Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = endoreversible cycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 343 KB  
Article
Endoreversible Stirling Cycles: Plasma Engines at Maximal Power
by Gregory Behrendt and Sebastian Deffner
Entropy 2025, 27(8), 807; https://doi.org/10.3390/e27080807 - 28 Jul 2025
Viewed by 1513
Abstract
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually [...] Read more.
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually a consequence of the fact that the caloric equation of state depends only linearly on temperature and only additively on volume. In particular, neither the exact form of the mechanical equation of state nor the full fundamental relation are required. Thus, our findings immediately generalize to a larger class of working plasmas, far beyond simple ideal gases. In addition, we show that for plasmas described by the photonic equation of state, the efficiency is significantly lower. This is in stark contrast to endoreversible Otto cycles, for which photonic engines have an efficiency larger than the Curzon–Ahlborn efficiency. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

12 pages, 1768 KB  
Article
Development of a Semi-Empirical Model for Estimating the Efficiency of Thermodynamic Power Cycles
by Evangelos Bellos
Sci 2023, 5(3), 33; https://doi.org/10.3390/sci5030033 - 24 Aug 2023
Cited by 1 | Viewed by 2817
Abstract
Power plants constitute the main sources of electricity production, and the calculation of their efficiency is a critical factor that is needed in energy studies. The efficiency improvement of power plants through the optimization of the cycle is a critical means of reducing [...] Read more.
Power plants constitute the main sources of electricity production, and the calculation of their efficiency is a critical factor that is needed in energy studies. The efficiency improvement of power plants through the optimization of the cycle is a critical means of reducing fuel consumption and leading to more sustainable designs. The goal of the present work is the development of semi-empirical models for estimating the thermodynamic efficiency of power cycles. The developed model uses only the lower and the high operating temperature levels, which makes it flexible and easily applicable. The final expression is found by using the literature data for different power cycles, named as: organic Rankine cycles, water-steam Rankine cycles, gas turbines, combined cycles and Stirling engines. According to the results, the real operation of the different cases was found to be a bit lower compared to the respective endoreversible cycle. Specifically, the present global model indicates that the thermodynamic efficiency is a function of the temperature ratio (low cycle temperature to high cycle temperature). The suggested equation can be exploited as a quick and accurate tool for calculating the thermodynamic efficiency of power plants by using the operating temperature levels. Moreover, separate equations are provided for all of the examined thermodynamic cycles. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

16 pages, 3981 KB  
Article
Multilayer Graphene as an Endoreversible Otto Engine
by Nathan M. Myers, Francisco J. Peña, Natalia Cortés and Patricio Vargas
Nanomaterials 2023, 13(9), 1548; https://doi.org/10.3390/nano13091548 - 5 May 2023
Cited by 3 | Viewed by 2463
Abstract
We examine the performance of a finite-time, endoreversible Otto heat engine with a working medium of monolayer or multilayered graphene subjected to an external magnetic field. As the energy spectrum of multilayer graphene under an external magnetic field depends strongly on the number [...] Read more.
We examine the performance of a finite-time, endoreversible Otto heat engine with a working medium of monolayer or multilayered graphene subjected to an external magnetic field. As the energy spectrum of multilayer graphene under an external magnetic field depends strongly on the number of layers, so too does its thermodynamic behavior. We show that this leads to a simple relationship between the engine efficiency and the number of layers of graphene in the working medium. Furthermore, we find that the efficiency at maximum power for bilayer and trilayer working mediums can exceed that of a classical endoreversible Otto cycle. Conversely, a working medium of monolayer graphene displays identical efficiency at maximum power to a classical working medium. These results demonstrate that layered graphene can be a useful material for the construction of efficient thermal machines for diverse quantum device applications. Full article
Show Figures

