Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,713)

Search Parameters:
Keywords = energy consumption calculation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 (registering DOI) - 1 Aug 2025
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

22 pages, 5581 KiB  
Article
PruneEnergyAnalyzer: An Open-Source Toolkit for Evaluating Energy Consumption in Pruned Deep Learning Models
by Cesar Pachon, Cesar Pedraza and Dora Ballesteros
Big Data Cogn. Comput. 2025, 9(8), 200; https://doi.org/10.3390/bdcc9080200 - 1 Aug 2025
Abstract
Currently, various pruning strategies including different methods and distribution types are commonly used to reduce the number of FLOPs and parameters in deep learning models. However, their impact on actual energy savings remains insufficiently studied, particularly in resource-constrained settings. To address this, we [...] Read more.
Currently, various pruning strategies including different methods and distribution types are commonly used to reduce the number of FLOPs and parameters in deep learning models. However, their impact on actual energy savings remains insufficiently studied, particularly in resource-constrained settings. To address this, we introduce PruneEnergyAnalyzer, an open-source Python tool designed to evaluate the energy efficiency of pruned models. Starting from the unpruned model, the tool calculates the energy savings achieved by pruned versions provided by the user, and generates comparative visualizations based on previously applied pruning hyperparameters such as method, distribution type (PD), compression ratio (CR), and batch size. These visual outputs enable the identification of the most favorable pruning configurations in terms of FLOPs, parameter count, and energy consumption. As a demonstration, we evaluated the tool with 180 models generated from three architectures, five pruning distributions, three pruning methods, and four batch sizes, using another previous library (e.g. FlexiPrune). This experiment revealed the significant impact of the network architecture on Energy Reduction, the non-linearity between FLOPs savings and energy savings, as well as between parameter reduction and energy efficiency. It also showed that the batch size strongly influences the energy consumption of the pruned model. Therefore, this tool can support researchers in making pruning policy decisions that also take into account the energy efficiency of the pruned model. Full article
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 (registering DOI) - 1 Aug 2025
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

19 pages, 5031 KiB  
Article
Measurement, Differences, and Driving Factors of Land Use Environmental Efficiency in the Context of Energy Utilization
by Lingyao Wang, Huilin Liu, Xiaoyan Liu and Fangrong Ren
Land 2025, 14(8), 1573; https://doi.org/10.3390/land14081573 - 31 Jul 2025
Abstract
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to [...] Read more.
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to 2021 by using the EBM-DEA model in China. The geographical detector model is used to examine the driving factors of land use environmental efficiency. The results show the following: (1) China’s LUEE is high in general but shows a clear pattern of spatial differentiation internally, with the highest values in the eastern region represented by Beijing, Jiangsu, and Zhejiang, while the central and western regions show lower LUEE because of their irrational industrial structure and lagging green development. (2) Energy consumption, economic development, industrial upgrading, population size, and urban expansion are the driving factors. Their explanatory power for the spatial stratification heterogeneity of land use environmental impacts varies. (3) Urban expansion has the greatest impact on the spatial differentiation of land use environmental effects, while energy consumption also shows significant explanatory strength. In contrast, economic development and population size exhibit relatively weaker explanatory effects. (4) The interaction of the two driving factors has a greater impact on LUEE than their individual effects, and the interaction is a two-factor enhancement. Finally, we make targeted recommendations to help improve land use environmental efficiency. Full article
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 126
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

