Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,838)

Search Parameters:
Keywords = energy control strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1536 KiB  
Article
Control Strategy of Multiple Battery Energy Storage Stations for Power Grid Peak Shaving
by Peiyu Chen, Wenqing Cui, Jingan Shang, Bin Xu, Chao Li and Danyang Lun
Appl. Sci. 2025, 15(15), 8656; https://doi.org/10.3390/app15158656 (registering DOI) - 5 Aug 2025
Abstract
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy [...] Read more.
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy for multiple battery energy storage stations (BESSs), improving the performance of peak shaving. Firstly, the strategy involves constructing an optimization model incorporating load forecasting, capacity constraints, and security indices to design a coordination mechanism tracking the target load band with the equivalent power. Secondly, it establishes a quantitative evaluation system using metrics such as peak–valley difference and load standard deviation. Comparison based on typical daily cases shows that, compared with the constant power strategy, the coordinated variable-power control strategy has a more obvious and comprehensive improvement in overall peak-shaving effects. Furthermore, it employs a “dynamic dispatch of multiple BESS” mode, effectively mitigating the risks and flexibility issues associated with single BESSs. This strategy provides a reliable new approach for large-scale energy storage to participate in high-precision peaking. Full article
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

24 pages, 4314 KiB  
Article
Hyperparameter Optimization of Neural Networks Using Grid Search for Predicting HVAC Heating Coil Performance
by Yosef Jaber, Pasidu Dharmasena, Adam Nassif and Nabil Nassif
Buildings 2025, 15(15), 2753; https://doi.org/10.3390/buildings15152753 - 5 Aug 2025
Abstract
Heating, Ventilation, and Air Conditioning (HVAC) systems represent a significant portion of global energy use, yet they are often operated without optimized control strategies. This study explores the application of deep learning to accurately model heating system behavior as a foundation for predictive [...] Read more.
Heating, Ventilation, and Air Conditioning (HVAC) systems represent a significant portion of global energy use, yet they are often operated without optimized control strategies. This study explores the application of deep learning to accurately model heating system behavior as a foundation for predictive control and energy-efficient HVAC operation. Experimental data were collected under controlled laboratory conditions, and 288 unique hyperparameter configurations were developed. Each configuration was tested three times, resulting in a total of 864 artificial neural network models. Five key hyperparameters were varied systematically: number of epochs, network size, network shape, learning rate, and optimizer. The best-performing model achieved a mean squared error of 0.469 and featured 17 hidden layers, a left-triangle architecture trained for 500 epochs with a learning rate of 5 × 10−5, and Adam as the optimizer. The results highlighted the importance of hyperparameter tuning in improving model accuracy. Future research should extend the analysis to incorporate cooling operation and real-world building operation data for broader applicability. Full article
Show Figures

Figure 1

28 pages, 2340 KiB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 (registering DOI) - 4 Aug 2025
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

27 pages, 30231 KiB  
Article
Modelling and Simulation of a 3MW, Seventeen-Phase Permanent Magnet AC Motor with AI-Based Drive Control for Submarines Under Deep-Sea Conditions
by Arun Singh and Anita Khosla
Energies 2025, 18(15), 4137; https://doi.org/10.3390/en18154137 - 4 Aug 2025
Abstract
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, [...] Read more.
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, seventeen-phase Permanent Magnet AC motor designed for submarine propulsion, integrating an AI-based drive control system. Despite the advantages of multiphase motors, such as higher power density and enhanced fault tolerance, significant challenges remain in achieving precise torque and variable speed, especially for externally mounted motors operating under deep-sea conditions. Existing control strategies often struggle with the inherent nonlinearities, unmodelled dynamics, and extreme environmental variations (e.g., pressure, temperature affecting oil viscosity and motor parameters) characteristic of such demanding deep-sea applications, leading to suboptimal performance and compromised reliability. Addressing this gap, this research investigates advanced control methodologies to enhance the performance of such motors. A MATLAB/Simulink framework was developed to model the motor, whose drive system leverages an AI-optimised dual fuzzy-PID controller refined using the Harmony Search Algorithm. Additionally, a combination of Indirect Field-Oriented Control (IFOC) and Space Vector PWM strategies are implemented to optimise inverter switching sequences for precise output modulation. Simulation results demonstrate significant improvements in torque response and control accuracy, validating the efficacy of the proposed system. The results highlight the role of AI-based propulsion systems in revolutionising submarine manoeuvrability and energy efficiency. In particular, during a test case involving a speed transition from 75 RPM to 900 RPM, the proposed AI-based controller achieves a near-zero overshoot compared to an initial control scheme that exhibits 75.89% overshoot. Full article
Show Figures

