Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = energy efficiency certificates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 678 KB  
Article
Exploring the Integration of Passive Design Strategies in LEED-Certified Buildings: Insights from the Greek Construction Sector
by Konstantinos Argyriou, Marina Marinelli and Dimitrios Melissas
Buildings 2025, 15(17), 3194; https://doi.org/10.3390/buildings15173194 - 4 Sep 2025
Abstract
As the global demand for energy-efficient solutions grows increasingly urgent, passive design strategies emerge not only as a means to support the reduction in energy consumption but also as a pathway to minimizing building operational costs while enhancing thermal comfort and architectural attractiveness. [...] Read more.
As the global demand for energy-efficient solutions grows increasingly urgent, passive design strategies emerge not only as a means to support the reduction in energy consumption but also as a pathway to minimizing building operational costs while enhancing thermal comfort and architectural attractiveness. On the other hand, the recognition and significance of building environmental certification schemes are steadily increasing worldwide. Within this context, this research investigates the extent to which passive bioclimatic principles are understood, applied, and incentivized in contemporary sustainable building practices in Greece—focusing in particular on their representation within the LEED certification credit structure. Drawing on a questionnaire survey completed by 89 experienced Greek construction professionals, the findings indicate a significant gap between the theoretical value attributed to passive design and its practical implementation. The respondents attribute this gap to two key factors within the Greek context: the lack of adequate education and awareness among key project stakeholders, and the considerable complexity associated with the collaborative frameworks required from the early design stages. Additionally, LEED appears to offer limited incentives for integrating passive design strategies. Instead, it tends to favor technological solutions and follows a standardized structure with minimal scope for regional customization. Enhancing LEED’s region-specific features to reward passive strategies proven effective in local contexts would be particularly expedient in reinforcing its role as a robust and impactful tool for promoting sustainability. Full article
24 pages, 2920 KB  
Article
Thermoelectric Optimisation of Park-Level Integrated Energy System Considering Two-Stage Power-to-Gas and Source-Load Uncertainty
by Zhuo Song, Xin Mei, Cheng Huang, Xiang Jin, Min Zhang, Junjun Wang and Xin Zou
Processes 2025, 13(9), 2835; https://doi.org/10.3390/pr13092835 - 4 Sep 2025
Abstract
The integration of renewable energy and power-to-gas (P2G) technology into park-level integrated energy systems (PIES) offers a sustainable pathway for low-carbon development. This paper presents a low-carbon economic dispatch model for PIES that incorporates uncertainties in renewable energy generation and load demand. A [...] Read more.
The integration of renewable energy and power-to-gas (P2G) technology into park-level integrated energy systems (PIES) offers a sustainable pathway for low-carbon development. This paper presents a low-carbon economic dispatch model for PIES that incorporates uncertainties in renewable energy generation and load demand. A novel two-stage P2G, replacing traditional devices with electrolysers (EL), methane reactors (MR), and hydrogen fuel cells (HFC), enhances energy efficiency and facilitates the utilisation of captured carbon. Furthermore, adjustable thermoelectric ratios in combined heat and power (CHP) and HFC improve both economic and environmental performance. A ladder-type carbon trading and green certificate trading mechanism is introduced to effectively manage carbon emissions. To address the uncertainties in supply and demand, the study applies information gap decision theory (IGDT) and develops a robust risk-averse model. The results from various operating scenarios reveal the following key findings: (1) the integration of CCT with the two-stage P2G system increases renewable energy consumption and reduces carbon emissions by 5.8%; (2) adjustable thermoelectric ratios in CHP and HFC allow for flexible adjustment of output power in response to load requirements, thereby reducing costs while simultaneously lowering carbon emissions; (3) the incorporation of ladder-type carbon trading and green certificate trading reduces the total cost by 7.8%; (4) in the IGDT-based robust model, there is a positive correlation between total cost, uncertainty degree, and the cost deviation coefficient. The appropriate selection of the cost deviation coefficient is crucial for balancing system economics with the associated risk of uncertainty. Full article
Show Figures

