Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = energy dissipater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6812 KiB  
Article
Experimental Behavior and FE Modeling of Buckling Restrained Braced Frame with Slip-Critical Connection
by Huseyin Sogut, Ramazan Ozcelik, Kagan Sogut and Ferhat Erdal
Appl. Sci. 2025, 15(10), 5626; https://doi.org/10.3390/app15105626 - 18 May 2025
Cited by 1 | Viewed by 603
Abstract
This paper examines the hysteretic behavior of the buckling restrained braces (BRBs) in the steel frame. Both experimental and finite element (FE) studies were conducted. The experimental results showed that the well-detailed buckling restrained braced frame (BRBF) withstood significant drift demands, while the [...] Read more.
This paper examines the hysteretic behavior of the buckling restrained braces (BRBs) in the steel frame. Both experimental and finite element (FE) studies were conducted. The experimental results showed that the well-detailed buckling restrained braced frame (BRBF) withstood significant drift demands, while the BRB exhibited significant yield without severe damage. Although the BRB inside the steel frame was subjected to 2.69% strain of the CP under the axial compression demands, the local and global deformations were not observed. The FE model was developed and validated. The numerical investigations of hysteretic behavior of the BRBF in the literature are generally focused on the friction between the core plate (CP) and the casing member (CM). The results suggest that the behavior of the BRBF is significantly affected not only by the friction between CP and CM but also by the pretension load on the bolts and the friction between the contact surfaces of steel plates of slip-critical connections in the steel frame. The FE analysis showed that pretension loads of 35 kN and 75 kN gave accurate predictions for cyclic responses of BRBF under tension and compression demands, respectively. Moreover, the FE predictions were in good agreement with the test results when the friction coefficient is 0.05 between CP and CM and it is 0.20 between steel plates. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 8094 KiB  
Article
Improving the Quality of the Water Flowing over a Stepped Spillway in Open Canals by Increasing Its Degree of Aeration
by Mohamed A. Ashour, Mohamed Khairy Ali and Tawab E. Aly
Limnol. Rev. 2024, 24(4), 653-671; https://doi.org/10.3390/limnolrev24040038 - 12 Dec 2024
Cited by 1 | Viewed by 984
Abstract
As spillways are hydraulic structures constructed for the safe release of floodwater from the upstream (US) side of a dam to the downstream side, or from the end of canals and drains to a lower stream, the upstream water flow of such structures [...] Read more.
As spillways are hydraulic structures constructed for the safe release of floodwater from the upstream (US) side of a dam to the downstream side, or from the end of canals and drains to a lower stream, the upstream water flow of such structures gains significant amounts of potential energy. As this water flows over a spillway or escapes, the gained potential energy is converted into kinetic energy, resulting in the water gaining an increasing velocity, thereby enhancing the flow’s destructive potential. This can have a harmful impact on the hydraulic performance and the structural stability of the spillway itself. To avoid such harmful effects, engineers and designers of such structures usually provide the spillways and water escapes with some tools for dissipating that kinetic energy and decreasing the flowing water’s velocity. The present study aims to enhance the performance efficiency of such dissipating tools, as well as to improve the quality of the flowing water by leveraging the significant turbulence generated by the existing energy dissipators on the back of the spillway body. The aeration process enabled by this turbulence increases the dissolved oxygen contents, thereby enhancing the water quality, which is one of the main objectives of this work. On the back surface of the spillway, various dissipater shapes with different geometrical configurations, dimensions, and combinations were tested, in order to determine the most suitable engineering treatments for maximizing the dissolved oxygen content and improving the water quality for various uses, as the study’s main goal. By testing 21 different model configurations with the available laboratory discharges, the study successfully identified the most effective shape and properties of the desired dissipator, which increased the dissolved oxygen content by an average of 21.70% and dissipated water energy by about 69%. Full article
Show Figures