16 pages, 1702 KiB  
Article
Research on Energy Saving, Low-Cost and High-Quality Cutting Parameter Optimization Based on Multi-Objective Egret Swarm Algorithm
by Yanfang Zheng, Yongmao Xiao and Xiaoyong Zhu
Processes 2025, 13(8), 2390; https://doi.org/10.3390/pr13082390 - 28 Jul 2025
Viewed by 267
Abstract
In the process of CNC machining, reducing energy consumption, production costs, and improving machining quality are critical strategies for enhancing product competitiveness. Based on an analysis of machine tool processing mechanisms, calculation models for energy consumption, manufacturing cost, and quality (represented by surface [...] Read more.
In the process of CNC machining, reducing energy consumption, production costs, and improving machining quality are critical strategies for enhancing product competitiveness. Based on an analysis of machine tool processing mechanisms, calculation models for energy consumption, manufacturing cost, and quality (represented by surface roughness) in CNC lathes were established. These models were optimized using the Egret Swarm Optimization Algorithm (ESOA), which integrates three core strategies: waiting, random search, and bounding mechanisms. With the objectives of minimizing energy consumption, manufacturing cost, and maximizing quality, cutting parameters (e.g., cutting speed, feed rate, and depth of cut) were selected as optimization variables. A multi-objective ESOA (MOESOA) framework was applied to resolve trade-offs among conflicting objectives, and the effectiveness of the proposed method was validated through a case study. The simulation results show that the optimization of cutting parameters is beneficial to energy conservation during the machining process, although it may increase costs. Additionally, under the three-objective optimization, the improvement of surface roughness is relatively limited. The further two-objective (energy consumption and cost) optimization model demonstrates better convergence while ensuring that the surface roughness meets the basic requirements. This method provides an effective tool for optimizing cutting parameters. Full article
(This article belongs to the Special Issue Process Automation and Smart Manufacturing in Industry 4.0/5.0)
Show Figures

Figure 1

17 pages, 319 KiB  
Article
Research on Pathways to Improve Carbon Emission Efficiency of Chinese Airlines
by Liukun Zhang and Jiani Zhao
Sustainability 2025, 17(15), 6826; https://doi.org/10.3390/su17156826 - 27 Jul 2025
Viewed by 237
Abstract
As an energy-intensive industry, the aviation sector’s carbon emissions have drawn significant attention. Against the backdrop of the “dual carbon” goals, how to enhance the carbon emission efficiency of airlines has become an urgent issue to be addressed for both industry development and [...] Read more.
As an energy-intensive industry, the aviation sector’s carbon emissions have drawn significant attention. Against the backdrop of the “dual carbon” goals, how to enhance the carbon emission efficiency of airlines has become an urgent issue to be addressed for both industry development and low-carbon targets. This paper constructs an evaluation system for the carbon emission efficiency of airlines and uses the SBM-DDF model under the global production possibility set, combined with the bootstrap-DEA method, to calculate the efficiency values. On this basis, the fuzzy-set qualitative comparative analysis method is employed to analyze the synergistic effects of multiple influencing factors in three dimensions: economic benefits, transportation benefits, and energy consumption on improving carbon emission efficiency. The research findings reveal that, first, a single influencing factor does not constitute a necessary condition for achieving high carbon emission efficiency; second, there are four combinations that enhance carbon emission efficiency: “load volume-driven type”, “scale revenue-driven type”, “high ticket price + technology-driven type”, and “passenger and cargo synergy mixed type”. These discoveries are of great significance for promoting the construction of a carbon emission efficiency system by Chinese airlines and achieving high-quality development in the aviation industry. Full article
Show Figures

Figure 1

15 pages, 753 KiB  
Article
A Novel Cloud Energy Consumption Heuristic Based on a Network Slicing–Ring Fencing Ratio
by Vinay Sriram Iyer, Yasantha Samarawickrama and Giovani Estrada
Network 2025, 5(3), 27; https://doi.org/10.3390/network5030027 - 25 Jul 2025
Viewed by 162
Abstract
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our [...] Read more.
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our digital economy. A novel heuristic for the minimisation of energy consumption in cloud computing is presented. It draws similarities to the concept of “network slices”, in which an orchestrator enables multiplexing to reduce the network “churn” often associated with significant losses of energy consumption. The novel network slicing–ring fencing ratio is a heuristic calculated through an iterative procedure for the reduction in cloud energy consumption. Simulation results show how the non-convex equation optimises power by reducing energy from 10,680 kJ to 912 kJ, which is a 91.46% efficiency gain. In comparison, the Heuristic AUGMENT Non-Convex algorithm (HA-NC, by Hossain and Ansari) reported a 312.74% increase in energy consumption from 2464 kJ to 10,168 kJ, while the Priority Selection Offloading algorithm (PSO, by Anajemba et al.) also reported a 150% increase in energy consumption, from 10,738 kJ to 26,845 kJ. The proposed network slicing–ring fencing ratio is seen to successfully balance energy consumption and computing performance. We therefore think the novel approach could be of interest to network architects and cloud operators. Full article
Show Figures