Figure 1

44 pages, 5390 KB  
Article
Sustainable Material Recovery from Demolition Waste: Knowledge Management and Insights from a Public Sector Building Renovation
by Issara Sereewatthanawut, Babatunde Oluwaseun Ajayi, Bamisaye Mayowa Emmanuel, Adithep Bunphot, Anatawat Chayutthanabun, John Bosco Niyomukiza and Thanwadee Chinda
Buildings 2025, 15(17), 3167; https://doi.org/10.3390/buildings15173167 - 3 Sep 2025
Abstract
The utilization of knowledge management (KM) assists construction companies in planning for waste management. This study applies KM in the material recovery of a public sector building renovation, focusing on aluminum composite panels (ACPs). The cost/benefit analysis (CBA) method examines suitable scenarios, where [...] Read more.
The utilization of knowledge management (KM) assists construction companies in planning for waste management. This study applies KM in the material recovery of a public sector building renovation, focusing on aluminum composite panels (ACPs). The cost/benefit analysis (CBA) method examines suitable scenarios, where costs and benefits cover economic, environmental, and social perspectives. The cost/benefit (C/B) ratios reveal that the repurposing scenario, where ACP waste is repurposed as signboards, is the most suitable scenario, with a C/B of 0.96. The refurbishing scenario, in which ACP waste is refurbished as new facades, may be considered if the labor cost could be reduced through training. The repurposing scenario is further examined with a sensitivity analysis and the Leadership in Energy and Environmental Design certification, and it is found that implementing this scenario serves as a beginning step toward green certification and aligns with Thailand’s national strategies for green building promotion and the long-term Net Zero 2065 target. The study results serve as a guideline for Thailand’s transition toward a low-carbon and resource-efficient construction sector. Future studies are recommended to examine the complex relationships between costs and benefits and to track dynamic changes in the C/B ratio over time. Full article
Show Figures

