Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = energy efficient start-up

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6134 KiB  
Article
Research on BPNN-MDSG Hybrid Modeling Method for Full-Cycle Simulation of Surge in Altitude Test Facility Compressor System
by Yang Su, Xuejiang Chen and Xin Wang
Appl. Sci. 2025, 15(15), 8253; https://doi.org/10.3390/app15158253 - 24 Jul 2025
Viewed by 200
Abstract
Altitude Test Facility (ATF) compressor systems are widely used in aero-engine tests. These systems achieve the control of gas pressure and transport through complex operation processes. With advancements in the aviation industry, there is a growing demand for higher performance, greater safety, and [...] Read more.
Altitude Test Facility (ATF) compressor systems are widely used in aero-engine tests. These systems achieve the control of gas pressure and transport through complex operation processes. With advancements in the aviation industry, there is a growing demand for higher performance, greater safety, and more energy efficiency in digital ATF systems. Hybrid modeling is a technology that combines many methods and can meet these requirements. The Modular Dynamic System Greitzer (MDSG) compressor model, including mechanistic and data-driven modeling approaches, is combined with a neural network to obtain a BPNN-MDSG hybrid modeling method for the digital turbine system. The digital simulation is linked with the physical sensors of the ATF system to realize real-time simulation and monitoring. The steady and dynamic conditions of the actual system are simulated in virtual space. Compared with the actual results, the average error of steady mass flow is less than 3%, and the error of pressure is less than 1%. The average error of dynamic mass flow is less than 5%, and the error of pressure is less than 3%. The simulation and characteristic predictions are carried out in BPNN-MDSG virtual space. The anti-surge characteristics of the ATF system under start-up conditions are obtained. The full-condition anti-surge operation map of the system is obtained, which provides guidance for the actual operation of the ATF system. Full article
Show Figures

Figure 1

25 pages, 8320 KiB  
Article
Transient Flow Pattern and Vortex Evolution During the Startup Process of Novel Tulip-Type Hydraulic Turbines
by Shanshan Wei, Meng Wang and Chuang Ren
J. Mar. Sci. Eng. 2025, 13(7), 1221; https://doi.org/10.3390/jmse13071221 - 25 Jun 2025
Viewed by 250
Abstract
The Computational Fluid Dynamics (CFD) method is used to analyze the transient flow patterns and vortex evolution during the startup process of a novel tulip-type hydraulic turbine rotor. The model is validated with experimental results for the rotor’s torque and power coefficients. The [...] Read more.
The Computational Fluid Dynamics (CFD) method is used to analyze the transient flow patterns and vortex evolution during the startup process of a novel tulip-type hydraulic turbine rotor. The model is validated with experimental results for the rotor’s torque and power coefficients. The results show that the tulip-type rotor exhibits unique flow patterns compared to the traditional rotor. Vortices at different locations around the rotor influence the startup moment, either enhancing or suppressing it. Vortices downstream of the rotor form on the convex side of the blades, creating negative pressure that enhances startup and rotational performance. The expanded top design of the tulip-type rotor substantially improves startup performance through four distinct aspects: smoothly guiding incoming flow, dissipating gap vortices, clearing vortices to prevent blockage, and enhancing fluid-blade interaction to increase energy conversion efficiency. These characteristics of transient flow patterns and vortex evolution reveal the startup mechanism of the tulip-type rotor, providing a foundation for understanding the fluid dynamics of novel rotor designs and supporting the optimization of hydraulic turbine performance. Full article
Show Figures