Figure 1

18 pages, 2688 KiB  
Article
Eco-Friendly Leaching of Spent Lithium-Ion Battery Black Mass Using a Ternary Deep Eutectic Solvent System Based on Choline Chloride, Glycolic Acid, and Ascorbic Acid
by Furkan Nazlı, Işıl Hasdemir, Emircan Uysal, Halide Nur Dursun, Utku Orçun Gezici, Duygu Yesiltepe Özçelik, Fırat Burat and Sebahattin Gürmen
Minerals 2025, 15(8), 782; https://doi.org/10.3390/min15080782 - 25 Jul 2025
Viewed by 323
Abstract
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, [...] Read more.
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, and Ni in the EoL LiBs. Hydrometallurgical methods, which have been demonstrated to exhibit higher recovery efficiency and reduced energy consumption, have garnered increased attention in recent research. Inorganic acids, including HCl, HNO3, and H2SO4, as well as organic acids such as acetic acid and citric acid, are employed in the hydrometallurgical recovery of these metals. It is imperative to acknowledge the environmental hazards posed by these acids. Consequently, solvometallurgical processes, which involve the use of organic solvents with minimal or no water, are gaining increasing attention as alternative or complementary techniques to conventional hydrometallurgical processes. In the context of solvent systems that have been examined for a range of solvometallurgical methods, deep eutectic solvents (DESs) have garnered particular interest due to their low toxicity, biodegradable nature, tunable properties, and efficient metal recovery potential. In this study, the leaching process of black mass containing graphite, LCO, NMC, and LMO was carried out in a short time using the ternary DES system. The ternary DES system consists of choline chloride (ChCl), glycolic acid (GLY), and ascorbic acid (AA). As a result of the leaching process of cathode powders in the black mass without any pre-enrichment process, Li, Co, Ni, and Mn elements passed into solution with an efficiency of over 95% at 60 °C and within 1 h. Moreover, the kinetics of the leaching process was investigated, and Density Functional Theory (DFT) calculations were used to explain the leaching mechanism. Full article
Show Figures

Figure 1

12 pages, 941 KiB  
Article
Data Center Temperature Control Method Based on Multi-Parameter Model-Free Adaptive Control Strategy
by Di Jiang, Shangxuan Zhang and Kaiyan Pan
Processes 2025, 13(8), 2360; https://doi.org/10.3390/pr13082360 - 24 Jul 2025
Viewed by 244
Abstract
With the continuous expansion of data center scales worldwide, the problem of energy consumption has become increasingly prominent. To address the multi-parameter control challenge in environmental temperature regulation for large data center computer rooms, achieve precise control of hot-aisle temperatures in data centers, [...] Read more.
With the continuous expansion of data center scales worldwide, the problem of energy consumption has become increasingly prominent. To address the multi-parameter control challenge in environmental temperature regulation for large data center computer rooms, achieve precise control of hot-aisle temperatures in data centers, and reduce energy waste, this paper designs a multi-parameter model-free adaptive control (MMFAC) algorithm suitable for computer room environmental temperatures. The algorithm integrates the model-free adaptive control (MFAC) algorithm with a weight matrix to perform scaling transformations. Considering the large parameter space of the MFAC controller and the dynamic complexity of data center temperature control systems, compact-form dynamic linearization (CFDL) technology and optimization mathematical methods are used to simplify the parameter identification of the pseudo-Jacobian matrices and the calculation of control quantities for the regulation devices. Simulation experiments based on measured data from a data center show that the proposed algorithm can calculate control quantities for equipment such as air conditioners according to real-time environmental parameter measurements and drive each device based on these control quantities. Meanwhile, the algorithm can reduce errors in key parameters by adjusting the weight matrix. Comparative tests with other control algorithms show that the algorithm has faster response in temperature control and smaller control errors, verifying the effectiveness and application prospects of the algorithm in data center temperature control. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