Figure 1

12 pages, 4237 KiB  
Article
Ultra-Stable Anode-Free Na Metal Batteries Enabled by Al2O3-Functionalized Separators
by Han Wang, Yiheng Zhao, Jiaqi Huang, Lu Wang, Canglong Li and Yuejiao Chen
Batteries 2025, 11(8), 297; https://doi.org/10.3390/batteries11080297 - 4 Aug 2025
Abstract
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is [...] Read more.
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is a pivotal strategy for stabilizing AFSMBs. Through systematic evaluation of four separators—2500 separator (PP), 2325 separator (PP/PE/PP), glass fiber (GF), and an Al2O3-coated PE membrane, we reveal that the Al2O3-coated separator uniquely enables exceptional interfacial kinetics and morphological control. Na||Na symmetric cells with Al2O3 coated separator exhibit ultralow polarization (4.5 mV) and the highest exchange current density (1.77 × 10−2 mA cm−2), while the anode-free AlC-NFPP full cells retain 91.6% capacity after 150 cycles at 2C. Specifically, the Al2O3 coating homogenizes Na+ flux, promotes dense and planar Na deposition, and facilitates near-complete stripping with minimal “dead Na”. This work establishes ceramic-functionalized separators as essential enablers of practical high-energy AFSMBs. Full article
Show Figures

Figure 1

16 pages, 3086 KiB  
Article
Design and Optimization Strategy of a Net-Zero City Based on a Small Modular Reactor and Renewable Energy
by Jungin Choi and Junhee Hong
Energies 2025, 18(15), 4128; https://doi.org/10.3390/en18154128 - 4 Aug 2025
Abstract
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs), renewable energy sources, and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy [...] Read more.
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs), renewable energy sources, and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy storage systems, SMRs provide a reliable and flexible baseload power source. Sector coupling systems—such as hydrogen production and heat generation—enhance grid stability by absorbing surplus energy and supporting the decarbonization of non-electric sectors. The core contribution of this study lies in its real-time data emulation framework, which overcomes a critical limitation in the current energy landscape: the absence of operational data for future technologies such as SMRs and their coupled hydrogen production systems. As these technologies are still in the pre-commercial stage, direct physical integration and validation are not yet feasible. To address this, the researchers leveraged real-time data from an existing commercial microgrid, specifically focusing on the import of grid electricity during energy shortfalls and export during solar surpluses. These patterns were repurposed to simulate the real-time operational behavior of future SMRs (ProxySMR) and sector coupling loads. This physically grounded simulation approach enables high-fidelity approximation of unavailable technologies and introduces a novel methodology to characterize their dynamic response within operational contexts. A key element of the SSNC control logic is a day–night strategy: maximum SMR output and minimal hydrogen production at night, and minimal SMR output with maximum hydrogen production during the day—balancing supply and demand while maintaining high SMR utilization for economic efficiency. The SSNC testbed was validated through a seven-day continuous operation in Busan, demonstrating stable performance and approximately 75% SMR utilization, thereby supporting the feasibility of this proxy-based method. Importantly, to the best of our knowledge, this study represents the first publicly reported attempt to emulate the real-time dynamics of a net-zero city concept based on not-yet-commercial SMRs and sector coupling systems using live operational data. This simulation-based framework offers a forward-looking, data-driven pathway to inform the development and control of next-generation carbon-neutral energy systems. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

16 pages, 5548 KiB  
Article
A State-of-Charge-Frequency Control Strategy for Grid-Forming Battery Energy Storage Systems in Black Start
by Yunuo Yuan and Yongheng Yang
Batteries 2025, 11(8), 296; https://doi.org/10.3390/batteries11080296 - 4 Aug 2025
Abstract
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In [...] Read more.
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In this context, a state-of-charge (SOC)-frequency control strategy for grid-forming BESSs is proposed to enhance their role in stabilizing grid frequency and improving overall system performance. In the system, the DC-link capacitor is regulated to maintain the angular frequency through a matching control scheme, emulating the characteristics of the rotor dynamics of a synchronous generator (SG). Thereby, the active power control is implemented in the control of the DC/DC converter to further regulate the grid frequency. More specifically, the relationship between the active power and the frequency is established through the SOC of the battery. In addition, owing to the inevitable presence of differential operators in the control loop, a high-gain observer (HGO) is employed, and the corresponding parameter design of the proposed method is elaborated. The proposed strategy simultaneously achieves frequency regulation and implicit energy management by autonomously balancing power output with available battery capacity, demonstrating a novel dual benefit for sustainable grid operation. To verify the effectiveness of the proposed control strategy, a 0.5-Hz frequency change and a 10% power change are carried out through simulations and also on a hardware-in-the-loop (HIL) platform. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

17 pages, 5451 KiB  
Article
Study of Efficient and Clean Combustion of Diesel–Natural Gas Engine at High Loads with TAC-HCCI Combustion
by Min Zhang, Wenyu Gu, Zhi Jia and Wanhua Su
Energies 2025, 18(15), 4121; https://doi.org/10.3390/en18154121 - 3 Aug 2025
Viewed by 75
Abstract
This study proposes an innovative Thermodynamic Activity Controlled Homogeneous Charge Compression Ignition (TAC-HCCI) strategy for diesel–natural gas dual-fuel engines, aiming to achieve high thermal efficiency while maintaining low emissions. By employing numerical simulation methods, the effects of the intake pressure, intake temperature, EGR [...] Read more.
This study proposes an innovative Thermodynamic Activity Controlled Homogeneous Charge Compression Ignition (TAC-HCCI) strategy for diesel–natural gas dual-fuel engines, aiming to achieve high thermal efficiency while maintaining low emissions. By employing numerical simulation methods, the effects of the intake pressure, intake temperature, EGR rate, intake valve closing timing, diesel injection timing, diesel injection pressure, and diesel injection quantity on engine combustion, energy distribution, and emission characteristics were systematically investigated. Through a comprehensive analysis of optimized operating conditions, a high-efficiency and low-emission TAC-HCCI combustion technology for dual-fuel engines was developed. The core mechanism of TAC-HCCI combustion control was elucidated through an analysis of the equivalence ratio and temperature distribution of the in-cylinder mixture. The results indicate that under the constraints of PCP ≤ 30 ± 1 MPa and RI ≤ 5 ± 0.5 MW/m2, the TAC-HCCI technology achieves a gross indicated mean effective pressure (IMEPg) of 24.0 bar, a gross indicated thermal efficiency (ITEg) of up to 52.0%, and indicated specific NOx emissions (ISNOx) as low as 1.0 g/kW∙h. To achieve low combustion loss, reduced heat transfer loss, and high thermal efficiency, it is essential to ensure the complete combustion of the mixture while maintaining low combustion temperatures. Moreover, a reduced diesel injection quantity combined with a high injection pressure can effectively suppress NOx emissions. Full article
Show Figures

Figure 1

23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 - 3 Aug 2025
Viewed by 65
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

18 pages, 603 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 - 3 Aug 2025
Viewed by 51
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

23 pages, 3940 KiB  
Article
Recovery Strategies for Combined Optical Storage Systems Based on System Short-Circuit Ratio (SCR) Thresholds
by Qingji Yang, Baohong Li, Qin Jiang and Qiao Peng
Energies 2025, 18(15), 4112; https://doi.org/10.3390/en18154112 - 3 Aug 2025
Viewed by 179
Abstract
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a [...] Read more.
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a photovoltaic storage joint system based on the system’s short-circuit ratio threshold. Firstly, the principles and control modes of the photovoltaic (PV) system, energy storage system (ESS), and high-voltage direct current (DC) transmission system are studied separately to build an overall model; secondly, computational determinations of the short-circuit ratio under different scenarios are introduced to analyze the strength of the system, and the virtual inertia and virtual damping of the PV system are configured based on this; finally, the change trend of the storage system’s state of charge (SOC) is computed and observed, and the limits of what the system can support in each stage are determined. An electromagnetic transient simulation model of a black start system is constructed in PSCAD/EMTDC, and according to the proposed recovery strategy, the system frequency is maintained in the range of 49.4~50.6 Hz during the entire black start process; the fluctuation in maximum frequency after the recovery of the DC transmission system is no more than 0.1%; and the fluctuation in photovoltaic power at each stage is less than 3%. In addition, all the key indexes meet the requirements for black start technology, which verifies the validity of the strategy and provides theoretical support and a practical reference for the black start of a grid with variable energy sources. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Show Figures

Figure 1

21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 - 2 Aug 2025
Viewed by 216
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

14 pages, 2058 KiB  
Article
Integration of Daylight in Building Design as a Way to Improve the Energy Efficiency of Buildings
by Adrian Trząski and Joanna Rucińska
Energies 2025, 18(15), 4113; https://doi.org/10.3390/en18154113 - 2 Aug 2025
Viewed by 188
Abstract
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use [...] Read more.
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use of Building Information Modelling (BIM) as one of the effective strategies for decarbonization of buildings, since a 3D digital representation of both physical and functional characteristics of a building can help to design a more efficient infrastructure. An efficient integration of solar energy in building design can be vital for the enhancement of energy performance in terms of heating, cooling, and lighting demand. This paper presents results of an analysis of how factors related to the use of daylight, such as automatic control of artificial lighting, external shading, or the visual absorptance of internal surfaces, influence the energy efficiency within an example room in two different climatic zones. The simulation was conducted using Design Builder software, with predefined occupancy schedules and internal heat gains, and standard EPW weather files for Warsaw and Genua climate zones. The study indicates that for the examined room, when no automatic sunshades or a lighting control system is utilized, most of the final energy demand is for cooling purposes (45–54%), followed by lighting (42–43%), with only 3–12% for heating purposes. The introduction of sunshades and/or the use of daylight allowed for a reduction of the total demand by up to half. Moreover, it was pointed out that often neglected factors, like the colour of the internal surfaces, can have a significant effect on the final energy consumption. In variants with light interior, the total energy consumption was lower by about 3–4% of the baseline demand, compared to their corresponding ones with dark surfaces. These results are consistent with previous studies on daylighting strategies and highlight the importance of considering both visual and thermal impacts when evaluating energy performance. Similarly, possible side effects of certain actions were highlighted, such as an increase in heat demand resulting from a reduced need for artificial lighting. The results of the analysis highlight the potential of a simulation-based design approach in optimizing daylight use, contributing to the broader goals of building decarbonization. Full article
Show Figures

Figure 1

Back to TopTop