Figure 1

31 pages, 11869 KiB  
Article
Improving Efficiency of Rolling Mill Stand Electric Drives Through Load Alignment
by Stanislav S. Voronin, Andrey A. Radionov, Alexander S. Karandaev, Roman A. Lisovsky, Boris M. Loginov, Mark A. Zinchenko, Vadim R. Khramshin and Ivan N. Erdakov
Energies 2025, 18(12), 3175; https://doi.org/10.3390/en18123175 - 17 Jun 2025
Cited by 1 | Viewed by 309
Abstract
The problem of reducing electric power consumption is critical to ferrous metallurgy as it is a very energy-intensive industry. Significant energy savings can be achieved by increasing the efficiency of high-power electric drives of rolling mills. Experiments with the 5000 plate mill showed [...] Read more.
The problem of reducing electric power consumption is critical to ferrous metallurgy as it is a very energy-intensive industry. Significant energy savings can be achieved by increasing the efficiency of high-power electric drives of rolling mills. Experiments with the 5000 plate mill showed that the deterioration of energy efficiency can be caused by the misalignment of loads between the upper and lower roller main electric drive motors (upper main drive/UMD and lower main drive/LMD, respectively) caused by the misalignment of roller motor speeds. Experiments showed that when the speed misalignment reaches 5%, the motor torques differ by two times. Various UMD and LMD speeds can be set to bend the front end of the workpiece (form a “ski”). The installed load division controller (LDC) option fails to provide load alignment due to a low response rate and late startup. This article’s contribution consists of the development of a forced UMD and LMD speed and torque alignment method. To implement this method, a load-division controller with a switching structure has been developed. The authors also developed an efficiency and electric loss monitor and provided an experimental assessment of electric losses per one-pass and per sheet batch rolling cycle. The prospects of this research include the optimization of high-speed and high-load electric drive modes to reduce the energy costs of rolling and the development of an LDC based on fuzzy logic algorithms. Full article
Show Figures

Figure 1

12 pages, 1950 KiB  
Article
Experimental Study on Carbon Nanotube Heating for Li-Ion Batteries in Extremely Low-Temperature Environments
by Junbo Jia, Gucheng Wang, Zuchang Gao and Ming Han
Energies 2025, 18(11), 2958; https://doi.org/10.3390/en18112958 - 4 Jun 2025
Viewed by 522
Abstract
This study introduced and evaluated a new Carbon Nanotube (CNT) sheet-based method for battery temperature management, aimed at enhancing the performance of Li-ion batteries in subzero environments. This method addressed critical challenges such as startup failures, capacity loss, and the poor performance of [...] Read more.
This study introduced and evaluated a new Carbon Nanotube (CNT) sheet-based method for battery temperature management, aimed at enhancing the performance of Li-ion batteries in subzero environments. This method addressed critical challenges such as startup failures, capacity loss, and the poor performance of the Li-ion battery in extreme cold conditions, particularly for industrial applications like forklifts operating at temperatures as low as −30 °C. Without CNT heating, the battery performance dropped significantly in low-temperature environments. At −20 °C, the battery delivered only 63.4% of its capacity, with minimal self-heating. At −30 °C, it failed almost entirely, shutting down after just 45 s. In contrast, CNT heating greatly enhanced performance. The CNT sheet quickly warmed the battery to 0 °C—within 97 s at −20 °C and 141 s at −30 °C—allowing it to recover up to 90% of its capacity. These improvements resulted in enhanced capacity and energy output compared to batteries without CNT heating, which suffered from severe performance losses, including a negligible capacity and energy output under −30 °C. It can be concluded that the CNT sheet-based approach provides superior thermal conductivity, rapid heating, and exceptional energy conversion efficiency, enabling extended battery life and enhanced operational reliability in subzero environments. Its scalability and affordability position it as a transformative innovation for industrial applications reliant on efficient battery performance in extreme cold environments. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