22 pages, 2128 KiB  
Article
Economic Evaluation of Vehicle Operation in Road Freight Transport—Case Study of Slovakia
by Miloš Poliak, Kristián Čulík, Milada Huláková and Erik Kováč
World Electr. Veh. J. 2025, 16(8), 409; https://doi.org/10.3390/wevj16080409 - 22 Jul 2025
Viewed by 178
Abstract
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on [...] Read more.
The European Union is committed to reducing greenhouse gas emissions across all sectors, including the transportation sector. It is possible to assume that road freight transport will need to undergo technological changes, leading to greater use of alternative powertrains. This article builds on previous research on the energy consumption of battery electric trucks (BETs) and assesses the economic efficiency of electric vehicles in freight transport through a cost calculation. The primary objective was to determine the conditions under which a BET becomes cost-effective for a transport operator. These findings are practically relevant for freight carriers. Unlike other studies, this article does not focus on total cost of ownership (TCO) but rather compares the variable and fixed costs of BETs and conventional internal combustion engine trucks (ICETs). In this article, the operating costs of BETs were calculated and modeled based on real-world measurements of a tested vehicle. The research findings indicate that BETs are economically efficient, primarily when state subsidies are provided, compensating for the significant difference in purchase costs between BETs and conventional diesel trucks. This study found that optimizing operational conditions (daily routes) enables BETs to reach a break-even point at approximately 110,000 km per year, even without subsidies. Another significant finding is that battery capacity degradation leads to a projected annual operating cost increase of approximately 4%. Full article
Show Figures