Figure 1

23 pages, 717 KB  
Systematic Review
Environmental Benefits of Digital Integration in the Built Environment: A Systematic Literature Review of Building Information Modelling–Life Cycle Assessment Practices
by Jacopo Tosi, Sara Marzio, Francesca Poggi, Dafni Avgoustaki, Laura Esteves and Miguel Amado
Buildings 2025, 15(17), 3157; https://doi.org/10.3390/buildings15173157 - 2 Sep 2025
Abstract
Cities are significant contributors to climate change, environmental degradation, and resource depletion. To address these challenges, sustainable strategies in building design, construction, and management are essential, and digitalisation through the integration of Building Information Modelling (BIM) and Life Cycle Assessment (LCA) can enable [...] Read more.
Cities are significant contributors to climate change, environmental degradation, and resource depletion. To address these challenges, sustainable strategies in building design, construction, and management are essential, and digitalisation through the integration of Building Information Modelling (BIM) and Life Cycle Assessment (LCA) can enable it. However, the environmental benefits of BIM–LCA integration remain underexplored, limiting broader practical adoption. This study systematically reviews 80 case studies (2015–2025) to assess how recent applications address known barriers and to identify enablers of successful BIM–LCA workflows. The analysis highlights a growing alignment between technological, regulatory, and methodological advancements and practical implementation needs, especially as technical barriers are increasingly overcome. Nevertheless, systemic challenges related to institutional, behavioural, and socio-economic factors persist. From a stakeholder perspective, four thematic drivers were identified: material circularity and resource efficiency; integration with complementary assessment tools; energy-performance strategies for comfort and efficiency; and alignment with international certification systems. The study offers a stakeholder-oriented framework that demonstrates the multi-level value of BIM–LCA integration not only for environmental impact assessment but to support informed decision-making and reduce resource consumption. These insights aim to bridge the gap between academic research and practical implementation, contributing to the advancement of sustainable practices in the built environment. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
30 pages, 1352 KB  
Review
Green Approaches in High-Performance Liquid Chromatography for Sustainable Food Analysis: Advances, Challenges, and Regulatory Perspectives
by Eftychia G. Karageorgou, Natasa P. Kalogiouri and Victoria F. Samanidou
Molecules 2025, 30(17), 3573; https://doi.org/10.3390/molecules30173573 - 31 Aug 2025
Viewed by 340
Abstract
This review provides a comprehensive overview of the recent green innovations in high-performance liquid chromatography (HPLC) for sustainable food analysis. It outlines the principles of green analytical chemistry and examines advances such as eco-friendly solvent systems, miniaturized and energy-efficient instrumentation, and greener sample [...] Read more.
This review provides a comprehensive overview of the recent green innovations in high-performance liquid chromatography (HPLC) for sustainable food analysis. It outlines the principles of green analytical chemistry and examines advances such as eco-friendly solvent systems, miniaturized and energy-efficient instrumentation, and greener sample preparation techniques. Key applications include the analysis of bioactive compounds, detection of contaminants and residues, and support for clean-label and sustainability claims. Furthermore, the review discusses relevant regulatory and certification frameworks, including ISO 14001, ISO 22000, and global food safety initiatives aligned with environmental, social, and governance standards. Persistent challenges, such as cost, limitations in analytical performance, and limited instrument availability, are highlighted, along with the need for reliable metrics to assess the environmental impact and effectiveness of green analytical practices. The review concludes by emphasizing the need for interdisciplinary collaboration among scientists, industry stakeholders, and regulatory bodies to support the wider adoption of sustainable HPLC practices in food laboratories. Full article
(This article belongs to the Special Issue Green Analytical Chemistry: From Sample Preparation to Detection)
23 pages, 1503 KB  
Article
Residential Heritage Buildings in the Low Carbon Transition: Policy and Practice Challenges
by Fiona Forster, Kishor T. Zingre and Shashwat Shashwat
Buildings 2025, 15(17), 3045; https://doi.org/10.3390/buildings15173045 - 26 Aug 2025
Viewed by 271
Abstract
Residential heritage buildings (RHBs) are facing complex conservation challenges due to national policies aimed at achieving carbon emission reductions and associated retrofit recommendations. This long-term study (2007–ongoing) focuses on how such nationwide policies, particularly energy performance certificates (EPCs) and minimum energy efficiency standards [...] Read more.
Residential heritage buildings (RHBs) are facing complex conservation challenges due to national policies aimed at achieving carbon emission reductions and associated retrofit recommendations. This long-term study (2007–ongoing) focuses on how such nationwide policies, particularly energy performance certificates (EPCs) and minimum energy efficiency standards (MEES), affect a cluster of 12 RHBs on the National Trust’s Wallington Estate in Northumberland, England. Data were collected using a combination of building measurements and survey observations, alongside assessment of tenant behaviours through an interview process. The research findings revealed a 53% average improvement in EPC ratings following a retrofit. However, the tenant interviews exposed some key limitations in current policy tools, including their failure to reflect actual energy use and behavioural patterns. For instance, despite improved EPC scores, some tenants reported high fuel costs and continued to experience heat loss and dampness in the RHBs. These novel findings of this longitudinal study challenge the suitability of current retrofit metrics and advocate for a people-centric and context-specific approach to energy efficiency in heritage buildings. They also highlight the drawback of proposed minimum EPC ‘C’ standards within the UK’s existing housing stock, particularly in relation to idiosyncratic RHBs. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 1835 KB  
Article
Key Construction Materials for a Streamlined Building Life Cycle Assessment: A Meta-Analysis of 100 G-SEED Projects
by Sungmo Seo, Taehyoung Kim, Chang U Chae and Jin-chul Park
Buildings 2025, 15(17), 3039; https://doi.org/10.3390/buildings15173039 - 26 Aug 2025
Viewed by 394
Abstract
As operational emissions decrease due to improved energy efficiency, reducing embodied carbon in buildings has become increasingly important. Life cycle assessment (LCA) is a widely used method to quantify these impacts. However, its implementation often remains data-intensive and time-consuming due to the need [...] Read more.
As operational emissions decrease due to improved energy efficiency, reducing embodied carbon in buildings has become increasingly important. Life cycle assessment (LCA) is a widely used method to quantify these impacts. However, its implementation often remains data-intensive and time-consuming due to the need for detailed material inventories. This study analyzes 100 LCA reports submitted for G-SEED certification in South Korea to identify a core set of construction materials that accounts for most of the total material mass. Unlike previous approaches that relied on 99% cumulative mass thresholds, this study introduces a function-based classification framework considering both material roles and environmental impact intensity, offering a novel pathway for simplifying LCA. The findings reveal 12 key material categories, such as ready-mixed concrete, cement-based products, structural steel, wood, and interior finishes, that dominate embodied carbon contributions, with concrete alone composing over 85% of the total mass based on the analyzed G-SEED dataset. A material classification framework is then developed, organized by functional role and carbon impact. By focusing on these high-impact materials, future LCA efforts can be significantly streamlined without compromising accuracy. This approach offers data-driven guidance for LCA practitioners, designers, and green building certification bodies aiming for efficient and reliable carbon assessments. Full article
Show Figures