Figure 1

23 pages, 8219 KiB  
Article
Experimental Investigation of Precast Rocking Walls Incorporating Tension-Compression and Shear Steel Energy Dissipaters
by Jiabin Liu, Zhanhui Peng, Dongzhi Guan and Yu Lin
Appl. Sci. 2023, 13(15), 8817; https://doi.org/10.3390/app13158817 - 30 Jul 2023
Cited by 2 | Viewed by 1908
Abstract
To fully utilize the potential of earthquake-resistance capacity in rocking wall systems and improve repairability after earthquakes, a precast rocking wall structure is developed with the installation of multiple steel energy dissipaters, i.e., tension–compression and shear steel energy dissipaters. Quasistatic tests were carried [...] Read more.
To fully utilize the potential of earthquake-resistance capacity in rocking wall systems and improve repairability after earthquakes, a precast rocking wall structure is developed with the installation of multiple steel energy dissipaters, i.e., tension–compression and shear steel energy dissipaters. Quasistatic tests were carried out on three specimens to evaluate the seismic performance of the proposed system. A simulation investigation based on OpenSees was conducted to study the effects of the initial stress of strands and the main design parameters. The results indicated that the steel energy dissipaters suffer visible plastic deformation and exhibit excellent energy dissipation capacity. The proposed rocking wall structure presents excellent seismic behavior, satisfactory self-centering capacity, and repairability of the recovering function after an earthquake by replacing only the damaged energy dissipaters. Furthermore, the proposed system provides a new way to achieve the hierarchical energy dissipation mechanism of a structure. Full article
Show Figures

Figure 1

18 pages, 6675 KiB  
Article
Design Method and Impact Response of Energy-Consuming High-Fall Flexible Protection System for Construction
by Linxu Liao, Zhixiang Yu, Dong Liu, Liru Luo, Liping Guo and Xinquan Tian
Buildings 2023, 13(6), 1376; https://doi.org/10.3390/buildings13061376 - 25 May 2023
Cited by 1 | Viewed by 1648
Abstract
High-fall accidents refer to accidents where construction personnel, building materials, and equipment fall from a height, usually resulting in serious casualties and significant economic losses. This paper proposes a high-fall flexible protection system and its design approach with a tensile yield energy-consuming mechanism [...] Read more.
High-fall accidents refer to accidents where construction personnel, building materials, and equipment fall from a height, usually resulting in serious casualties and significant economic losses. This paper proposes a high-fall flexible protection system and its design approach with a tensile yield energy-consuming mechanism to solve high-fall accidents. The design approach based on component characteristics that obtained through tests contains energy matching, component internal force balance, and a two-level energy consumption mechanism. Component tests were conducted with mesh bursting tests and energy dissipator static tensile tests to obtain the characteristics of the intercepting net under the flexible boundary condition, and the force-displacement model of the ring-type energy dissipater. Combined with an actual project, we designed a high-fall flexible protection system with a protection energy level of 800 kJ for the core tube of an ultra-high-rise building construction using this method. The impact of dynamic response under multiple cases including the overall fall of the construction formwork was analyzed by dynamical numerical calculation models. The result shows that the system can effectively intercept high-falling objects and exhibit good two-stage energy dissipation characteristics to consume the impact energy. Compared with the protection system without an energy consumption mechanism, the internal force response of the steel wire rope and the suspended frame reduce by about 60%, and the energy consumption capacity increase more than six times. The protection technique proposed in this paper can effectively solve the problem of high-level impact protection such as falling construction formwork equipment, and improve construction safety. Full article
(This article belongs to the Special Issue Structural Dynamic Disaster and Protection)
Show Figures

Figure 1

19 pages, 4243 KiB  
Article
Thermoelectric Generator with Passive Biphasic Thermosyphon Heat Exchanger for Waste Heat Recovery: Design and Experimentation
by Miguel Araiz, Álvaro Casi, Leyre Catalán, Patricia Aranguren and David Astrain
Energies 2021, 14(18), 5815; https://doi.org/10.3390/en14185815 - 14 Sep 2021
Cited by 4 | Viewed by 3015
Abstract
One of the measures to fight against the current energy situation and reduce the energy consumption at an industrial process is to recover waste heat and transform it into electric power. Thermoelectric generators can be used for that purpose but there is a [...] Read more.
One of the measures to fight against the current energy situation and reduce the energy consumption at an industrial process is to recover waste heat and transform it into electric power. Thermoelectric generators can be used for that purpose but there is a lack of experimental studies that can bring this technology closer to reality. This work presents the design, optimizations and development of two devices that are experimented and compared under the same working conditions. The hot side heat exchanger of both generators has been designed using a computational fluid dynamics software and for the cold side of the generators two technologies have been analysed: a finned dissipater that uses a fan and free convection biphasic thermosyphon. The results obtained show a maximum net generation of 6.9W in the thermoelectric generator with the finned dissipater; and 10.6W of power output in the generator with the biphasic thermosyphon. These results remark the importance of a proper design of the heat exchangers, trying to get low thermal resistances at both sides of the thermoelectric modules, as well as, the necessity of considering the auxiliary consumption of the equipment employed. Full article
(This article belongs to the Special Issue Waste Heat Recovery Using Thermoelectric Generators)
Show Figures

Figure 1

15 pages, 7815 KiB  
Review
Hydraulic Jump: A Brief History and Research Challenges
by Diana De Padova and Michele Mossa
Water 2021, 13(13), 1733; https://doi.org/10.3390/w13131733 - 23 Jun 2021
Cited by 22 | Viewed by 11983
Abstract
This paper presents a brief history of the hydraulic jump and a literature review on hydraulic jumps’ experimental and numerical studies. Leonardo da Vinci noticed this phenomenon early on, but it was only later studied by Bidone in 1820. Since the beginning of [...] Read more.
This paper presents a brief history of the hydraulic jump and a literature review on hydraulic jumps’ experimental and numerical studies. Leonardo da Vinci noticed this phenomenon early on, but it was only later studied by Bidone in 1820. Since the beginning of the 20th century, the hydraulic jump has received a lot of attention following the development of energy dissipater designs and stilling basins. The late 1920s and early 1930s saw many experimental studies researching the surface roller profile and energy dissipation. The study of internal flow features started in the late 1950s. Starting in the 70s, it was believed that the flow of a jump must be analyzed in its actual configuration of air–water mixture, an aspect that cannot be overlooked. Several experimental studies in the late 1980s and 1990s highlighted the existence of oscillating phenomena under specific flow conditions and particularly, a cyclic variation of jump types over long-lasting experiments. The early 2000s saw many experimental studies researching the complex structure of the separated region in very large channels downstream of the lateral shockwaves. Whereas most of the experiments provide measurements at a point or on a plane, the complete flow field supplied by CFD simulations enables us to have a deeper understanding of the dynamics of coherent structures that are responsible for free-surface fluctuations and aeration in hydraulic jumps. Therefore, in recent years, the computational fluid dynamics (CFD) method, through turbulence models, has become a useful tool to study this complex environmental fluid mechanic problem. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 4456 KiB  
Article
Influence of Ausforming Treatment on Super Elasticity of Cu-Zn-Al Shape Memory Alloy for Seismic Energy Dissipaters
by Danko Ćorić and Irena Žmak
Buildings 2021, 11(1), 22; https://doi.org/10.3390/buildings11010022 - 6 Jan 2021
Cited by 8 | Viewed by 4002
Abstract
In order to develop the application of the more cost-effective copper-based shape memory alloys (SMAs), rather than nickel–titanium as earthquake energy dissipaters, the influence of ausforming-induced plastic deformation on phase transformations, microstructure, super elasticity and mechanical properties of the shape memory alloy Cu-26Zn-4Al [...] Read more.
In order to develop the application of the more cost-effective copper-based shape memory alloys (SMAs), rather than nickel–titanium as earthquake energy dissipaters, the influence of ausforming-induced plastic deformation on phase transformations, microstructure, super elasticity and mechanical properties of the shape memory alloy Cu-26Zn-4Al was examined. These specific SMA properties were targeted by applying appropriate parameters of the thermomechanical (the so-called ausforming) process: beta-phase homogenization at 800 °C for 20 min, one-step hot rolling at 800 °C and water quenching. The results showed significant microstructural changes, increased mechanical resistance and change in the phase transformation behavior. The SMA treated by ausforming retained the reversible austenitic–martensitic transformation ability, with the appearance of the super-elastic effect up to 6% of strain recovery. Although some strengthening occurred after hot rolling (an increase in true yield strength of 125 MPa was detected), all phase transformation temperatures were decreased. The smallest decrease was detected for the austenite finish temperature (32.8 °C) and the largest for the martensite finish temperature (42.0 °C), allowing both the expansion and the lowering of the temperature range of super elasticity, which is favorable for construction applications. It is concluded that it is possible to achieve an optimal combination of adequate strength and improved transformation behavior of Cu-Zn-Al alloy by applying the ausforming treatment. Full article
Show Figures