20 pages, 6506 KiB  
Article
A Study on the Hydrodynamic Excitation Characteristics of Pump and Pipeline Systems Considering the Weakly Compressible Fluid During the Pump Start-Up Condition
by Yonggang Lu, Mengjiao Min, Wei Song, Yun Zhao and Zhengwei Wang
Energies 2025, 18(11), 2911; https://doi.org/10.3390/en18112911 - 2 Jun 2025
Viewed by 429
Abstract
With increasing global energy transition and environmental awareness, liquefied natural gas (LNG) is rapidly developing as an efficient and clean energy source. LNG pumps are widely used in industrial applications. This study focuses on the LNG pump and pipeline system, and it innovatively [...] Read more.
With increasing global energy transition and environmental awareness, liquefied natural gas (LNG) is rapidly developing as an efficient and clean energy source. LNG pumps are widely used in industrial applications. This study focuses on the LNG pump and pipeline system, and it innovatively establishes a computational model based on weak compressible fluid in order to better reflect the characteristics of pressure pulsation and the flow situation. Through numerical simulations, the flow characteristics of the pump were analyzed. In addition, the flow conditions at the pipe tee were analyzed, and the attenuation patterns of pressure waves at different frequencies within the pipe were also investigated. The internal flow field of the pump was analyzed at three specific time points. The results indicate that, during the initial start-up phase, the internal flow state of the pump is complex, with significant vortices and pressure fluctuations. As the flow rate and rotational speed increase, the flow gradually stabilizes. Moreover, the pressure pulsation coefficient within the pipeline varies significantly with position. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 955 KiB  
Article
Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion
by Amal Hmaissia, Edgar Martín Hernández, Steve Boivin and Céline Vaneeckhaute
Sustainability 2025, 17(11), 5020; https://doi.org/10.3390/su17115020 - 30 May 2025
Viewed by 590
Abstract
Anaerobic digestion (AD) has gained broad interest as a sustainable organic waste management and resource recovery method. However, the complexity of the AD process could pose serious risks in real-scale applications. One of the most critical phases in the operation of AD systems [...] Read more.
Anaerobic digestion (AD) has gained broad interest as a sustainable organic waste management and resource recovery method. However, the complexity of the AD process could pose serious risks in real-scale applications. One of the most critical phases in the operation of AD systems is the start-up phase, including the seeding strategy of the digesters. This study aims to assess the effect of digestate post-treatment before seeding on the start-up of thermophilic AD systems. Two anaerobic digesters (R1 and R2) were started using two different thermophilic inocula and were kept operational for 17 weeks under identical conditions. Lab digesters were seeded with digestates sampled from a thermophilic full-scale reactor (R2) and a post-treatment mesophilic tank (R1). The start-up strategies exhibited satisfactory stability and high productivity, achieving mean weekly methane-based biodegradability rates of 61 and 64% of the feed’s theoretical biomethane potential (BMP), respectively, in R1 and R2. However, R2 showed greater resilience to high and sudden organic loads applications, making it more suitable for rapid and aggressive start-ups. These results are expected to assist full-scale anaerobic digester operators in selecting an appropriate inoculum based on the characteristics of its source. Full article
(This article belongs to the Special Issue Recycling Materials for the Circular Economy—2nd Edition)
Show Figures

Figure 1

22 pages, 4510 KiB  
Article
Molten-Salt-Based Thermal Storage for Thermal Power Unit Plant Peaking
by Fengying Ren, Fanxing Meng, Hao Liu, Haiyan Yu, Li Xu and Xiaohan Ren
Energies 2025, 18(10), 2522; https://doi.org/10.3390/en18102522 - 13 May 2025
Viewed by 402
Abstract
As the integration of renewable energy sources continues to increase, thermal power units are increasingly required to enhance their operational flexibility to accommodate grid fluctuations. However, frequent load variations in conventional thermal power plants result in decreased efficiency, accelerated equipment wear, and high [...] Read more.
As the integration of renewable energy sources continues to increase, thermal power units are increasingly required to enhance their operational flexibility to accommodate grid fluctuations. However, frequent load variations in conventional thermal power plants result in decreased efficiency, accelerated equipment wear, and high operational costs. In this context, molten-salt thermal energy storage (TES) has emerged as a promising solution due to its high specific heat capacity and thermal stability. By enabling the storage of surplus energy and its regulated release during peak demand periods, molten salt TES contributes to improved grid stability, reduced start-up frequency, and minimized operational disturbances. This study employs comprehensive thermodynamic simulations to investigate three representative schemes for heat storage and release. The results indicate that the dual steam extraction configuration (Scheme 3) offers the highest thermal storage capacity and peak-load regulation potential, albeit at the cost of increased heat consumption. Conversely, the single steam extraction configurations (Scheme 1 and 2) demonstrate improved thermal efficiency and reduced system complexity. Furthermore, Scheme 3, which involves extracting feedwater from the condenser outlet, provides enhanced operational flexibility but necessitates a higher initial investment. These findings offer critical insights into the optimal integration of molten-salt thermal-storage systems with conventional thermal power units. The outcomes not only highlight the trade-offs among different design strategies but also support the broader objective of enhancing the efficiency and adaptability of thermal power generation in a renewable-dominated energy landscape. Full article
Show Figures