Figure 1

26 pages, 1563 KB  
Article
EPCDescriptor: A Multi-Attribute Visual Network Modeling of Housing Energy Performance
by Hafiz Muhammad Shakeel, Shamaila Iram, Hafiz Muhammad Athar Farid, Richard Hill and Hassam ur Rehman
Buildings 2025, 15(16), 2929; https://doi.org/10.3390/buildings15162929 - 18 Aug 2025
Viewed by 336
Abstract
Conventional methods of studying houses’ Energy Performance Certificates (EPCs) typically fail to investigate the impact of interrelated contextual elements instead fixating exclusively on the specific attributes of individual houses. This study presents a new method that combines network graph analytics (NGA) with interactive [...] Read more.
Conventional methods of studying houses’ Energy Performance Certificates (EPCs) typically fail to investigate the impact of interrelated contextual elements instead fixating exclusively on the specific attributes of individual houses. This study presents a new method that combines network graph analytics (NGA) with interactive visual analytics to investigate hidden linkages at the individual house level. Our proposed platform collects and analyses data related to housing attributes, creates a network based on the links between these attributes, and employs sophisticated graph algorithms to provide visual representations. Users have the ability to dynamically choose postcodes, metrics, and attributes, which, in turn, generate layouts of networks that provide valuable insights. The visualisation utilises colour gradients and node metrics to improve the comprehensibility of energy performance areas. The platform enables homeowners and stakeholders to comprehend the interrelationships between aspects such as neighbouring housing features, and house infrastructure. The results prove the efficacy of the strategy by giving a collection of case studies that encompass various Energy Performance Certificates (EPCs) ranging from A to G. Each case study demonstrates the evolution of network architectures and visual assessments, showcasing the energy performance linked to certain EPC ratings. The platform offers a user-friendly interface for stakeholders to investigate and understand attribute relationships. Full article
(This article belongs to the Collection Sustainable Buildings in the Built Environment)
Show Figures

Figure 1

28 pages, 1918 KB  
Article
Environmental and Economic Optimisation of Single-Family Buildings Thermomodernisation
by Anna Sowiżdżał, Michał Kaczmarczyk, Leszek Pająk, Barbara Tomaszewska, Wojciech Luboń and Grzegorz Pełka
Energies 2025, 18(16), 4372; https://doi.org/10.3390/en18164372 - 16 Aug 2025
Viewed by 572
Abstract
This study offers a detailed environmental, energy, and economic evaluation of thermal modernisation options for an existing single-family home in southern Poland. A total of 24 variants, combining different heat sources (solid fuel, biomass, natural gas, and heat pumps) with various levels of [...] Read more.
This study offers a detailed environmental, energy, and economic evaluation of thermal modernisation options for an existing single-family home in southern Poland. A total of 24 variants, combining different heat sources (solid fuel, biomass, natural gas, and heat pumps) with various levels of building insulation, were analysed using energy performance certification methods. Results show that, from an energy perspective, the most advantageous scenarios are those utilising brine-to-water or air-to-water heat pumps supported by photovoltaic systems, reaching final energy demands as low as 43.5 kWh/m2year and primary energy demands of 41.1 kWh/m2year. Biomass boilers coupled with solar collectors delivered the highest renewable energy share (up to 99.2%); however, they resulted in less notable reductions in primary energy. Environmentally, all heat pump options removed local particulate emissions, with CO2 reductions of up to 87.5% compared to the baseline; biomass systems attained 100% CO2 reduction owing to renewable fuels. Economically, biomass boilers had the lowest unit energy production costs, while PV-assisted heat pumps faced the highest overall costs despite their superior environmental benefits. The findings highlight the trade-offs between ecological advantages, energy efficiency, and investment costs, offering a decision-making framework for the modernisation of sustainable residential heating systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

