applsci-logo

Journal Browser

Journal Browser

Plasma Technology and Application

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Electrical, Electronics and Communications Engineering".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 362

Special Issue Editor


E-Mail
Guest Editor
Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), 00044 Rome, Italy
Interests: plasma diagnostics; laser plasma interaction; high-intensity lasers; spectrometers; optics and lasers; femtosecond lasers; ultrashort lasers

Special Issue Information

Dear Colleagues,

Plasma today plays a key role in physical and technological research environments, as much as in industrial chemistry, space research and fusion.New applications of plasmas continue to accelerate at an increasing rate, e.g., in the treatment of materials, or developments in medical and healthcare machinery.

Among the scenarios opened up by the generation of plasmas, a key challenge is to accelerate high-quality particles for the controlled production of secondary radiation, such as x-rays. In this and the other above-mentioned cases, the study and technological development of the plasma source, including the diagnostics required to detect its characteristics, is therefore essential.

This Special Issue will be devoted to advances in plasma source technology studied and used in nuclear physics or accelerator physics research environments.

Dr. Gemma Costa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plasma acceleration
  • laser fusion
  • plasma source technology
  • plasma source application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2311 KiB  
Article
Design and Experimental Study of a Novel Microwave-Assisted Burner Based on Plasma Combustion for Pulverized Coal Applications
by Uğur Tekir
Appl. Sci. 2025, 15(9), 5190; https://doi.org/10.3390/app15095190 - 7 May 2025
Viewed by 230
Abstract
An alternative combustion technology to replace conventional start-up and flame stabilization using fuel oil or natural gas in pulverized coal-fired boilers has been investigated. In this study, a novel plasma burner design is proposed as a replacement for traditional auxiliary burners, operating by [...] Read more.
An alternative combustion technology to replace conventional start-up and flame stabilization using fuel oil or natural gas in pulverized coal-fired boilers has been investigated. In this study, a novel plasma burner design is proposed as a replacement for traditional auxiliary burners, operating by generating plasma through the ionization of air using microwave energy. The burner features an internal combustion system and a multi-stage ignition process to enhance flame stability, improve combustion efficiency, and enable more controlled pulverized coal burning within the plasma. Supported by a magnetron generating microwave energy at 915 MHz with a 75 kW output, the burner directly ignites approximately 22% of the coal–air mixture in the plasma zone, forming a stable flame that ensures complete combustion of the remaining coal. An experimental system was established, and tests were conducted by burning up to 3000 kg/h of pulverized coal in an industrial-scale setup at Unit-1 of the 22 MWe Soma A Power Plant to optimize burner parameters. The specific microwave energy consumption was calculated as 0.055 kWh/kg of coal, demonstrating high energy efficiency and low operational cost. These results confirm that the microwave-assisted plasma burner is a technically viable, energy-efficient, and environmentally friendly alternative to conventional auxiliary burners. Full article
(This article belongs to the Special Issue Plasma Technology and Application)
Show Figures

Figure 1

Back to TopTop