Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,086)

Search Parameters:
Keywords = energy accumulated

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2121 KiB  
Article
Camellia japonica Flower Extract and the Active Constituent Hyperoside Repair DNA Damage Through FUNDC1-Mediated Mitophagy Pathway for Skin Anti-Aging
by Hongqi Gao, Jiahui Shi, Guangtao Li, Zhifang Lai, Yan Liu, Chanling Yuan and Wenjie Mei
Antioxidants 2025, 14(8), 968; https://doi.org/10.3390/antiox14080968 (registering DOI) - 6 Aug 2025
Abstract
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its [...] Read more.
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its active ingredient hyperoside based on a doxorubicin (DOX)-induced endogenous senescence model in human skin fibroblasts (HSFs). LC-MS proteomics analysis revealed that CJF extract and hyperoside specifically activated the FUNDC1-mediated mitochondrial autophagy pathway, significantly ameliorated the DOX-induced decrease in mitochondrial membrane potential and the accumulation of reactive oxygen species (ROS), and alleviated the cellular S-phase blockade and reversed the high expression of senescence-associated β-galactosidase (SA-β-gal). Further studies showed that the two cleared damaged mitochondria by enhancing mitochondrial autophagy and restoring cellular energy metabolism homeostasis while promoting type III collagen and elastin synthesis and repairing the expression of Claudin 1 related to skin barrier function. For the first time, the present study reveals the molecular mechanism of CJF extract in delaying skin aging by regulating the FUNDC1-dependent mitochondrial autophagy pathway, which provides a theoretical basis and a candidate strategy for developing novel anti-aging agents targeting mitochondrial quality control. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
16 pages, 4746 KiB  
Article
Experimental Study on Millisecond Laser Percussion Drilling of Heat-Resistant Steel
by Liang Wang, Changjian Wu, Yefei Rong, Long Xu and Kaibo Xia
Materials 2025, 18(15), 3699; https://doi.org/10.3390/ma18153699 - 6 Aug 2025
Abstract
Millisecond lasers, with their high processing efficiency and large power, are widely used in manufacturing fields such as aerospace. This study aims to investigate the effects of different processing parameters on the micro-hole processing of 316 heat-resistant steel using millisecond lasers. Through the [...] Read more.
Millisecond lasers, with their high processing efficiency and large power, are widely used in manufacturing fields such as aerospace. This study aims to investigate the effects of different processing parameters on the micro-hole processing of 316 heat-resistant steel using millisecond lasers. Through the control variable method, the study examines the impact of pulse energy, pulse count, and pulse width on the quality of micro-holes, including the entrance diameter, exit diameter, and taper. Furthermore, combined with orthogonal experiments and COMSOL Multiphysics 6.2 simulations, the study explores the influence of pulse width on the formation of blind holes. The experimental results show that when the pulse energy is 2.2 J, the taper is minimal (2.2°), while the taper reaches its peak (2.4°) at 2.4 J pulse energy. As the pulse count increases to 55–60 pulses, the exit diameter stabilizes, and the taper decreases to 1.8°. Blind holes begin to form when the pulse width exceeds 1.2 ms. When the pulse width is 1.2 ms, pulse energy is 2.4 J, and pulse count is 50, the entrance diameter of the blind hole reaches its maximum, indicating that longer pulse widths result in more significant energy reflection and thermal accumulation effects. COMSOL simulations reveal that high-energy pulses cause intense melt ejection, while longer pulse widths exacerbate thermal accumulation at the micro-hole entrance, leading to blind hole formation. This study provides important process references for laser processing of through-holes and blind holes in heat-resistant steel. Full article
Show Figures

Figure 1

47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

15 pages, 1353 KiB  
Review
Fyn Kinase: A Potential Target in Glucolipid Metabolism and Diabetes Mellitus
by Ruifeng Xiao, Cong Shen, Wen Shen, Xunan Wu, Xia Deng, Jue Jia and Guoyue Yuan
Curr. Issues Mol. Biol. 2025, 47(8), 623; https://doi.org/10.3390/cimb47080623 - 5 Aug 2025
Abstract
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting [...] Read more.
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting insulin resistance, and it also contributes to the development of diabetic complications such as diabetic kidney disease and diabetic retinopathy. The primary mechanism by which Fyn modulates lipid metabolism is that it inhibits AMP-activated protein kinase (AMPK). Additionally, it affects energy homeostasis through regulating specific signal pathways affecting lipid metabolism including pathways related to CD36, through enhancement of adipocyte differentiation, and through modulating insulin signal transduction. Inflammatory stress is one of the fundamental mechanisms in diabetes mellitus and its complications. Fyn also plays a role in inflammatory stress-related signaling cascades such as the Akt/GSK-3β/Fyn/Nrf2 pathway, exacerbating inflammation in diabetes mellitus. Therefore, Fyn emerges as a promising therapeutic target for regulating glucolipid metabolism and alleviating type 2 diabetes mellitus. This review synthesizes research on the role of Fyn in the regulation of energy metabolism and the development of diabetes mellitus, while exploring its specific regulatory mechanisms. Full article
Show Figures

Figure 1

15 pages, 3235 KiB  
Article
Research on the Characteristics of the Aeolian Environment in the Coastal Sandy Land of Mulan Bay, Hainan Island
by Zhong Shuai, Qu Jianjun, Zhao Zhizhong and Qiu Penghua
J. Mar. Sci. Eng. 2025, 13(8), 1506; https://doi.org/10.3390/jmse13081506 - 5 Aug 2025
Abstract
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation [...] Read more.
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation instrument from 2020 to 2024, studying the coastal aeolian environment and sediment transport distribution characteristics in the region. Its findings provide a theoretical basis for comprehensively analyzing the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results show the following: (1) The annual average threshold wind velocity for sand movement in the study area is 6.84 m/s, and the wind speed frequency (frequency of occurrence) is 51.54%, dominated by easterly (NE, ENE) and southerly (S, SSE) winds. (2) The drift potential (DP) refers to the potential amount of sediment transported within a certain time and spatial range, and the annual drift potential (DP) and resultant drift potential (RDP) of Mulan Bay from 2020 to 2024 were 550.82 VU and 326.88 VU, respectively, indicating a high-energy wind environment. The yearly directional wind variability index (RDP/DP) was 0.59, classified as a medium ratio and indicating blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 249.45°, corresponding to a WSW direction, indicating that the sand in Mulan Bay is generally transported in the southwest direction. (3) When the measured data extracted from the sand accumulation instrument in the study area from 2020 to 2024 were used for statistical analysis, the results showed that the total sediment transport rate (the annual sediment transport of the observation section) in the study area was 110.87 kg/m·a, with the maximum sediment transport rate in the NE direction being 29.26 kg/m·a. These results suggest that when sand fixation systems are constructed for relevant infrastructure in the region, the construction direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

15 pages, 2015 KiB  
Article
Optimization of Dust Spray Parameters for Simulated LiDAR Sensor Contamination in Autonomous Vehicles Using a Face-Centered Composite Design
by Sungho Son, Hyunmi Lee, Jiwoong Yang, Jungki Lee, Jeongah Jang, Charyung Kim, Joonho Jun, Hyungwon Park, Sunyoung Park and Woongsu Lee
Appl. Sci. 2025, 15(15), 8651; https://doi.org/10.3390/app15158651 (registering DOI) - 5 Aug 2025
Abstract
Light detection and ranging (LiDAR) provides three-dimensional environmental information that is critical for maintaining the safety and reliability of autonomous driving systems. However, dust accumulation on the LiDAR window can cause detection errors and degrade performance. This study determined the optimal spray conditions [...] Read more.
Light detection and ranging (LiDAR) provides three-dimensional environmental information that is critical for maintaining the safety and reliability of autonomous driving systems. However, dust accumulation on the LiDAR window can cause detection errors and degrade performance. This study determined the optimal spray conditions for accumulating dust to evaluate LiDAR sensor cleaning performance. A primary optimization experiment using spray pressure, spray speed, spray distance, and the number of sprays as variables showed that spray pressure and number of sprays had the most significant influence on the kinetic energy and distribution of dust particles. Notably, the interaction between spray distance and number of sprays—related to curvature effects—was identified as a key variable increasing process sensitivity. A supplementary experiment, which added spray angle as a variable, indicated that while spray pressure remained the most significant factor, spray angle and number of sprays had an indirect influence through interaction terms. Both experiments used the same response variable (point cloud data) interactions to stepwise analyze particle transfer and spatial diffusion. The resulting optimal conditions offer a standard basis for evaluating LiDAR cleaning performance and may help improve cleaning efficiency and maintenance strategies. Full article
Show Figures

Figure 1

15 pages, 2053 KiB  
Article
Unveiling Radon Concentration in Geothermal Installation: The Role of Indoor Conditions and Human Activity
by Dimitrios-Aristotelis Koumpakis, Savvas Petridis, Apostolos Tsakirakis, Ioannis Sourgias, Alexandra V. Michailidou and Christos Vlachokostas
Gases 2025, 5(3), 18; https://doi.org/10.3390/gases5030018 - 5 Aug 2025
Abstract
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The [...] Read more.
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The accumulation of radon indoors in sealed or poorly ventilated areas leads to dangerous concentrations that elevate human health risks of lung cancer. The research examines environmental variables affecting radon concentration indoors by studying geothermal installations and their drilling activities, which potentially increase radon emissions. The study was conducted in the basement of the plumbing educational building at the Aristotle University of Thessaloniki to assess the potential impact of geothermal activity on indoor radon levels, as the building is equipped with a geothermal heating system. The key findings based on 150 days of continuous data showed that radon levels peak during the cold days, where the concentration had a mean value of 41.5 Bq/m3 and reached a maximum at about 95 Bq/m3. The reason was first and foremost poor ventilation and pressure difference. The lowest concentrations were on days with increased human activity with measures that had a mean value of 14.8 Bq/m3, which is reduced by about 65%. The results that are presented confirm the hypotheses and the study is making clear that ventilation and human activity are crucial in radon mitigation, especially on geothermal and energy efficient structures. Full article
Show Figures

Figure 1

17 pages, 11380 KiB  
Article
Ultrasonic Surgical Aspirator in Intramedullary Spinal Cord Tumours Treatment: A Simulation Study of Vibration and Temperature Field
by Ludovica Apa, Mauro Palmieri, Pietro Familiari, Emanuele Rizzuto and Zaccaria Del Prete
Bioengineering 2025, 12(8), 842; https://doi.org/10.3390/bioengineering12080842 (registering DOI) - 4 Aug 2025
Abstract
The aim of this work is to analyse the effectiveness of the medical use of the Cavitron Ultrasonic Surgical Aspirator (CUSA) in microsurgical treatment of Intramedullary Spinal Cord Tumors (IMSCTs), with a focus on the thermo-mechanical effects on neighbouring tissues to assess any [...] Read more.
The aim of this work is to analyse the effectiveness of the medical use of the Cavitron Ultrasonic Surgical Aspirator (CUSA) in microsurgical treatment of Intramedullary Spinal Cord Tumors (IMSCTs), with a focus on the thermo-mechanical effects on neighbouring tissues to assess any potential damage. Indeed, CUSA emerges as an innovative solution, minimally invasive tumor excision technique, enabling controlled and focused operations. This study employs a Finite Element Analysis (FEA) to simulate the vibratory and thermal interactions occurring during CUSA application. A computational model of a vertebral column segment affected by an IMSCT was developed and analysed using ANSYS 2024 software. The simulations examined strain distribution, heat generation, and temperature propagation within the biological tissues. The FEA results demonstrate that the vibratory-induced strain remains highly localised to the application site, and thermal effects, though measurable, do not exceed the critical safety threshold of 46 °C established in the literature. These findings suggest that CUSA can be safely used within defined operational parameters, provided that energy settings and exposure times are carefully managed to mitigate excessive thermal accumulation. These conclusions contribute to the understanding of the thermo-mechanical interactions in ultrasonic tumour resection and aim to assist medical professionals in optimising surgical protocols. Full article
(This article belongs to the Special Issue Mathematical and Computational Modeling of Cancer Progression)
Show Figures

Figure 1

23 pages, 3221 KiB  
Article
Drought Modulates Root–Microbe Interactions and Functional Gene Expression in Plateau Wetland Herbaceous Plants
by Yuanyuan Chen, Shishi Feng, Qianmin Liu, Di Kang and Shuzhen Zou
Plants 2025, 14(15), 2413; https://doi.org/10.3390/plants14152413 - 4 Aug 2025
Viewed by 20
Abstract
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still [...] Read more.
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still know little about this phenomenon. In this context, nine typical wetlands with three different moisture statuses were selected from the eastern Tibetan Plateau in this study to analyze the relationships among herbaceous plant root traits and microbial communities and functions. The results revealed that drought significantly inhibited the accumulation of root biomass and surface area as well as the development of root volumes and diameters. Similarly, drought significantly reduced the diversity of ectorhizosphere soil microbial communities and the relative abundances of key phyla of archaea and bacteria. Redundancy analysis revealed that plant root traits and ectorhizosphere soil microbes were equally regulated by soil physicochemical properties. Functional genes related to carbohydrate metabolism were significantly associated with functional traits related to plant root elongation and nutrient uptake. Functional genes related to carbon and energy metabolism were significantly associated with traits related to plant root support and storage. Key genes such as CS,gltA, and G6PD,zwf help to improve the drought resistance and barrenness resistance of plant roots. This study helps to elucidate the synergistic mechanism of plant and soil microbial functions in plateau wetlands under drought stress, and provides a basis for evolutionary research and conservation of wetland ecosystems in the context of global change. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth: 2nd Edition)
Show Figures

Figure 1

20 pages, 4961 KiB  
Article
Optimization of Thermal Conductivity of Bismaleimide/h-BN Composite Materials Based on Molecular Structure Design
by Weizhuo Li, Run Gu, Xuan Wang, Chenglong Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(15), 2133; https://doi.org/10.3390/polym17152133 - 3 Aug 2025
Viewed by 173
Abstract
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate [...] Read more.
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate at high power, the electronic components generate a large amount of integrated heat. Due to the limitations of existing heat dissipation channels, the current heat dissipation performance of electronic packaging materials is struggling to meet practical needs, resulting in heat accumulation and high temperatures inside the equipment, seriously affecting operational stability. For electronic devices that require high energy density and fast signal transmission, improving the heat dissipation capability of electronic packaging materials can significantly enhance their application prospects. In order to improve the thermal conductivity of composite materials, hexagonal boron nitride (h-BN) was selected as the thermal filling material in this paper. The BMI resin was structurally modified through molecular structure design. The results showed that the micro-branched structure and h-BN synergistically improved the thermal conductivity and insulation performance of the composite material, with a thermal conductivity coefficient of 1.51 W/(m·K) and a significant improvement in insulation performance. The core mechanism is the optimization of the dispersion state of h-BN filler in the matrix resin through the free volume in the micro-branched structure, which improves the thermal conductivity of the composite material while maintaining high insulation. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

15 pages, 796 KiB  
Article
Electroassisted Incorporation of Ferrocene Within Sol–Gel Silica Films to Enhance Electron Transfer—Part II: Boosting Protein Sensing with Polyelectrolyte-Modified Silica
by Rayane-Ichrak Loughlani, Alonso Gamero-Quijano and Francisco Montilla
Molecules 2025, 30(15), 3246; https://doi.org/10.3390/molecules30153246 - 2 Aug 2025
Viewed by 174
Abstract
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either [...] Read more.
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either negatively charged poly(4-styrene sulfonic acid) or positively charged poly(diallyl dimethylammonium chloride). These hybrid films were deposited onto ITO electrodes and evaluated via cyclic voltammetry in aqueous ferrocenium solutions. The polyelectrolyte charge played a key role in the electroassisted incorporation of ferrocene: silica-PSS films promoted accumulation, while silica-PDADMAC films hindered it due to electrostatic repulsion. In situ UV-vis spectroscopy confirmed that only a fraction of the embedded ferrocene was electroactive. Nevertheless, this fraction enabled effective mediated detection of cytochrome c in solution. These findings highlight the crucial role of ionic interactions and hybrid composition in electron transfer to redox proteins, providing valuable insights for the development of advanced bioelectronic sensors. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

14 pages, 3378 KiB  
Article
The pcGR Within the Hořava-Lifshitz Gravity and the Wheeler-deWitt Quantization
by Peter O. Hess, César A. Zen Vasconcellos and Dimiter Hadjimichef
Galaxies 2025, 13(4), 85; https://doi.org/10.3390/galaxies13040085 (registering DOI) - 1 Aug 2025
Viewed by 156
Abstract
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild [...] Read more.
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild black holes, we derive the Wheeler-deWitt equation, obtaining a quantized description of pcGR. Using perturbative methods and semi-classical approximations, we analyze the solutions of the equations and their physical implications. A key finding is the avoidance of the central singularity due to nonlinear interaction terms in the Hořava-Lifshitz action. Notably, extrinsic curvature (kinetic energy) contributions prove essential for singularity resolution, even in standard GR. Furthermore, the theory offers new perspectives on dark energy, proposing an alternative mechanism for its accumulation. Full article
(This article belongs to the Special Issue Cosmology and the Quantum Vacuum—2nd Edition)
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 174
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

20 pages, 4215 KiB  
Article
Influence of Membrane Composition on the Passive Membrane Penetration of Industrially Relevant NSO-Heterocycles
by Zsófia Borbála Rózsa, Tamás Horváth, Béla Viskolcz and Milán Szőri
Int. J. Mol. Sci. 2025, 26(15), 7427; https://doi.org/10.3390/ijms26157427 - 1 Aug 2025
Viewed by 118
Abstract
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the [...] Read more.
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the passive transport of NSO-HETs across DPPC, DPPE, DPPA, and DPPG bilayers was characterized. DPPG showed the highest membrane affinity, increasing permeability (logPmemb/bulk) by 27–64% compared to DPPE, associated with the lowest permeability and tightest lipid packing. Free energy barriers are also decreased in DPPG relative to DPPE; PIR’s central barrier dropped from 19.2 kJ/mol (DPPE) to 16.6 kJ/mol (DPPG), while DIOX’s barrier decreased from 7.2 to 5.2 kJ/mol. OXA exhibited the lowest central barriers (1.2–2.2 kJ/mol) and uniquely accumulated at higher concentrations in the bilayer center than in bulk water, with free energy ranging from −3.4 to −5.9 kJ/mol. PHE and OXA caused significant bilayer thinning (up to 11%) and reduced lipid tail order, especially in DPPE and DPPA. Concentration effects were most pronounced in DPPE, where high solute loading disrupted lipid order and altered free energy profiles. These results highlight the crucial role of headgroup identity in modulating NSO-HET membrane permeability and structural changes. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

Back to TopTop