12 pages, 1565 KB  
Article
Impact of High-Efficiency Filter Pressure Drop on the Energy Performance of Residential Energy Recovery Ventilators
by Suh-hyun Kwon, Beungyong Park and Byoungchull Oh
Energies 2025, 18(16), 4326; https://doi.org/10.3390/en18164326 - 14 Aug 2025
Viewed by 403
Abstract
As the importance of both indoor air quality (IAQ) and energy efficiency grows in residential buildings, the application of air filters in energy recovery ventilators has become essential. However, high-efficiency filters such as MERV 12 inevitably increase the pressure drop, adversely affecting the [...] Read more.
As the importance of both indoor air quality (IAQ) and energy efficiency grows in residential buildings, the application of air filters in energy recovery ventilators has become essential. However, high-efficiency filters such as MERV 12 inevitably increase the pressure drop, adversely affecting the airflow, fan energy use, and heat exchange balance. This study quantitatively investigates how different levels of filter resistance—from clean conditions to 200% dust loading—affect system airflow, static pressure, exhaust air transfer, and power consumption. A standardized dust loading procedure was adopted to simulate long-term use conditions. The results show a 37% reduction in net supply airflow under heavily clogged filters, while the unit exhaust air transfer ratio increased from 7.2% to 17.7%, exceeding compliance limits. Surprisingly, electrical energy consumption decreased as the fan load dropped with the airflow. Despite an increase in the apparent heat exchange efficiency, this gain was driven by return air recirculation rather than true thermal effectiveness. These findings highlight the need for filter performance-based ERV certification and operational strategies that balance IAQ, energy use, and system compliance. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 1227 KB  
Review
Comparative Assessment of LEED, BREEAM, and WELL: Advancing Sustainable Built Environments
by Elias Tsirovasilis, Martha Katafygiotou and Chrystala Psathiti
Energies 2025, 18(16), 4322; https://doi.org/10.3390/en18164322 - 14 Aug 2025
Viewed by 572
Abstract
This study compares the LEED, BREEAM, and WELL certification systems using the Triple Bottom Line (TBL) framework to assess their performance across environmental, social, and economic dimensions and their alignment with sustainable development goals. A structured secondary analysis was conducted on over 50 [...] Read more.
This study compares the LEED, BREEAM, and WELL certification systems using the Triple Bottom Line (TBL) framework to assess their performance across environmental, social, and economic dimensions and their alignment with sustainable development goals. A structured secondary analysis was conducted on over 50 peer-reviewed articles, case studies, and official certification manuals. Inclusion criteria required documented design targets and post-occupancy outcomes for certified buildings (2014–2024). A two-phase analytical model was applied: first, evaluating each system’s structure and priorities; then benchmarking them using the TBL framework to assess how holistically each addresses sustainability. Results show that LEED leads to energy optimization, BREEAM to lifecycle integration, and WELL to occupant health and indoor environmental quality. However, all systems exhibit post-occupancy performance gaps: LEED and BREEAM underperform by 15–30% in energy use, while WELL-certified projects may exceed 30% due to stringent indoor comfort demands. These findings highlight the need to integrate real-time post-occupancy evaluation into certification protocols. To improve overall effectiveness, the study proposes enhancements such as adaptive performance tracking, occupant feedback loops, and dynamic benchmarking aligned with actual building use. By identifying both the comparative strengths and systemic limitations of the three frameworks, this research contributes to the refinement of green building assessment tools. Practical implications include (1) integrating post-occupancy evaluation into certification renewal cycles, (2) adopting hybrid certification strategies to improve sustainability coverage, and (3) designing benchmarking tools that reflect real-world operational data. Full article
(This article belongs to the Special Issue Advanced Technologies for Energy-Efficient Buildings)
Show Figures

Figure 1

43 pages, 4854 KB  
Review
The Role of Natural Fibers in the Building Industry—The Perspective of Sustainable Development
by Agnieszka Przybek
Materials 2025, 18(16), 3803; https://doi.org/10.3390/ma18163803 - 13 Aug 2025
Viewed by 716
Abstract
Contemporary construction faces the need to reduce its negative impact on the environment, prompting designers, investors, and contractors to seek more sustainable materials and technologies. One area of dynamic development is the use of natural fibers as an alternative to conventional, often synthetic, [...] Read more.
Contemporary construction faces the need to reduce its negative impact on the environment, prompting designers, investors, and contractors to seek more sustainable materials and technologies. One area of dynamic development is the use of natural fibers as an alternative to conventional, often synthetic, building components. Plant- and animal-based fibers, such as hemp, flax, jute, straw, bamboo, and sheep’s wool, are characterized by low energy consumption in production, renewability, and biodegradability. Their use is in line with the concept of a circular economy and reduces the carbon footprint of buildings. Natural fibers offer a number of beneficial physical and functional properties, including good thermal and acoustic insulation parameters, as well as hygroscopicity, which allows for the regulation of indoor humidity, improving air quality and comfort of use. In recent years, there has also been a renaissance of traditional building techniques, such as straw construction, often combined with modern engineering standards. Their potential is particularly recognized in green and energy-efficient construction. The article provides an overview of the types of natural fibers available for use in construction and analyzes their technical, environmental, and economic properties. It also draws attention to current regulations, standards, and certifications (e.g., LEED, BREEAM) that promote the popularization of these solutions. In light of the analyzed data, the role of natural fibers as a viable alternative supporting the transformation of the construction sector towards sustainable development is considered. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