Figure 1

4 pages, 166 KiB  
Editorial
Special Issue on Advanced Methods for Seismic Performance Evaluation of Building Structures
by Sang Whan Han
Appl. Sci. 2020, 10(20), 7353; https://doi.org/10.3390/app10207353 - 21 Oct 2020
Cited by 2 | Viewed by 2074
Abstract
When an earthquake occurs, it causes great damage to a large area. Although seismic engineering continues to develop, it is reported that recently occurred earthquakes inflicted major damage to various structures and loss of human lives. Such earthquake damage occurs in high seismic [...] Read more.
When an earthquake occurs, it causes great damage to a large area. Although seismic engineering continues to develop, it is reported that recently occurred earthquakes inflicted major damage to various structures and loss of human lives. Such earthquake damage occurs in high seismic regions as well as low to moderate seismic regions. This special issue contains topics on newly developed technologies and methods for seismic performance evaluation and seismic design of building structures. Full article
5 pages, 196 KiB  
Editorial
Environmental Hydraulics Research
by Helena M. Ramos, Armando Carravetta, Aonghus Mc Nabola and Kemi Adeyeye
Water 2020, 12(10), 2749; https://doi.org/10.3390/w12102749 - 1 Oct 2020
Cited by 1 | Viewed by 2903
Abstract
Environmental hydraulics research includes the different domains of hydrodynamics, such as the investigation and implementation of the physical and experimental applications, and research into the quantity, quality, modelling and simulation of the attributes associated with flowing water. This topic is studied both from [...] Read more.
Environmental hydraulics research includes the different domains of hydrodynamics, such as the investigation and implementation of the physical and experimental applications, and research into the quantity, quality, modelling and simulation of the attributes associated with flowing water. This topic is studied both from a technical and environmental point of view, with the objective of protecting and enhancing the quality of the environment. It is a cross-disciplinary field of study which comprises open channel/river flows and pressurised systems, combining, among others, new technological, social, and environmental hydraulic challenges. It provides researchers and engineers working in water-related fields with available information, new concepts and tools, new design solutions, eco-friendly technologies, and the advanced materials necessary to address the increasing challenges of ensuring a sustainable water environment—that is, a water environment effectively managed and adequated for generations to come by promoting the adaptation, flexibility, integration and sustainability of recognised environmental solutions. Using advanced numerical and physical models in field experiments, and tests in different types of laboratory set-ups, specialists in environmental hydraulics produce the best analyses, concepts, techniques, tools, and solutions to environmental hydraulic problems, as well as in relation to the water, energy and environmental nexus. Full article
(This article belongs to the Special Issue Environmental Hydraulics Research)
24 pages, 7809 KiB  
Article
Experimental Investigation of Flood Energy Dissipation by Single and Hybrid Defense System
by Afzal Ahmed and Abdul Razzaq Ghumman
Water 2019, 11(10), 1971; https://doi.org/10.3390/w11101971 - 21 Sep 2019
Cited by 28 | Viewed by 6559
Abstract
In this study, a series of laboratory experiments were conducted to investigate the energy loss through the hybrid defense system (HDS) in the order of dike, moat, and emergent vegetation in steady subcritical flow conditions. The results of HDS were compared with a [...] Read more.
In this study, a series of laboratory experiments were conducted to investigate the energy loss through the hybrid defense system (HDS) in the order of dike, moat, and emergent vegetation in steady subcritical flow conditions. The results of HDS were compared with a single defense system (SDS) comprising only vegetation (OV). The dimensions of dike were kept constant while two different shapes (trapezoidal and rectangular) of moat were considered. The impacts of vegetation of variable thickness and density were investigated. Two combinations of HDS were investigated including the combination of dike and vegetation (DV) and the combination of dike, moat, and vegetation (DMV). The effect of backwater rise due to the vegetation, hydraulic jump formation and the impact of the arrival time of floodwater on energy dissipation were investigated. It was observed that on the upstream side of obstructions, the backwater depth increased by increasing the Froude number in both the SDS and HDS. The hydraulic jump observed in HDS was classified and the energy dissipation due to it was calculated. Under various conditions investigated in this paper, the maximum average energy dissipation was 32% in SDS and 46% in HDS. The trapezoidal moat performed better than rectangular moat as energy dissipater. The delay time was also greater with trapezoidal moat as compared to that in rectangular one. The maximum delay time was 140 s in the case of HDS. Hence, the hybrid defense system offered maximum resistance to the flow of water, thus causing a significant energy loss. For each case of SDS and HDS, empirical equations were developed by regression analysis to estimate the energy dissipation amounts. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