Figure 1

28 pages, 6011 KiB  
Article
Automatic Vibration Balancing System for Combine Harvester Threshing Drums Using Signal Conditioning and Optimization Algorithms
by Xinyang Gu, Bangzhui Wang, Zhong Tang, Honglei Zhang and Hao Zhang
Agriculture 2025, 15(14), 1564; https://doi.org/10.3390/agriculture15141564 - 21 Jul 2025
Viewed by 213
Abstract
The threshing drum, a core component in combine harvesters, experiences significant unbalanced vibrations during high-speed rotation, leading to severe mechanical wear, increased energy consumption, elevated noise levels, potential safety hazards, and higher maintenance costs. A primary challenge is that excessive interference signals often [...] Read more.
The threshing drum, a core component in combine harvesters, experiences significant unbalanced vibrations during high-speed rotation, leading to severe mechanical wear, increased energy consumption, elevated noise levels, potential safety hazards, and higher maintenance costs. A primary challenge is that excessive interference signals often obscure the fundamental frequency characteristics of the vibration, hampering balancing effectiveness. This study introduces a signal conditioning model to suppress such interference and accurately extract the unbalanced quantities from the raw signal. Leveraging this extracted vibration force signal, an automatic optimization method for the balancing counterweights was developed, solving calculation issues inherent in traditional approaches. This formed the basis for an automatic balancing control strategy and an integrated system designed for online monitoring and real-time control. The system continuously adjusts the rotation angles, θ1 and θ2, of the balancing weight disks based on live signal characteristics, effectively reducing the drum’s imbalance under both internal and external excitation states. This enables a closed loop of online vibration testing, signal processing, and real-time balance control. Experimental trials demonstrated a significant 63.9% reduction in vibration amplitude, from 55.41 m/s2 to 20.00 m/s2. This research provides a vital theoretical reference for addressing structural instability in agricultural equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 5001 KiB  
Article
Impact of Regional Characteristics on Energy Consumption and Decarbonization in Residential and Transportation Sectors in Japan’s Hilly and Mountainous Areas
by Xiyue Hao and Daisuke Narumi
Sustainability 2025, 17(14), 6606; https://doi.org/10.3390/su17146606 - 19 Jul 2025
Viewed by 396
Abstract
In Japan’s hilly and mountainous areas, which cover over 60% of the national land area, issues such as population outflow, aging, and regional decline are intensifying. This study explored sustainable decarbonization pathways by examining two representative regions (Maniwa City and Hidakagawa Town), while [...] Read more.
In Japan’s hilly and mountainous areas, which cover over 60% of the national land area, issues such as population outflow, aging, and regional decline are intensifying. This study explored sustainable decarbonization pathways by examining two representative regions (Maniwa City and Hidakagawa Town), while accounting for diverse regional characteristics. A bottom-up approach was adopted to calculate energy consumption and CO2 emissions within residential and transportation sectors. Six future scenarios were developed to evaluate emission trends and countermeasure effectiveness in different regions. The key findings are as follows: (1) in the study areas, complex regional issues have resulted in relatively high current levels of CO2 emissions in these sectors, and conditions may worsen without intervention; (2) if the current trends continue, per-capita CO2 emissions in both regions are projected to decrease by only around 40% by 2050 compared to 2020 levels; (3) under enhanced countermeasure scenarios, CO2 emissions could be reduced by >99%, indicating that regional decarbonization is achievable. This study provides reliable information for designing localized sustainability strategies in small-scale, under-researched areas, while highlighting the need for region-specific countermeasures. Furthermore, the findings contribute to the realization of multiple Sustainable Development Goals (SDGs), particularly goals 7, 11, and 13. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

20 pages, 437 KiB  
Article
Post-Quantum Key Exchange and Subscriber Identity Encryption in 5G Using ML-KEM (Kyber)
by Qaiser Khan, Sourav Purification and Sang-Yoon Chang
Information 2025, 16(7), 617; https://doi.org/10.3390/info16070617 - 19 Jul 2025
Viewed by 241
Abstract
5G addresses user privacy concerns in cellular networking by encrypting a subscriber identifier with elliptic-curve-based encryption and then transmitting it as ciphertext known as a Subscriber Concealed Identifier (SUCI). However, an adversary equipped with a quantum computer can break a discrete-logarithm-based elliptic curve [...] Read more.
5G addresses user privacy concerns in cellular networking by encrypting a subscriber identifier with elliptic-curve-based encryption and then transmitting it as ciphertext known as a Subscriber Concealed Identifier (SUCI). However, an adversary equipped with a quantum computer can break a discrete-logarithm-based elliptic curve algorithm. Consequently, the user privacy in 5G is at stake against quantum attacks. In this paper, we study the incorporation of the post-quantum ciphers in the SUCI calculation both at the user equipment and at the core network, which involves the shared-key exchange and then using the resulting key for the ID encryption. We experiment on different hardware platforms to analyze the PQC key exchange and encryption using NIST-standardized CRYSTALS-Kyber (which is now called an ML-KEM after the standardization selection by NIST). Our analyses focus on the performances and compare the Kyber-based key exchange and encryption with the current (pre-quantum) elliptic curve Diffie–Hellman (ECDH). The performance analyses are critical because mobile networking involves resource-limited and battery-operating mobile devices. We measure and analyze not only the time and CPU-processing performances but also the energy and power performances. Our analyses show that Kyber-512 is the most efficient and even has better performance (i.e., faster computations and lower energy consumption) than ECDH. Full article
(This article belongs to the Special Issue Public Key Cryptography and Privacy Protection)
Show Figures

Figure 1

Back to TopTop