Figure 1

17 pages, 2311 KiB  
Article
Design and Experimental Study of a Novel Microwave-Assisted Burner Based on Plasma Combustion for Pulverized Coal Applications
by Uğur Tekir
Appl. Sci. 2025, 15(9), 5190; https://doi.org/10.3390/app15095190 - 7 May 2025
Viewed by 669
Abstract
An alternative combustion technology to replace conventional start-up and flame stabilization using fuel oil or natural gas in pulverized coal-fired boilers has been investigated. In this study, a novel plasma burner design is proposed as a replacement for traditional auxiliary burners, operating by [...] Read more.
An alternative combustion technology to replace conventional start-up and flame stabilization using fuel oil or natural gas in pulverized coal-fired boilers has been investigated. In this study, a novel plasma burner design is proposed as a replacement for traditional auxiliary burners, operating by generating plasma through the ionization of air using microwave energy. The burner features an internal combustion system and a multi-stage ignition process to enhance flame stability, improve combustion efficiency, and enable more controlled pulverized coal burning within the plasma. Supported by a magnetron generating microwave energy at 915 MHz with a 75 kW output, the burner directly ignites approximately 22% of the coal–air mixture in the plasma zone, forming a stable flame that ensures complete combustion of the remaining coal. An experimental system was established, and tests were conducted by burning up to 3000 kg/h of pulverized coal in an industrial-scale setup at Unit-1 of the 22 MWe Soma A Power Plant to optimize burner parameters. The specific microwave energy consumption was calculated as 0.055 kWh/kg of coal, demonstrating high energy efficiency and low operational cost. These results confirm that the microwave-assisted plasma burner is a technically viable, energy-efficient, and environmentally friendly alternative to conventional auxiliary burners. Full article
(This article belongs to the Special Issue Plasma Technology and Application)
Show Figures

Figure 1

17 pages, 4730 KiB  
Article
Enhancement of Partial Nitrification–Anaerobic Ammonia Oxidation in SBR Reactors via Surface-Modified Polyurethane Sponge Biofilm Carrier
by Zexiang Liu, Zhihong Xu, Kelin Li, Li Xie, Biao Han, Qiming Wang, Hainong Song and Jian Zhang
Polymers 2025, 17(9), 1145; https://doi.org/10.3390/polym17091145 - 23 Apr 2025
Cited by 1 | Viewed by 504
Abstract
The partial nitrification–anammox process offers a cost-effective, energy-efficient, and environmentally sustainable approach for nitrogen removal in wastewater treatment. However, its application under low ammonia nitrogen conditions faces operational challenges including prolonged start-up periods and excessive nitrite oxidation. This study employed a strategy combining [...] Read more.
The partial nitrification–anammox process offers a cost-effective, energy-efficient, and environmentally sustainable approach for nitrogen removal in wastewater treatment. However, its application under low ammonia nitrogen conditions faces operational challenges including prolonged start-up periods and excessive nitrite oxidation. This study employed a strategy combining polyurethane surface positive charge enhancement and zeolite loading to develop a carrier capable of microbial enrichment and inhibition of nitrate generation, aiming to initiate the partial nitrification-anammox process in a sequencing batch reactor. Operational results demonstrate that the modified carrier enabled the reactor to achieve a total nitrogen removal efficiency of 78%, with the effluent nitrate nitrogen reduced to 6.03 mg-N/L, successfully initiating the partial nitrification-anammox process. The modified carrier also exhibited accelerated biofilm proliferation (both suspended and attached biomass increased). Additionally, 16S rRNA revealed a higher relative abundance of typical anammox bacteria Candidatus Brocadia in the biofilm of the modified carrier compared to the original carrier, alongside a decline in nitrifying genera, such as Nitrolancea. These microbial shifts effectively suppressed excessive nitrite oxidation, limited nitrate accumulation, and sustained efficient nitrogen removal throughout the reactor’s operation. Full article
(This article belongs to the Special Issue Recent Advances in Functional Polymer Materials for Water Treatment)
Show Figures