25 pages, 21086 KiB  
Article
The Development of a New Shock Absorbing Uniaxial Graded Auxetic Damper (UGAD)
by Hasan Al-Rifaie and Wojciech Sumelka
Materials 2019, 12(16), 2573; https://doi.org/10.3390/ma12162573 - 12 Aug 2019
Cited by 52 | Viewed by 5742
Abstract
Auxetic structures are efficient cellular materials that can absorb blast/impact energy through plastic deformation, thus protecting the structure. They are developing sacrificial solutions with light weight, high specific strength, high specific toughness and excellent energy dissipating properties, due to its negative Poison’s ratio [...] Read more.
Auxetic structures are efficient cellular materials that can absorb blast/impact energy through plastic deformation, thus protecting the structure. They are developing sacrificial solutions with light weight, high specific strength, high specific toughness and excellent energy dissipating properties, due to its negative Poison’s ratio nature. The use of auxetic and non-auxetic panels in blast resistant structures had been relatively perceived by researchers. Nonetheless, implementation of those energy dissipaters, explicitly as a uni-axial passive damper is restrained to limited studies, which highlight the potential need for further explorations. The aim of this paper is the design of a new uniaxial graded auxetic damper (UGAD) that can be used as a blast/impact/shock absorber in different scales for different structural applications. First, the geometry, material, numerical model and loading are introduced. Then, a detailed parametric study is conducted to achieve the most efficient graded auxetic system. Moreover, the designed auxetic damper is numerically tested and its static and dynamic constitutive relations are derived and validated analytically. The selection of optimum parameters was based on the ratio of the reaction force to the applied load (RFd/P) and plastic dissipation energy (PDE). The final designed UGAD contains three auxetic cores that have the same geometry, material grade (6063-T4), size and number of layers equal to eight. The cell-wall thickness t of the three auxetic cores is 1.4 mm, 1.8 mm and 2.2 mm, respectively; composing a graded auxetic system. The performance of the three auxetic cores together have led to a wide plateau region (80% of total crushing strain) and variant strength range (1–10 MPa), which in return, can justify the superior performance of the UGAD under different blast levels. Finally, the 3D printed prototype of the UGAD is presented and the possible applications are covered. Full article
Show Figures

Figure 1

13 pages, 3000 KiB  
Article
Effect of the Area Contraction Ratio on the Hydraulic Characteristics of the Toothed Internal Energy Dissipaters
by Ting Zhang, Rui-xia Hao, Xiu-qing Zheng and Ze Zhang
Water 2019, 11(7), 1406; https://doi.org/10.3390/w11071406 - 9 Jul 2019
Cited by 1 | Viewed by 2941
Abstract
Toothed internal energy dissipaters (TIED) are a new type of internal energy dissipaters, which combines the internal energy dissipaters of sudden reduction and sudden enlargement forms with the open-flow energy dissipation together. In order to provide a design basis for an optimized body [...] Read more.
Toothed internal energy dissipaters (TIED) are a new type of internal energy dissipaters, which combines the internal energy dissipaters of sudden reduction and sudden enlargement forms with the open-flow energy dissipation together. In order to provide a design basis for an optimized body type of the TIED, the effect of the area contraction ratio (ε) on the hydraulic characteristics, including over-current capability, energy dissipation rate, time-averaged pressure, pulsating pressure, time-averaged velocity, and pulsating velocity, were studied using the methods of a physical model test and theoretical analysis. The main results are as follows. The over-current capability mainly depends on ε, and the larger ε is, the larger the flow coefficient is. The energy dissipation rate is proportional to the quadratic of Re and inversely proportional to ε. The changes of the time-averaged pressure coefficients under each flow are similar along the test pipe, and the differences of the time-averaged pressure coefficient between the inlet of the TIED and the outlet of the TIED decrease with the increase of ε. The peaks of the pulsating pressure coefficient appear at 1.3 D after the TIED and are inversely proportional to ε. When the flow is 18 l/s and ε increases from 0.375 to 0.625, the maximum of time-averaged velocity coefficient on the line of Z/D = 0.42 reduces from 2.53 to 1.17, and that on the line of Z/D = 0 decreases from 2.99 to 1.74. The maximum values of pulsating velocity on the line of Z/D = 0.42 appear at 1.57D and those of Z/D = 0 appear at 2.72D, when the flow is 18 l/s. The maximum values of pulsating velocity decrease with the increase of ε. Finally, two empirical expressions, related to the flow coefficient and energy loss coefficient, are separately presented. Full article
(This article belongs to the Special Issue Environmental Hydraulics Research)
Show Figures

Figure 1

22 pages, 3202 KiB  
Article
Proposed Simplified Approach for the Seismic Analysis of Multi-Storey Moment Resisting Framed Buildings Incorporating Friction Sliders
by Shahab Ramhormozian, G. Charles Clifton, Massimo Latour and Gregory A. MacRae
Buildings 2019, 9(5), 130; https://doi.org/10.3390/buildings9050130 - 23 May 2019
Cited by 16 | Viewed by 6846
Abstract
An innovative, simplified, and accurate model is proposed and developed to enable simplified yet realistic time history analysis of multi-storey buildings with moment resisting connections using friction energy dissipaters in the commonly used structural analysis and design program, SAP2000. The analyses are rapid [...] Read more.
An innovative, simplified, and accurate model is proposed and developed to enable simplified yet realistic time history analysis of multi-storey buildings with moment resisting connections using friction energy dissipaters in the commonly used structural analysis and design program, SAP2000. The analyses are rapid to undertake, thereby enabling detailed study of the influence of many building system effects on the overall response. This paper presents the outcome of dynamic analysis of a complete 13-storey moment resisting steel building with Sliding Hinge Joints as the beam-column connections, considering the influential self-centring factors such as MRF and gravity columns continuity as well as column base and diaphragm flexibilities. The building is one of the Te-Puni towers, which are structural steel apartment buildings with steel-concrete composite floors, designed according to the low damage design philosophy, built in Wellington, New Zealand in 2008 and which have already been subjected to two significant earthquakes. The key objectives of the research have been to take the design of the 13-storey building and convert that into the proposed simplified model required for time history seismic analysis, to undertake analysis under scaled El-Centro earthquake record, investigate the peak inter-storey drift and the residual drift of the building, and determine the influence of column base rotational stiffness, floor slab out of horizontal plane displacement, type of friction damper, and MRF and gravity column continuity. It is concluded that the response of the building is stable and predictable, as expected, and that the post-earthquake state of the building, particularly from the self-centring point of view, is well within the limits for maintaining operational continuity following an ULS level design earthquake. Full article
Show Figures

