floor—called Genpath—which uses a rotational electromagnetic (EM) technique to generate electricity from human footsteps. The design consists of two main parts of (1) the EM generator, including the lead-screw mechanism for translation-to-rotation conversion, and (2) the Power Management and Storage (PMS) circuit. The improvement was focused on the part of the EM generator. A thorough investigation of the design components reveals that the EM generator shaft in the previous Genpath design cannot continuously rotate when the floor-tile reaches the bottom end, resulting in no energy gain. Therefore, a one-way clutch is implemented to the system to disengage the generator shaft from the lead-screw motion when the floor-tile reaches the allowable displacement. During the disengagement, the EM generator shaft still proceeds with a free rotation and could generate more power. In our analysis, the dynamic model of the electro-mechanical systems with the one-way clutch was successfully developed and used to predict the energy performances of the VEH floors and fine-tune the design parameters. The analytical result is shown that the spring stiffness mainly affects the force transmitted to the EM generator, and then the induced voltage and power of the generator, thus, the value of the stiffness is one of the critical design parameters to optimize. Finally, the new prototype consisting of 12-V-DC generator, mechanisms of lead-screw and clutch, as well as coil springs with the optimal stiffness of 1700 N/m was built and tested. The average energy produced by the new prototype is 3637 mJ (or average power of 3219 mW), per footstep which is 2935 mJ greater than that of the previous design. Moreover, to raise the social awareness about energy usage, the sets of Genpath have been used to organize an exhibition, “Genpath Empower our Journey”. The people who stroll forward on the paths can realize how much energy they gain from their footsteps. Full article
(This article belongs to the Special Issue Vibration-Based Energy Harvesters)
Show Figures

Figure 1

17 pages, 8628 KiB  
Article
An Experimental Study of the Aeroacoustic Properties of a Propeller in Energy Harvesting Configuration
by Paolo Candeloro, Edoardo Martellini, Robert Nederlof, Tomas Sinnige and Tiziano Pagliaroli
Fluids 2022, 7(7), 217; https://doi.org/10.3390/fluids7070217 - 27 Jun 2022
Cited by 7 | Viewed by 3151
Abstract
The aim of the present manuscript is to investigate the noise footprint of an isolated propeller in different flight configurations for the propulsion of a hybrid-electric aircraft. Experimental tests were performed at the Low-Turbulence Tunnel located at Delft University of Technology with a [...] Read more.
The aim of the present manuscript is to investigate the noise footprint of an isolated propeller in different flight configurations for the propulsion of a hybrid-electric aircraft. Experimental tests were performed at the Low-Turbulence Tunnel located at Delft University of Technology with a powered propeller model and flush-mounted microphones in the tunnel floor. The propeller was investigated at different advance ratios in order to study the noise impact in propulsive and energy harvesting configurations. For brevity, this work only reports the results at the conditions of maximum efficiency in both propulsive and energy harvesting regimes, for a fixed blade pitch setting. Comparing these two configurations, a frequency-domain analysis reveals a significant modification in the nature of the noise source. In the propulsive configuration, most of the energy is related to the tonal noise component, as expected for an isolated propeller; however, in energy harvesting configuration, the broadband noise component increases significantly compared to the propulsive mode. A more detailed analysis requires separation of the two noise components and, for this purpose, an innovative decomposition strategy based on proper orthogonal decomposition (POD) has been defined. This novel technique shows promising results; both in the time and in the Fourier domains the two reconstructed components perfectly describe the original signal and no phase delays or other mathematical artifices are introduced. In this sense, it can represent a very powerful tool to identify noise sources and, at the same time, to define a proper control strategy aimed at noise mitigation. Full article
Show Figures

Figure 1

14 pages, 5203 KiB  
Article
Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure
by Xiang Zhong, Hengyang Wang, Lin Chen and Mingjie Guan
Micromachines 2022, 13(5), 736; https://doi.org/10.3390/mi13050736 - 3 May 2022
Cited by 2 | Viewed by 3100
Abstract
Recently, research on the energy harvesting floor is attracting more and more attention due to its possible application in the smart house, invasion monitoring, internet of things, etc. This paper introduced a design and comparative study of a small-stroke piezoelectric energy harvesting floor [...] Read more.
Recently, research on the energy harvesting floor is attracting more and more attention due to its possible application in the smart house, invasion monitoring, internet of things, etc. This paper introduced a design and comparative study of a small-stroke piezoelectric energy harvesting floor based on a multi-layer piezoelectric beam structure. The multi-layer piezoelectric beams are designed based on simply supported beams in an interdigitated manner. Theoretical analysis is explored to find out the beam number and layer number of the structure. Through this design, the input power from the human footsteps was effectively utilized and transformed into electrical power. The designed piezoelectric energy harvesting floor structure was tested by our designed stepping machine, which can simulate the stepping effect of a walking human on the floor with different parameters such as stepping frequency. Comparative studies of the energy harvester are carried out regarding different stepping frequencies, external circuits, and initial beam shapes. The experimental results showed that the maximum output power of a group of four-layer prototypes was 960.9 µW at a stroke of 4 mm and a step frequency of 0.83 Hz, with the beams connected in parallel. Full article
(This article belongs to the Special Issue Piezoelectric Energy Harvesting: Analysis, Design and Fabrication)
Show Figures

Figure 1

17 pages, 20300 KiB  
Article
Methyl Orange-Doped Polypyrrole Promoting Growth of ZIF-8 on Cellulose Fiber with Tunable Tribopolarity for Triboelectric Nanogenerator
by Qiang Li, Xianhui An and Xueren Qian
Polymers 2022, 14(2), 332; https://doi.org/10.3390/polym14020332 - 14 Jan 2022
Cited by 25 | Viewed by 4042
Abstract
Cellulose fiber (CelF) is a biodegradable and renewable material with excellent performance but negligible triboelectric polarizability. Methods to enhance and rationally tune the triboelectric properties of CelF are needed to further its application for energy harvesting. In this work, methyl-orange-doped polypyrrole (MO-PPy) was [...] Read more.
Cellulose fiber (CelF) is a biodegradable and renewable material with excellent performance but negligible triboelectric polarizability. Methods to enhance and rationally tune the triboelectric properties of CelF are needed to further its application for energy harvesting. In this work, methyl-orange-doped polypyrrole (MO-PPy) was in situ coated on CelF as a mediating layer to promote the growth of metal–organic framework ZIF-8 and to construct a cellulose-based triboelectric nanogenerator (TENG). The results showed that a small amount of MO-PPy generated in situ significantly promoted the growth of ZIF-8 on CelF, and the ZIF-8 deposition ratio was able to increase from 7.8% (ZIF-8/CelF) to 31.8% (ZIF-8/MO-PPy@CelF). ZIF-8/MO-PPy@CelF remained electrically conductive and became triboelectrically positive, and the triboelectricity’s positivity was improved with the increase in the ZIF-8 deposition ratio. The cellulose-based TENG constructed with ZIF-8/MO-PPy@CelF (31.8% ZIF-8 deposition ratio) and polytetrafluoroethylene (PTFE) could generate a transfer charge of 47.4 nC, open-circuit voltage of 129 V and short-circuit current of 6.8 μA—about 4 times higher than those of ZIF-8/CelF (7.8% ZIF-8 deposition ratio)—and had excellent cycling stability (open-circuit voltage remained almost constant after 10,000 cycles). MO-PPy not only greatly facilitated the growth of ZIF-8 on CelF, but also acted as an electrode active phase for TENG. The novel TENG based on ZIF-8/MO-PPy@CelF composite has cheerful prospects in many applications, such as self-powered supercapacitors, sensors and monitors, smart pianos, ping-pong tables, floor mats, etc. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

38 pages, 13422 KiB  
Review
Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: A Review
by Paolo Visconti, Laura Bagordo, Ramiro Velázquez, Donato Cafagna and Roberto De Fazio
Energies 2022, 15(2), 432; https://doi.org/10.3390/en15020432 - 7 Jan 2022
Cited by 13 | Viewed by 18171
Abstract
Technological innovation has increased the global demand for electrical power and energy. Accordingly, energy harvesting has become a research area of primary interest for the scientific community and companies because it constitutes a sustainable way to collect energy from various sources. In particular, [...] Read more.
Technological innovation has increased the global demand for electrical power and energy. Accordingly, energy harvesting has become a research area of primary interest for the scientific community and companies because it constitutes a sustainable way to collect energy from various sources. In particular, kinetic energy generated from human walking or vehicle movements on smart energy floors represents a promising research topic. This paper aims to analyze the state-of-art of smart energy harvesting floors to determine the best solution to feed a lighting system and charging columns. In particular, the fundamentals of the main harvesting mechanisms applicable in this field (i.e., piezoelectric, electromagnetic, triboelectric, and relative hybrids) are discussed. Moreover, an overview of scientific works related to energy harvesting floors is presented, focusing on the architectures of the developed tiles, the transduction mechanism, and the output performances. Finally, a survey of the commercial energy harvesting floors proposed by companies and startups is reported. From the carried-out analysis, we concluded that the piezoelectric transduction mechanism represents the optimal solution for designing smart energy floors, given their compactness, high efficiency, and absence of moving parts. Full article
Show Figures

Figure 1

20 pages, 11035 KiB  
Review
Recent Progress in Devices Based on Magnetoelectric Composite Thin Films
by Deepak Rajaram Patil, Ajeet Kumar and Jungho Ryu
Sensors 2021, 21(23), 8012; https://doi.org/10.3390/s21238012 - 30 Nov 2021
Cited by 28 | Viewed by 5005
Abstract
The strain-driven interfacial coupling between the ferromagnetic and ferroelectric constituents of magnetoelectric (ME) composites makes them potential candidates for novel multifunctional devices. ME composites in the form of thin-film heterostructures show promising applications in miniaturized ME devices. This article reports the recent advancement [...] Read more.
The strain-driven interfacial coupling between the ferromagnetic and ferroelectric constituents of magnetoelectric (ME) composites makes them potential candidates for novel multifunctional devices. ME composites in the form of thin-film heterostructures show promising applications in miniaturized ME devices. This article reports the recent advancement in ME thin-film devices, such as highly sensitive magnetic field sensors, ME antennas, integrated tunable ME inductors, and ME band-pass filters, is discussed. (Pb1−xZrx)TiO3 (PZT), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), Aluminium nitride (AlN), and Al1−xScxN are the most commonly used piezoelectric constituents, whereas FeGa, FeGaB, FeCo, FeCoB, and Metglas (FeCoSiB alloy) are the most commonly used magnetostrictive constituents in the thin film ME devices. The ME field sensors offer a limit of detection in the fT/Hz1/2 range at the mechanical resonance frequency. However, below resonance, different frequency conversion techniques with AC magnetic or electric fields or the delta-E effect are used. Noise floors of 1–100 pT/Hz1/2 at 1 Hz were obtained. Acoustically actuated nanomechanical ME antennas operating at a very-high frequency as well as ultra-high frequency (0.1–3 GHz) range, were introduced. The ME antennas were successfully miniaturized by a few orders smaller in size compared to the state-of-the-art conventional antennas. The designed antennas exhibit potential application in biomedical devices and wearable antennas. Integrated tunable inductors and band-pass filters tuned by electric and magnetic field with a wide operating frequency range are also discussed along with miniaturized ME energy harvesters. Full article
(This article belongs to the Special Issue Magnetoelectric Thin-Film Based Devices)
Show Figures

Figure 1

11 pages, 3303 KiB  
Article
Module-Type Triboelectric Nanogenerators Capable of Harvesting Power from a Variety of Mechanical Energy Sources
by Jaehee Shin, Sungho Ji, Jiyoung Yoon and Jinhyoung Park
Micromachines 2021, 12(9), 1043; https://doi.org/10.3390/mi12091043 - 29 Aug 2021
Cited by 10 | Viewed by 4147
Abstract
In this study, we propose a module-type triboelectric nanogenerator (TENG) capable of harvesting electricity from a variety of mechanical energy sources and generating power from diverse forms that fit the modular structure of the generator. The potential energy and kinetic energy of water [...] Read more.
In this study, we propose a module-type triboelectric nanogenerator (TENG) capable of harvesting electricity from a variety of mechanical energy sources and generating power from diverse forms that fit the modular structure of the generator. The potential energy and kinetic energy of water are used for the rotational motion of the generator module, and electricity is generated by the contact/separation generation mode between the two triboelectric surfaces inside the rotating TENG. Through the parametric design of the internal friction surface structure and mass ball, we optimized the output of the proposed structure. To magnify the power, experiments were conducted to optimize the electrical output of the series of the TENG units. Consequently, outputs of 250 V and 11 μA were obtained when the angle formed between the floor and the housing was set at 0° while nitrile was set as the positively charged material and the frequency was set at 7 Hz. The electrical signal generated by the module-type TENG can be used as a sensor to recognize the strength and direction of various physical quantities, such as wind and earthquake vibrations. Full article
(This article belongs to the Special Issue Nano Korea 2021)
Show Figures

Figure 1

25 pages, 11552 KiB  
Article
3D Modeling of the Thermal Transfer through Precast Buildings Envelopes
by Soukayna Berrabah, Mohamed Ould Moussa and Mohamed Bakhouya
Energies 2021, 14(13), 3751; https://doi.org/10.3390/en14133751 - 23 Jun 2021
Cited by 3 | Viewed by 2446
Abstract
In this paper, a finite-element-based model is being introduced and developed, using the Cast3m (CEA, Paris, France) simulation tool, to evaluate the thermo-mechanical behavior of a small-scale test bed. In fact, many studies on thermal behavior of cavities have been carried out in [...] Read more.
In this paper, a finite-element-based model is being introduced and developed, using the Cast3m (CEA, Paris, France) simulation tool, to evaluate the thermo-mechanical behavior of a small-scale test bed. In fact, many studies on thermal behavior of cavities have been carried out in literature. However, none of them took into account the co-existence of all thermal phenomena (conduction, convection, internal/external radiation). The work presented in this paper presents a thermo-mechanical model, which aims to combine, in a holistic way, these phenomena. An experimental validation of the thermal model has been first carried out using an infrared camera and DS18B20 (Maxim Integrated Products, Dallas, TX, USA) numerical sensors. Results are reported and show the accuracy of the proposed model since both numerical and experimental values of heat transmittance fit together. The main objective is to evaluate heat losses through the walls, by means of heat transmittance calculation, and proposing new functional materials that will help in energy harvesting, as a perspective of this work. As for the mechanical study, it was meant to investigate the distribution of the mechanical stress towards the building envelope submitted to its own weight. Results showed that the stress is uniformly distributed on the lateral walls of the structure as well as on the floor. Full article
Show Figures

Figure 1

Back to TopTop