Figure 1

13 pages, 2617 KB  
Article
Enhanced Efficiency at Maximum Power in a Fock–Darwin Model Quantum Dot Engine
by Francisco J. Peña, Nathan M. Myers, Daniel Órdenes, Francisco Albarrán-Arriagada and Patricio Vargas
Entropy 2023, 25(3), 518; https://doi.org/10.3390/e25030518 - 17 Mar 2023
Cited by 4 | Viewed by 3255
Abstract
We study the performance of an endoreversible magnetic Otto cycle with a working substance composed of a single quantum dot described using the well-known Fock–Darwin model. We find that tuning the intensity of the parabolic trap (geometrical confinement) impacts the proposed cycle’s performance, [...] Read more.
We study the performance of an endoreversible magnetic Otto cycle with a working substance composed of a single quantum dot described using the well-known Fock–Darwin model. We find that tuning the intensity of the parabolic trap (geometrical confinement) impacts the proposed cycle’s performance, quantified by the power, work, efficiency, and parameter region where the cycle operates as an engine. We demonstrate that a parameter region exists where the efficiency at maximum output power exceeds the Curzon–Ahlborn efficiency, the efficiency at maximum power achieved by a classical working substance. Full article
(This article belongs to the Special Issue Quantum Control and Quantum Computing)
Show Figures

Figure 1

19 pages, 22390 KB  
Article
Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle
by Tan Wang, Yanlin Ge, Lingen Chen, Huijun Feng and Jiuyang Yu
Entropy 2021, 23(10), 1285; https://doi.org/10.3390/e23101285 - 30 Sep 2021
Cited by 11 | Viewed by 2082
Abstract
Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the [...] Read more.
Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the optimization objective, the surface area distributions of three heat exchangers are optimized, and the maximum power output is obtained when the total heat transfer area of the three heat exchangers of the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on the maximum power output performance are analyzed. The results show that there is an optimal temperature of the low-temperature heat sink and a couple of optimal area distributions that allow one to obtain the double-maximum power output. The results obtained have some guidelines for the design and optimization of actual space power plants. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

23 pages, 5514 KB  
Article
Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat
by Shuangshuang Shi, Yanlin Ge, Lingen Chen and Huijun Feng
Energies 2021, 14(14), 4175; https://doi.org/10.3390/en14144175 - 10 Jul 2021
Cited by 34 | Viewed by 2667
Abstract
Considering nonlinear variation of working fluid’s specific heat with its temperature, finite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irreversible Atkinson cycle. Through numerical calculations, performance relationships between cycle dimensionless power density versus compression ratio and dimensionless power [...] Read more.
Considering nonlinear variation of working fluid’s specific heat with its temperature, finite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irreversible Atkinson cycle. Through numerical calculations, performance relationships between cycle dimensionless power density versus compression ratio and dimensionless power density versus thermal efficiency are obtained, respectively. When the design parameters take certain specific values, the performance differences of reversible, endoreversible and irreversible Atkinson cycles are compared. The maximum specific volume ratio, maximum pressure ratio, and thermal efficiency under the conditions of the maximum power output and maximum power density are compared. Based on NSGA-II, the single-, bi-, tri-, and quadru-objective optimizations are performed when the compression ratio is used as the optimization variable, and the cycle dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are used as the optimization objectives. The deviation indexes are obtained based on LINMAP, TOPSIS, and Shannon entropy solutions under different combinations of optimization objectives. By comparing the deviation indexes of bi-, tri- and quadru-objective optimization and the deviation indexes of single-objective optimizations based on maximum power output, maximum thermal efficiency, maximum ecological function and maximum power density, it is found that the deviation indexes of multi-objective optimization are smaller, and the solution of multi-objective optimization is desirable. The comparison results show that when the LINMAP solution is optimized with the dimensionless power output, thermal efficiency, and dimensionless power density as the objective functions, the deviation index is 0.1247, and this optimization objective combination is the most ideal. Full article
(This article belongs to the Special Issue Energy Complex System Simulation, Design, and Optimisation)
Show Figures

Figure 1

16 pages, 2343 KB  
Article
Influences of Different Architectures on the Thermodynamic Performance and Network Structure of Aircraft Environmental Control System
by Han Yang, Chunxin Yang, Xingjuan Zhang and Xiugan Yuan
Entropy 2021, 23(7), 855; https://doi.org/10.3390/e23070855 - 3 Jul 2021
Cited by 15 | Viewed by 4379
Abstract
The environmental control system (ECS) is one of the most important systems in the aircraft used to regulate the pressure, temperature and humidity of the air in the cabin. This study investigates the influences of different architectures on the thermal performance and network [...] Read more.
The environmental control system (ECS) is one of the most important systems in the aircraft used to regulate the pressure, temperature and humidity of the air in the cabin. This study investigates the influences of different architectures on the thermal performance and network structure of ECS. The refrigeration and pressurization performances of ECS with four different architectures are analyzed and compared by the endoreversible thermodynamic analysis method, and their external and internal responses have also been discussed. The results show that the connection modes of the heat exchanger have minor effects on the performance of ECSs, but the influence of the air cycle machine is obvious. This study attempts to abstract the ECS as a network structure based on the graph theory, and use entropy in information theory for quantitative evaluation. The results provide a theoretical basis for the design of ECS and facilitate engineers to make reliable decisions. Full article
(This article belongs to the Collection Feature Papers in Information Theory)
Show Figures

Figure 1

14 pages, 2002 KB  
Article
Optimization, Stability, and Entropy in Endoreversible Heat Engines
by Julian Gonzalez-Ayala, José Miguel Mateos Roco, Alejandro Medina and Antonio Calvo Hernández
Entropy 2020, 22(11), 1323; https://doi.org/10.3390/e22111323 - 20 Nov 2020
Cited by 20 | Viewed by 3539
Abstract
The stability of endoreversible heat engines has been extensively studied in the literature. In this paper, an alternative dynamic equations system was obtained by using restitution forces that bring the system back to the stationary state. The departing point is the assumption that [...] Read more.
The stability of endoreversible heat engines has been extensively studied in the literature. In this paper, an alternative dynamic equations system was obtained by using restitution forces that bring the system back to the stationary state. The departing point is the assumption that the system has a stationary fixed point, along with a Taylor expansion in the first order of the input/output heat fluxes, without further specifications regarding the properties of the working fluid or the heat device specifications. Specific cases of the Newton and the phenomenological heat transfer laws in a Carnot-like heat engine model were analyzed. It was shown that the evolution of the trajectories toward the stationary state have relevant consequences on the performance of the system. A major role was played by the symmetries/asymmetries of the conductance ratio σhc of the heat transfer law associated with the input/output heat exchanges. Accordingly, three main behaviors were observed: (1) For small σhc values, the thermodynamic trajectories evolved near the endoreversible limit, improving the efficiency and power output values with a decrease in entropy generation; (2) for large σhc values, the thermodynamic trajectories evolved either near the Pareto front or near the endoreversible limit, and in both cases, they improved the efficiency and power values with a decrease in entropy generation; (3) for the symmetric case (σhc=1), the trajectories evolved either with increasing entropy generation tending toward the Pareto front or with a decrease in entropy generation tending toward the endoreversible limit. Moreover, it was shown that the total entropy generation can define a time scale for both the operation cycle time and the relaxation characteristic time. Full article
(This article belongs to the Special Issue Finite-Time Thermodynamics)
Show Figures

Figure 1

16 pages, 391 KB  
Proceeding Paper
Closed Irreversible Cycles Analysis Based on Finite Physical Dimensions Thermodynamics
by Gheorghe Dumitrascu, Michel Feidt and Stefan Grigorean
Proceedings 2020, 58(1), 37; https://doi.org/10.3390/WEF-06905 - 11 Sep 2020
Cited by 2 | Viewed by 1246
Abstract
The paper develops generalizing entropic approaches of irreversible closed cycles. The mathematical models of the irreversible engines (basic, with internal regeneration of the heat, cogeneration units) and of the refrigeration cycles were applied to four possible operating irreversible trigeneration cycles. The models involve [...] Read more.
The paper develops generalizing entropic approaches of irreversible closed cycles. The mathematical models of the irreversible engines (basic, with internal regeneration of the heat, cogeneration units) and of the refrigeration cycles were applied to four possible operating irreversible trigeneration cycles. The models involve the reference entropy, the number of internal irreversibility, the thermal conductance inventory, the proper temperatures of external heat reservoirs unifying the first law of thermodynamics and the linear heat transfer law, the mean log temperature differences, and four possible operational constraints, i.e., constant heat input, constant power, constant energy efficiency and constant reference entropy. The reference entropy is always the entropy variation rate of the working fluid during the reversible heat input process. The amount of internal irreversibility allows the evaluation of the heat output via the ratio of overall internal irreversible entropy generation and the reference entropy. The operational constraints allow the replacement of the reference entropy function of the finite physical dimension parameters, i.e., mean log temperature differences, thermal conductance inventory, and the proper external heat reservoir temperatures. The paper presents initially the number of internal irreversibility and the energy efficiency equations for engine and refrigeration cycles. At the limit, i.e., endoreversibility, we can re-obtain the endoreversible energy efficiency equation. The second part develops the influences between the imposed operational constraint and the finite physical dimensions parameters for the basic irreversible cycle. The third part is applying the mathematical models to four possible standalone trigeneration cycles. It was assumed that there are the required consumers of the all useful heat delivered by the trigeneration system. The design of trigeneration system must know the ratio of refrigeration rate to power, e.g., engine shaft power or useful power delivered directly to power consumers. The final discussions and conclusions emphasize the novelties and the complexity of interconnected irreversible trigeneration systems design/optimization. Full article
(This article belongs to the Proceedings of The First World Energies Forum—Current and Future Energy Issues)
Show Figures

Figure 1

21 pages, 3551 KB  
Article
Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit
by Zewei Meng, Lingen Chen and Feng Wu
Entropy 2020, 22(4), 457; https://doi.org/10.3390/e22040457 - 17 Apr 2020
Cited by 19 | Viewed by 3947
Abstract
At the classical limit, a multi-stage, endoreversible Carnot cycle model of quantum heat engine (QHE) working with non-interacting harmonic oscillators systems is established in this paper. A simplified combined cycle, where all sub-cycles work at maximum power output (MPO), is analyzed under two [...] Read more.
At the classical limit, a multi-stage, endoreversible Carnot cycle model of quantum heat engine (QHE) working with non-interacting harmonic oscillators systems is established in this paper. A simplified combined cycle, where all sub-cycles work at maximum power output (MPO), is analyzed under two types of combined form: constraint of cycle period or constraint of interstage heat current. The expressions of power and the corresponding efficiency under two types of combined constrains are derived. A general combined cycle, in which all sub-cycles run at arbitrary state, is further investigated under two types of combined constrains. By introducing the Lagrangian function, the MPO of two-stage combined QHE with different intermediate temperatures is obtained, utilizing numerical calculation. The results show that, for the simplified combined cycle, the total power decreases and heat exchange from hot reservoir increases under two types of constrains with the increasing number (N) of stages. The efficiency of the combined cycle decreases under the constraints of the cycle period, but keeps constant under the constraint of interstage heat current. For the general combined cycle, three operating modes, including single heat engine mode at low “temperature” (SM1), double heat engine mode (DM) and single heat engine mode at high “temperature” (SM2), appear as intermediate temperature varies. For the constraint of cycle period, the MPO is obtained at the junction of DM mode and SM2 mode. For the constraint of interstage heat current, the MPO keeps constant during DM mode, in which the two sub-cycles compensate each other. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

21 pages, 3862 KB  
Article
Endoreversible Trigeneration Cycle Design Based on Finite Physical Dimensions Thermodynamics
by Dumitrascu Gheorghe, Feidt Michel, Popescu Aristotel and Grigorean Stefan
Energies 2019, 12(16), 3165; https://doi.org/10.3390/en12163165 - 17 Aug 2019
Cited by 14 | Viewed by 2440
Abstract
This paper focuses on the finite physical dimensions thermodynamics (FPDT)-based design of combined endoreversible power and refrigeration cycles (CCHP). Four operating schemes were analyzed, one for the summer season and three for the winter season. These basic CCHP cycles should define the reference [...] Read more.
This paper focuses on the finite physical dimensions thermodynamics (FPDT)-based design of combined endoreversible power and refrigeration cycles (CCHP). Four operating schemes were analyzed, one for the summer season and three for the winter season. These basic CCHP cycles should define the reference ones, having the maximum possible energy and exergy efficiencies considering real restrictive conditions. The FPDT design is an entropic approach because it defines and uses the dependences between the reference entropy and the control operational parameters characterizing the external energy interactions of CCHP subsystems. The FPDT introduces a generalization of CCHP systems design, due to the particular influences of entropy variations of the working fluids substituted with influences of four operational finite dimensions control parameters, i.e., two mean log temperature differences between the working fluids and external heat sources and two dimensionless thermal conductance inventories. Two useful energy interactions, power and cooling rate, were used as operational restrictive conditions. It was assumed that there are consumers required for the supplied heating rates depending on the energy operating scheme. The FPDT modeling evaluates main thermodynamic and heat transfer performances. The FPDT model presented in this paper is a general one, applicable to all endoreversible trigeneration cycles. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Graphical abstract

10 pages, 1134 KB  
Article
Efficiency of Harmonic Quantum Otto Engines at Maximal Power
by Sebastian Deffner
Entropy 2018, 20(11), 875; https://doi.org/10.3390/e20110875 - 15 Nov 2018
Cited by 93 | Viewed by 8270
Abstract
Recent experimental breakthroughs produced the first nano heat engines that have the potential to harness quantum resources. An instrumental question is how their performance measures up against the efficiency of classical engines. For single ion engines undergoing quantum Otto cycles it has been [...] Read more.
Recent experimental breakthroughs produced the first nano heat engines that have the potential to harness quantum resources. An instrumental question is how their performance measures up against the efficiency of classical engines. For single ion engines undergoing quantum Otto cycles it has been found that the efficiency at maximal power is given by the Curzon–Ahlborn efficiency. This is rather remarkable as the Curzon–Alhbron efficiency was originally derived for endoreversible Carnot cycles. Here, we analyze two examples of endoreversible Otto engines within the same conceptual framework as Curzon and Ahlborn’s original treatment. We find that for endoreversible Otto cycles in classical harmonic oscillators the efficiency at maximal power is, indeed, given by the Curzon–Ahlborn efficiency. However, we also find that the efficiency of Otto engines made of quantum harmonic oscillators is significantly larger. Full article
Show Figures

Figure 1

19 pages, 2031 KB  
Article
Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston
by Zhixiang Wu, Lingen Chen and Huijun Feng
Entropy 2018, 20(3), 165; https://doi.org/10.3390/e20030165 - 5 Mar 2018
Cited by 29 | Viewed by 6811
Abstract
Power output ( P ), thermal efficiency ( η ) and ecological function ( E ) characteristics of an endoreversible Dual-Miller cycle (DMC) with finite speed of the piston and finite rate of heat transfer are investigated by applying finite time thermodynamic (FTT) [...] Read more.
Power output ( P ), thermal efficiency ( η ) and ecological function ( E ) characteristics of an endoreversible Dual-Miller cycle (DMC) with finite speed of the piston and finite rate of heat transfer are investigated by applying finite time thermodynamic (FTT) theory. The parameter expressions of the non-dimensional power output ( P ¯ ), η and non-dimensional ecological function ( E ¯ ) are derived. The relationships between P ¯ and cut-off ratio ( ρ ), between P ¯ and η , as well as between E ¯ and ρ are demonstrated. The influences of ρ and piston speeds in different processes on P ¯ , η and E ¯ are investigated. The results show that P ¯ and E ¯ first increase and then start to decrease with increasing ρ . The optimal cut-off ratio ρ o p t will increase if piston speeds increase in heat addition processes and heat rejection processes. As piston speeds in different processes increase, the maximum values of P ¯ and E ¯ increase. The results include the performance characteristics of various simplified cycles of DMC, such as Otto cycle, Diesel cycle, Dual cycle, Otto-Atkinson cycle, Diesel-Atkinson cycle, Dual-Atkinson cycle, Otto-Miller cycle and Diesel-Miller cycle. Comparing performance characteristics of the DMC with different optimization objectives, when choosing E ¯ as optimization objective, η improves 26.4% compared to choosing P ¯ as optimization objective, while P ¯ improves 74.3% compared to choosing η as optimization objective. Thus, optimizing E is the best compromise between optimizing P and optimizing η . The results obtained can provide theoretical guidance to design practical DMC engines. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

44 pages, 8848 KB  
Review
Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles
by Yanlin Ge, Lingen Chen and Fengrui Sun
Entropy 2016, 18(4), 139; https://doi.org/10.3390/e18040139 - 15 Apr 2016
Cited by 174 | Viewed by 13014
Abstract
On the basis of introducing the origin and development of finite time thermodynamics (FTT), this paper reviews the progress in FTT optimization for internal combustion engine (ICE) cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible [...] Read more.
On the basis of introducing the origin and development of finite time thermodynamics (FTT), this paper reviews the progress in FTT optimization for internal combustion engine (ICE) cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible (with only the irreversibility of heat resistance) and irreversible ICE cycles, including Otto, Diesel, Atkinson, Brayton, Dual, Miller, Porous Medium and Universal cycles with constant specific heats, variable specific heats, and variable specific ratio of the conventional and quantum working fluids (WFs); the studies on the optimum piston motion (OPM) trajectories of ICE cycles, including Otto and Diesel cycles with Newtonian and other heat transfer laws; the studies on the performance limits of ICE cycles with non-uniform WF with Newtonian and other heat transfer laws; as well as the studies on the performance simulation of ICE cycles. In the studies, the optimization objectives include work, power, power density, efficiency, entropy generation rate, ecological function, and so on. The further direction for the studies is explored. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

10 pages, 1146 KB  
Article
Thermodynamic Analysis of the Irreversibilities in Solar Absorption Refrigerators
by Emma Berrich Betouche, Ali Fellah, Ammar Ben Brahim, Fethi Aloui and Michel Feidt
Entropy 2016, 18(4), 107; https://doi.org/10.3390/e18040107 - 24 Mar 2016
Cited by 4 | Viewed by 5452
Abstract
A thermodynamic analysis of the irreversibility on solar absorption refrigerators is presented. Under the hierarchical decomposition and the hypothesis of an endoreversible model, many functional and practical domains are defined. The effect of external heat source temperature on the entropy rate and on [...] Read more.
A thermodynamic analysis of the irreversibility on solar absorption refrigerators is presented. Under the hierarchical decomposition and the hypothesis of an endoreversible model, many functional and practical domains are defined. The effect of external heat source temperature on the entropy rate and on the inverse specific cooling load (ISCL) multiplied by the total area of the refrigerator A/Qe are studied. This may help a constructor to well dimension the solar machine under an optimal technico-economical criterion A/Qe and with reasonable irreversibility on the refrigerator. The solar concentrator temperature effect on the total exchanged area, on the technico-economical ratio A/Qe, and on the internal entropy rate are illustrated and discussed. The originality of these results is that they allow a conceptual study of a solar absorption refrigeration cycle. Full article
(This article belongs to the Special Issue Entropy Generation in Thermal Systems and Processes 2015)
Show Figures

Figure 1

Back to TopTop