Figure 1

17 pages, 4332 KiB  
Article
A Multi-State Rotational Control Strategy for Hydrogen Production Systems Based on Hybrid Electrolyzers
by Qingshan Tan, Ke Li, Longquan Zeng, Lu Xie, Man Cheng and Wei He
Energies 2025, 18(8), 2008; https://doi.org/10.3390/en18082008 - 14 Apr 2025
Viewed by 778
Abstract
Harnessing surplus wind and solar energy for water electrolysis boosts the efficiency of renewable energy utilization and supports the development of a low-carbon energy framework. However, the intermittent and unpredictable nature of wind and solar power generation poses significant challenges to the dynamic [...] Read more.
Harnessing surplus wind and solar energy for water electrolysis boosts the efficiency of renewable energy utilization and supports the development of a low-carbon energy framework. However, the intermittent and unpredictable nature of wind and solar power generation poses significant challenges to the dynamic stability and hydrogen production efficiency of electrolyzers. This study introduces a multi-state rotational control strategy for a hybrid electrolyzer system designed to produce hydrogen. Through a detailed examination of the interplay between electrolyzer power and efficiency—along with operational factors such as load range and startup/shutdown times—six distinct operational states are categorized under three modes. Taking into account the differing dynamic response characteristics of proton exchange membrane electrolyzers (PEMEL) and alkaline electrolyzers (AEL), a power-matching mechanism is developed to optimize the performance of these two electrolyzer types under varied and complex conditions. This mechanism facilitates coordinated scheduling and seamless transitions between operational states within the hybrid system. Simulation results demonstrate that, compared to the traditional sequential startup and shutdown approach, the proposed strategy increases hydrogen production by 10.73% for the same input power. Moreover, it reduces the standard deviation and coefficient of variation in operating duration under rated conditions by 27.71 min and 47.04, respectively, thereby enhancing both hydrogen production efficiency and the dynamic operational stability of the electrolyzer cluster. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

25 pages, 6699 KiB  
Article
Optimization of ORC-Based Micro-CHP Systems: An Experimental and Control-Oriented Study
by Márcio Santos, Jorge André, Ricardo Mendes and José B. Ribeiro
Processes 2025, 13(4), 1104; https://doi.org/10.3390/pr13041104 - 7 Apr 2025
Cited by 1 | Viewed by 891
Abstract
This study presents an experimental and numerical investigation into the performance and control optimization of an Organic Rankine Cycle (ORC)-based micro-combined heat and power (micro-CHP) system. A steady-state, off-design, charge-sensitive model is developed to design a control strategy for an ORC micro-CHP combi-boiler, [...] Read more.
This study presents an experimental and numerical investigation into the performance and control optimization of an Organic Rankine Cycle (ORC)-based micro-combined heat and power (micro-CHP) system. A steady-state, off-design, charge-sensitive model is developed to design a control strategy for an ORC micro-CHP combi-boiler, aiming to efficiently meet real-time domestic hot water demands (up to 40 °C and 35 kW) while generating up to 2 kW of electricity. The system utilizes a natural gas burner to evaporate the working fluid (R245fa), with combustion heat power, volumetric pump speed, and expander speed as control variables. Experimental and numerical evaluations generate steady-state control maps to identify optimal operating regions. A PID-based dynamic control strategy is then developed to stabilize operation during start-ups and user demand variations. The results confirm that the strategy delivers hot water within 1.5 min in simple boiler mode and 3 min in cogeneration mode while improving electricity generation stability and outperforming manual control. The findings demonstrate that integrating steady-state modeling with optimized control enhances the performance, responsiveness, and efficiency of ORC-based micro-CHP systems, making them a viable alternative for residential energy solutions. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Industrial Processes)
Show Figures

Figure 1

29 pages, 6403 KiB  
Article
Heating, Ventilation, and Air Conditioning (HVAC) Temperature and Humidity Control Optimization Based on Large Language Models (LLMs)
by Xuanrong Zhu and Hui Li
Energies 2025, 18(7), 1813; https://doi.org/10.3390/en18071813 - 3 Apr 2025
Cited by 1 | Viewed by 1271
Abstract
Heating, Ventilation, and Air Conditioning (HVAC) systems primarily consist of pre-cooling air handling units (PAUs), air handling units (AHUs), and air ducts. Existing HVAC control methods, such as Proportional–Integral–Derivative (PID) control or Model Predictive Control (MPC), face limitations in understanding high-level information, handling [...] Read more.
Heating, Ventilation, and Air Conditioning (HVAC) systems primarily consist of pre-cooling air handling units (PAUs), air handling units (AHUs), and air ducts. Existing HVAC control methods, such as Proportional–Integral–Derivative (PID) control or Model Predictive Control (MPC), face limitations in understanding high-level information, handling rare events, and optimizing control decisions. Therefore, to address the various challenges in temperature and humidity control, a more sophisticated control approach is required to make high-level decisions and coordinate the operation of HVAC components. This paper utilizes Large Language Models (LLMs) as a core component for interpreting complex operational scenarios and making high-level decisions. A chain-of-thought mechanism is designed to enable comprehensive reasoning through LLMs, and an algorithm is developed to convert LLM decisions into executable HVAC control commands. This approach leverages adaptive guidance through parameter matrices to seamlessly integrate LLMs with underlying MPC controllers. Simulated experimental results demonstrate that the improved control strategy, optimized through LLM-enhanced Model Predictive Control (MPC), significantly enhances the energy efficiency and stability of HVAC system control. During the summer conditions, energy consumption is reduced by 33.3% compared to the on–off control strategy and by 6.7% relative to the conventional low-level MPC strategy. Additionally, during the system startup phase, energy consumption is slightly reduced by approximately 17.1% compared to the on–off control strategy. Moreover, the proposed method achieves superior temperature stability, with the mean squared error (MSE) reduced by approximately 35% compared to MPC and by 45% relative to on–off control. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

26 pages, 5366 KiB  
Article
Concepts and Experiments on More Electric Aircraft Power Systems
by Andrzej Gębura, Andrzej Szelmanowski, Ilona Jacyna-Gołda, Paweł Gołda, Magdalena Kalbarczyk and Justyna Tomaszewska
Energies 2025, 18(7), 1653; https://doi.org/10.3390/en18071653 - 26 Mar 2025
Viewed by 1475
Abstract
The evolution of aircraft power systems has been driven by increasing electrical demands and advancements in aviation technology. Background: This study provides a comprehensive review and experimental validation of on-board electrical network development, analyzing power management strategies in both conventional and modern aircraft, [...] Read more.
The evolution of aircraft power systems has been driven by increasing electrical demands and advancements in aviation technology. Background: This study provides a comprehensive review and experimental validation of on-board electrical network development, analyzing power management strategies in both conventional and modern aircraft, including the Mi-24 helicopter, F-22 multirole aircraft, and Boeing 787 passenger airplane. Methods: The research categorizes aircraft electrical systems into three historical phases: pre-1960s with 28.5 V DC networks, up to 2000 with three-phase AC networks (3 × 115 V/200 V, 400 Hz), and post-2000 with 270 V DC networks derived from AC generators via transformer–rectifier units. Beyond theoretical analysis, this work introduces experimental findings on hybrid-electric aircraft power solutions, particularly evaluating the performance of the Modular Power System for Aircraft (MPSZE). The More Electric Aircraft (MEA) concept is analyzed as a key innovation, with a focus on energy efficiency, frequency stability, and ground power applications. The study investigates the integration of alternative energy sources, including photovoltaic-assisted power supplies and fuel-cell-based auxiliary systems, assessing their feasibility for aircraft system checks, engine startups, field navigation, communications, and radar operations. Results: Experimental results demonstrate that hybrid energy storage systems, incorporating lithium-ion batteries, fuel cells, and photovoltaic modules, can enhance MEA efficiency and operational resilience under real-world conditions. Conclusions: The findings underscore the importance of MEA technology in the future of sustainable aviation power solutions, highlighting both global and Polish research contributions, particularly from the Air Force Institute of Technology (ITWL). Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

31 pages, 4571 KiB  
Review
The Evolution of AI Applications in the Energy System Transition: A Bibliometric Analysis of Research Development, the Current State and Future Challenges
by Daniel Icaza Alvarez, Fernando González-Ladrón-de-Guevara, Jorge Rojas Espinoza, David Borge-Diez, Santiago Pulla Galindo and Carlos Flores-Vázquez
Energies 2025, 18(6), 1523; https://doi.org/10.3390/en18061523 - 19 Mar 2025
Cited by 2 | Viewed by 1987
Abstract
The transformation of energy markets is at a crossroads in the search for how they must evolve to become ecologically friendly systems and meet the growing energy demand. Currently, methodologies based on bibliographic data analysis are supported by information and communication technologies and [...] Read more.
The transformation of energy markets is at a crossroads in the search for how they must evolve to become ecologically friendly systems and meet the growing energy demand. Currently, methodologies based on bibliographic data analysis are supported by information and communication technologies and have become necessary. More sophisticated processes are being used in energy systems, including new digitalization models, particularly driven by artificial intelligence (AI) technology. In the present bibliographic review, 342 documents indexed in Scopus have been identified that promote synergies between AI and the energy transition (ET), considering a time range from 1990 to 2024. The analysis methodology includes an evaluation of keywords related to the areas of AI and ET. The analyses extend to a review by authorship, co-authorship, and areas of AI’s influence in energy system subareas. The integration of energy resources, including supply and demand, in which renewable energy sources play a leading role at the end-customer level, now conceived as both producer and consumer, is intensively studied. The results identified that AI has experienced notable growth in the last five years and will undoubtedly play a leading role in the future in achieving decarbonization goals. Among the applications that it will enable will be the design of new energy markets up to the execution and start-up of new power plants with energy control and optimization. This study aims to present a baseline that allows researchers, legislators, and government decision-makers to compare their benefits, ambitions, strategies, and novel applications for formulating AI policies in the energy field. The developments and scope of AI in the energy sector were explored in relation to the AI domain in parts of the energy supply chain. While these processes involve complex data analysis, AI techniques provide powerful solutions for designing and managing energy markets with high renewable energy penetration. This integration of AI with energy systems represents a fundamental shift in market design, enabling more efficient and sustainable energy transitions. Future lines of research could focus on energy demand forecasting, dynamic adjustments in energy distribution between different generation sources, energy storage, and usage optimization. Full article
Show Figures

Figure 1

13 pages, 1618 KiB  
Article
Painted Electrode with Activated Coconut Carbon for Microbial Fuel Cell
by Paweł P. Włodarczyk and Barbara Włodarczyk
Energies 2025, 18(6), 1350; https://doi.org/10.3390/en18061350 - 10 Mar 2025
Viewed by 727
Abstract
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based [...] Read more.
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based materials. Therefore, a carbon-based material (by-product of coconut processing) was selected for testing in this study. The anode was prepared by bonding activated coconut carbon with carbon paint on a glass electrode. The aim of this study was to analyze the feasibility of using an electrode prepared in this manner as a surface layer on the anode of an MFC. The performance of an electrode coated only with carbon paint was also evaluated. These two electrodes were compared with a carbon felt electrode, which is commonly used as an anode material in MFCs. In this research, the MFC was fed with a by-product of yeast production, namely a molasses decoction from yeast processing. Measurements were conducted in a standard two-chamber glass MFC with a glass membrane separating the chambers. During the experiment, parameters such as start-up time, cell voltage during MFC start-up, output cell voltage, and power density curves were analyzed. The carbon paint-coated electrode with the activated coconut carbon additive demonstrated operating parameters similar to those of the carbon felt electrode. The results indicate that it is possible to produce electrodes (on a base of by-product of coconut processing) for MFCs using a painting method; however, to achieve a performance comparable to carbon felt, the addition of activated coconut carbon is necessary. This study demonstrates the feasibility of forming a biocompatible layer on various surfaces. Incorporating activated coconut carbon does not complicate the anode fabrication process, as fine ACC grains can be directly applied to the wet carbon paint layer. Additionally, the use of carbon paint as a conductive layer for the active anode in MFCs offers versatility in designing electrodes of various shapes, enabling them to be coated with a suitable active and conductive layer to promote biofilm formation. Moreover, the findings of this study confirm that waste-derived materials can be effectively utilized as electrode components in MFC anodes. The results validate the chosen research approach and emphasize the potential for further investigations in this field, contributing to the development of cost-efficient electrodes derived from by-products for MFC applications. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

Back to TopTop