Figure 1

12 pages, 2594 KiB  
Article
Impact of Curved Shaped Energy Dissipaters Downstream of Head Structures on Both Water Energy Dissipation and Irrigation Water Quality
by Mohamed A. Ashour, Tarek Sayed and Salah El-Attar
Limnol. Rev. 2015, 15(1), 3-14; https://doi.org/10.2478/limre-2015-0001 - 29 Oct 2015
Viewed by 444
Abstract
Using energy dissipaters on the soled aprons downstream of head structures is the main technique for accelerating hydraulic jump formation and dissipating a great amount of the residual harmful kinetic energy occurring downstream of head structures. In this paper, an experimental study was [...] Read more.
Using energy dissipaters on the soled aprons downstream of head structures is the main technique for accelerating hydraulic jump formation and dissipating a great amount of the residual harmful kinetic energy occurring downstream of head structures. In this paper, an experimental study was conducted to investigate some untested shapes of curved dissipaters with different angles of curvature and arrangements from two points of view. The first is to examine its efficiency in dissipating the kinetic water energy. The second is to examine the most effective shape and arrangement obtained from the aforementioned step in enriching the flow with dissolved oxygen for enhancement of the irrigation water quality. The study was held in the irrigation and hydraulic laboratory of the Civil Department, Faculty of Engineering, Assiut University, using a movable bed tilting channel 20 m long, 30 cm wide, and 50 cm high, using 21 types of curved dissipaters with different arrangements. A total of 660 runs were carried out. Results were analysed, tabulated and graphically presented, and new formulas were introduced to estimate the energy dissipation ratio, as well as the DO concentrations. Results in general showed that the dissipater performance is more tangible in dissipating the residual energy when the curvature is in the opposite direction to that of the flow. Also, the energy loss ratio increases with an increase in curvature angle (θ), until it reaches (θ = 120°), then it decreases again. The study also showed that using three rows of dissipaters give nearly the same effect as using four rows, concerning both the relative energy dissipation and dissolved oxygen content. So, it is recommended to use three rows of the curved dissipater with the angle of curvature (θ = 120°) in the opposite direction to that of the flow to obtain the maximum percentage of water energy dissipation downstream of head structures, and maximum dissolved oxygen content too. Full article
9 pages, 967 KiB  
Article
A New Water Energy Dissipater for Efficient Energy Dissipation and Enriching the Flow with Dissolved Oxygen Content
by Mohamed A. Ashour, Tarek Sayed and Salah El-Attar
Limnol. Rev. 2014, 14(1), 3-11; https://doi.org/10.2478/limre-2014-0001 - 12 Sep 2014
Cited by 2 | Viewed by 375
Abstract
One of the most important problems Egypt is facing nowadays is saving and controlling the limited available quantity of water and its quality for irrigation and other purposes. Such goals may be achieved through different types of diversion head structures across the river [...] Read more.
One of the most important problems Egypt is facing nowadays is saving and controlling the limited available quantity of water and its quality for irrigation and other purposes. Such goals may be achieved through different types of diversion head structures across the river and in the entrance of other carrying canals. The construction of diversion head structures, which usually causes many technical problems, should have the objective of solving and overcoming to protect the structure from failure. The main problem occurs downstream. Such structures have the harmful effect of converting the potential energy gained in the upstream side to a kinetic energy in the downstream side. This energy must be dissipated shortly and safely as near as possible to the head structure to avoid its destructive effect. The hydraulic jump is the most effective tool for the dissipation of water energy, accelerating the forming of the hydraulic jump downstream such structures became essential for achieving our main goal. Using energy dissipaters on the soled apron in the downstream side of the structures was the main technique for accelerating the hydraulic jump formation and dissipating great amount of the residual harmful kinetic energy occurring downstream head structures. So early, many researchers investigated different types, shapes, and arrangements of such dissipaters to evaluate its efficiency in dissipating the water energy and accelerating the forming of the hydraulic jump. In fact, in our present study we will try to investigate some other shapes of energy dissipaters, which have not been studied enough, by evaluating its positive technical impact on: (i) percentage value of dissipating kinetic water energy; (ii) percentage value of increasing the dissolved oxygen (DO) content in the irrigation water, and improving its quality. The study is proposed to be held in the irrigation and hydraulic laboratory of the Civil department, Faculty of Engineering, Assiut University, using a movable bed tilting channel 20 m long, 30 cm wide, and 50 cm high, using fourteen types of curved dissipaters with different arrangements as shown in Table 2. It is worth mentioning that, in this first part of our paper, we will introduce a comparative analysis for the efficiency of different types of energy dissipaters available in the literature review. The most effective types of the previously studied dissipaters will be put in a comparison with our new dissipaters from the two above mentioned points of view, and the results will be presented in the second part of this paper later. Full article
Back to TopTop