15 pages, 904 KB  
Article
Low-Carbon and Economic-Oriented Dispatch Method for Multi-Microgrid Considering Green Certificate: Carbon Trading Mechanism Driven by AI Reinforcement Learning-Enhanced Genetic Algorithm
by Yiqiao Cheng, Hongbo Zou and Fei Wang
Processes 2025, 13(8), 2531; https://doi.org/10.3390/pr13082531 - 11 Aug 2025
Viewed by 365
Abstract
Aiming at the problem that the existing research mostly focuses on a single microgrid or an independent optimization goal and lacks the cooperative scheduling of multi-microgrids and the deep integration with the green certificate (GC) and carbon trading (CT) mechanisms, this paper proposes [...] Read more.
Aiming at the problem that the existing research mostly focuses on a single microgrid or an independent optimization goal and lacks the cooperative scheduling of multi-microgrids and the deep integration with the green certificate (GC) and carbon trading (CT) mechanisms, this paper proposes a low-carbon and economic-oriented dispatch method for multi-microgrids considering a GC-CT mechanism driven by an artificial intelligence (AI) reinforcement learning-enhanced genetic algorithm (GA). First of all, under the constructed architecture model of the GC-CT mechanism and multi-microgrid, this method constructs an optimal objective model that incorporates economic revenue and GC-CT costs. Secondly, regarding the two key parameters, crossover rate and mutation rate, which seriously influence the performance of the GA, this paper utilizes an AI reinforcement learning algorithm to adaptively adjust them and solves the constructed model based on the AI reinforcement learning-enhanced GA. Finally, based on a regional multi-microgrid system, the simulation results show that the proposed method can significantly improve the operating efficiency of the microgrid system after integrating the GC-CT mechanism into the microgrid system, which provides a theoretical framework and technical path for low-carbon and economic-oriented dispatch of multi-microgrids and helps the power system to evolve into a zero-carbon smart energy system. Full article
Show Figures

Figure 1

22 pages, 1614 KB  
Proceeding Paper
Integrated Blockchain, IoT, and Green Hydrogen Approach for Sustainable and Connected Supply Chain—Application Case in Morocco
by Abdellah Tetouani, Achraf Taouil, Naoufal Rouky and Mouhsene Fri
Eng. Proc. 2025, 97(1), 55; https://doi.org/10.3390/engproc2025097055 - 11 Aug 2025
Viewed by 505
Abstract
The global energy transition and digitalization are reshaping traditional production and consumption paradigms. Green hydrogen is emerging as a key element for decarbonizing sectors like industry and transportation, offering a viable alternative to fossil fuels and a pathway toward mitigating climate change. However, [...] Read more.
The global energy transition and digitalization are reshaping traditional production and consumption paradigms. Green hydrogen is emerging as a key element for decarbonizing sectors like industry and transportation, offering a viable alternative to fossil fuels and a pathway toward mitigating climate change. However, implementing green hydrogen supply chains presents challenges related to traceability, operational efficiency, and process certification. This paper explores how blockchain and the Internet of Things can address these challenges and transform the green hydrogen supply chain. Using Morocco as a case study—a country with abundant renewable resources and a strategic focus on green hydrogen—this article proposes innovative technological solutions to support a sustainable energy transition and contribute to a more secure and energy-efficient future. We analyze the current state of research on blockchain, IoT, and green hydrogen, identify key areas for advancement, and present a proposed framework for integrating these technologies. Full article
Show Figures

Figure 1

30 pages, 3996 KB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Viewed by 495
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop