Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = endocrine-disrupting chemicals (EDC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 - 4 Aug 2025
Viewed by 163
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

26 pages, 1112 KiB  
Review
The Invisible Influence: Can Endocrine Disruptors Reshape Behaviors Across Generations?
by Antonella Damiano, Giulia Caioni, Claudio D’Addario, Carmine Merola, Antonio Francioso and Michele Amorena
Stresses 2025, 5(3), 46; https://doi.org/10.3390/stresses5030046 - 1 Aug 2025
Viewed by 150
Abstract
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive [...] Read more.
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive health, it is now evident that EDCs may impact neurodevelopment, altering the integrity of neural circuits essential for cognitive abilities, emotional regulation, and social behaviors. These compounds may elicit epigenetic modifications, such as DNA methylation and histone acetylation, that result in altered expression patterns, potentially affecting multiple generations and contribute to long-term behavioral phenotypes. The effects of EDCs may occur though both direct and indirect mechanisms, ultimately converging on neurodevelopmental vulnerability. In particular, the gut–brain axis has emerged as a critical interface targeted by EDCs. This bidirectional communication network integrates the nervous, immune, and endocrine systems. By altering the microbiota composition, modulating immune responses, and triggering epigenetic mechanisms, EDCs can act on multiple and interconnected pathways. In this context, elucidating the impact of EDCs on neurodevelopmental processes is crucial for advancing our understanding of their contribution to neurological and behavioral health risks. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

27 pages, 1569 KiB  
Review
Bisphenols: Endocrine Disruptors and Their Impact on Fish: A Review
by Nikola Peskova and Jana Blahova
Fishes 2025, 10(8), 365; https://doi.org/10.3390/fishes10080365 - 29 Jul 2025
Viewed by 355
Abstract
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for [...] Read more.
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for aquatic organisms. This review summarises the occurrence, environmental distribution, and toxicity of BPs in fish, with a focus on estrogenic, androgenic, thyroid, and glucocorticoid disruptions. Studies consistently show that exposure to BPs leads to altered gene expression, developmental abnormalities, impaired reproduction, and disrupted hormonal signalling in various fish species. Although BPA alternatives like bisphenol S, bisphenol F, or bisphenol AF were introduced as safer options, emerging evidence suggests they may pose equal or greater risks. Regulatory measures are evolving, particularly within the European Union, but legislation remains limited for many bisphenol analogues. This review emphasises the need for comprehensive environmental monitoring, stricter regulatory frameworks, and the development of genuinely safer alternatives to minimise the ecological and health impacts of BPs in aquatic systems. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

21 pages, 3526 KiB  
Article
Prenatal Bisphenol A Exposure Impairs Fetal Heart Development: Molecular and Structural Alterations with Sex-Specific Differences
by Alessandro Marrone, Anna De Bartolo, Vittoria Rago, Francesco Conforti, Lidia Urlandini, Tommaso Angelone, Rosa Mazza, Maurizio Mandalà and Carmine Rocca
Antioxidants 2025, 14(7), 863; https://doi.org/10.3390/antiox14070863 - 14 Jul 2025
Viewed by 439
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that cause a predisposition to long-term cardiovascular vulnerability. However, the impact of prenatal endocrine disruption on fetal heart development and its sex-specific nature remains incompletely understood. This study investigates the molecular and structural effects of low-dose prenatal BPA exposure on fetal rat hearts. Our results reveal that BPA disrupts estrogen receptor (ER) signaling in a sex-dependent manner, with distinct alterations in ERα, ERβ, and GPER expression. BPA exposure also triggers significant inflammation, oxidative stress, and ferroptosis; this is evidenced by elevated NF-κB, IL-1β, TNF-α, and NLRP3 inflammasome activation, as well as impaired antioxidant defenses (SOD1, SOD2, CAT, and SELENOT), increased lipid peroxidation (MDA) and protein oxidation, decreased GPX4, and increased ACSL4 levels. These alterations are accompanied by increased markers of cardiac distension (ANP, BNP), extracellular matrix remodeling mediators, and pro-fibrotic regulators (Col1A1, Col3A1, TGF-β, and CTGF), with a more pronounced response in males. Histological analyses corroborated these molecular findings, revealing structural alterations as well as glycogen depletion in male fetal hearts, consistent with altered cardiac morphogenesis and metabolic stress. These effects were milder in females, reinforcing the notion of sex-specific vulnerability. Moreover, prenatal BPA exposure affected myocardial fiber architecture and vascular remodeling in a sex-dependent manner, as evidenced by reduced expression of desmin alongside increased levels of CD34 and Ki67. Overall, our findings provide novel insights into the crucial role of prenatal endocrine disruption during fetal heart development and its contribution to the early origins of CVD, underscoring the urgent need for targeted preventive strategies and further research into the functional impact of BPA-induced alterations on postnatal cardiac function and long-term disease susceptibility. Full article
Show Figures

Graphical abstract

42 pages, 8737 KiB  
Review
Environmental Xenobiotics and Epigenetic Modifications: Implications for Human Health and Disease
by Ana Filipa Sobral, Andrea Cunha, Inês Costa, Mariana Silva-Carvalho, Renata Silva and Daniel José Barbosa
J. Xenobiot. 2025, 15(4), 118; https://doi.org/10.3390/jox15040118 - 13 Jul 2025
Viewed by 2040
Abstract
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis [...] Read more.
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis and contribute to a range of diseases, including cancer and neurodegenerative diseases, among others. Emerging evidence indicates that epigenetic alterations, such as abnormal deoxyribonucleic acid (DNA) methylation, aberrant histone modifications, and altered expression of non-coding ribonucleic acids (ncRNAs), may play a central role in mediating the toxic effects of environmental xenobiotics. Furthermore, exposure to these compounds during critical periods, such as embryogenesis and early postnatal stages, can induce long-lasting epigenetic alterations that increase susceptibility to diseases later in life. Moreover, modifications to the gamete epigenome can potentially lead to effects that persist across generations (transgenerational effects). Although these modifications represent significant health risks, many epigenetic alterations may be reversible through the removal of the xenobiotic trigger, offering potential for therapeutic intervention. This review explores the relationship between environmental xenobiotics and alterations in epigenetic signatures, focusing on how these changes impact human health, including their potential for transgenerational inheritance and their potential reversibility. Full article
Show Figures

Graphical abstract

24 pages, 336 KiB  
Review
Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes
by Charalampos Voros, Diamantis Athanasiou, Ioannis Papapanagiotou, Despoina Mavrogianni, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Charalampos Tsimpoukelis, Sofia Ivanidou, Anahit J. Stepanyan, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradi and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(14), 6604; https://doi.org/10.3390/ijms26146604 - 10 Jul 2025
Viewed by 592
Abstract
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial concerns regarding their impact on female reproductive health. Epidemiological studies have demonstrated associations between PFAS exposure and reduced fertility; nevertheless, the underlying molecular pathways remain inadequately understood. This narrative review investigates the multifaceted effects of PFASs on ovarian physiology, including its disruption of the hypothalamic–pituitary–ovarian (HPO) axis, alteration of anti-Müllerian hormone (AMH) levels, folliculogenesis, and gonadotropin receptor signalling. Significant attention is directed towards the emerging association between PFASs and polycystic ovarian syndrome (PCOS), wherein PFAS-induced hormonal disruption may exacerbate metabolic issues and elevated androgen levels. Furthermore, we analyse the current data regarding PFAS exposure in women undergoing treatment based on assisted reproductive technologies (ARTs), specifically in vitro fertilisation (IVF), highlighting possible associations with diminished oocyte quality, suboptimal embryo development, and implantation failure. We examine potential epigenetic and transgenerational alterations that may influence women’s reproductive capabilities over time. This study underscores the urgent need for further research and regulatory actions to tackle PFAS-related reproductive toxicity, particularly in vulnerable populations, such as women of reproductive age and those receiving fertility treatments. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
32 pages, 1739 KiB  
Review
Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species
by Grace Emily Okuthe, Edith Dube and Patrick Siyambulela Mafunda
J. Xenobiot. 2025, 15(4), 110; https://doi.org/10.3390/jox15040110 - 4 Jul 2025
Viewed by 947
Abstract
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations [...] Read more.
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations in apex predators. This review synthesizes current knowledge regarding the far-reaching impacts of pharmaceutical and EDC pollution on the reproductive biology of aquatic fauna, focusing on the heightened vulnerability of the endangered African penguin. A rigorous literature review across key scientific databases—PubMed, Scopus, Web of Science, and Google Scholar—using targeted search terms (e.g., penguins, contaminants of emerging concern, penguin species, seabird species, Antarctica, pharmaceuticals, personal care products, EDCs) underpins this analysis. This review explores the anthropogenic sources of pharmaceuticals and EDCs in aquatic ecosystems. It discusses the mechanisms by which these chemicals disrupt the reproductive physiology of aquatic fauna. Recent studies on the ecological and population-level consequences of these contaminants are also reviewed. Furthermore, the review elaborates on the urgent need for comprehensive mitigating strategies to address their effects on vulnerable penguin populations. These approaches hold the potential to unlock innovative pathways for conservation initiatives and the formulation of robust environmental management policies aimed at safeguarding aquatic ecosystems and the diverse life they support. Full article
Show Figures

Figure 1

17 pages, 627 KiB  
Article
An Analysis of the Role of Bisphenol A in Breast and Reproductive-System Cancers
by Maria Derkaczew, Kamila Zglejc-Waszak, Lukasz Dabrowski, Janusz Kocik, Adam Zdaniukiewicz, Michael Thoene, Marcin Jozwik, Slawomir Gonkowski and Joanna Wojtkiewicz
J. Clin. Med. 2025, 14(13), 4706; https://doi.org/10.3390/jcm14134706 - 3 Jul 2025
Viewed by 676
Abstract
Background/Objectives: Bisphenol A (BPA) is an organic compound used in producing polycarbonates and epoxy resins found in products such as food containers, disposable bottles, CDs, and DVDs. Its structure resembles that of endogenous estrogen, which classifies BPA as an endocrine-disrupting chemical (EDC). [...] Read more.
Background/Objectives: Bisphenol A (BPA) is an organic compound used in producing polycarbonates and epoxy resins found in products such as food containers, disposable bottles, CDs, and DVDs. Its structure resembles that of endogenous estrogen, which classifies BPA as an endocrine-disrupting chemical (EDC). BPA has been associated with various health abnormalities, including cancer and reproductive system cancer. In this study, we examine the association between BPA exposure, BPA levels in blood serum, and the occurrence of breast cancer and reproductive system cancer. Methods: A total of 84 females were included in this cross-sectional study. All participants completed a questionnaire assessing BPA exposure and underwent a blood test to measure BPA levels in serum. Results: Analysis of the lifestyle questionnaire revealed behavioral differences potentially associated with BPA exposure. A statistically significant difference was observed for responses to Question 13, related to food preparation methods, while responses to Questions 5, 6, and 17 showed trends approaching statistical significance in cancer groups. Serum BPA concentrations were significantly higher in patients with reproductive system cancer compared to the control group (p = 0.045), while a non-significant trend was observed between breast cancer patients and patients with reproductive system cancer (p = 0.0884). Conclusions: In summary, our study demonstrated significantly elevated serum BPA levels in patients with reproductive system cancer compared to controls. These results suggest the hypothesis that higher exposure to BPA may influence or be associated with the development of estrogen-dependent cancers such as breast and endometrial cancer. However, due to the cross-sectional design of the study, causality cannot be established, and further longitudinal studies are warranted. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

32 pages, 1613 KiB  
Review
Ultra-Processed Diets and Endocrine Disruption, Explanation of Missing Link in Rising Cancer Incidence Among Young Adults
by Almir Fajkić, Orhan Lepara, Rijad Jahić, Almira Hadžović-Džuvo, Andrej Belančić, Alexander Chupin, Doris Pavković and Emina Karahmet Sher
Cancers 2025, 17(13), 2196; https://doi.org/10.3390/cancers17132196 - 29 Jun 2025
Viewed by 1069
Abstract
The global increase in early-onset cancers among adolescents and young adults has happened at the same time as the rise in the consumption of ultra-processed foods (UPFs). Far beyond their poor nutritional quality, UPFs are increasingly seen as Trojan horses, complex biological agents [...] Read more.
The global increase in early-onset cancers among adolescents and young adults has happened at the same time as the rise in the consumption of ultra-processed foods (UPFs). Far beyond their poor nutritional quality, UPFs are increasingly seen as Trojan horses, complex biological agents that interfere with many functions of the human organism. In this review, we utilise the Trojan horse model to explain the quiet and building health risks from UPFs as foods that seem harmless, convenient, and affordable while secretly delivering endocrine-disrupting chemicals (EDCs), causing chronic low-grade inflammation, altering the microbiome, and producing epigenetic alterations. We bring together new proof showing that UPFs mess up hormonal signals, harm the body’s ability to fight off harmful germs, lead to an imbalance of microbes, and cause detrimental changes linked to cancer. Important components, such as bisphenols and phthalates, can migrate from containers into food, while additional ingredients and effects from cooking disrupt the normal balance of cells. These exposures are especially harmful during vulnerable developmental periods and may lay the groundwork for disease many years later. The Trojan horse model illustrates the hidden nature of UPF-related damage, not through a sudden toxin but via chronic dysregulation of metabolic, hormonal, and genetic control. This model changes focus from usual diet worries to a bigger-picture view of UPFs as causes of life-disrupting damage. Ultimately, this review aims to identify gaps in current knowledge and epidemiological approaches and highlight the need for multi-omics, long-term studies and personalised nutrition plans to assess and reduce the cancer risk associated with UPFs. Recognising UPFs as a silent disruptor is crucial in shaping public health policies and cancer prevention programs targeting younger people. Full article
(This article belongs to the Special Issue Lifestyle Choices and Endocrine Dysfunction on Cancer Onset and Risk)
Show Figures

Figure 1

16 pages, 755 KiB  
Review
Micro- and Nanoplastics as Disruptors of the Endocrine System—A Review of the Threats and Consequences Associated with Plastic Exposure
by Hanna J. Tyc, Karolina Kłodnicka, Barbara Teresińska, Robert Karpiński, Jolanta Flieger and Jacek Baj
Int. J. Mol. Sci. 2025, 26(13), 6156; https://doi.org/10.3390/ijms26136156 - 26 Jun 2025
Viewed by 1007
Abstract
Plastic overconsumption has emerged as a major environmental pollutant, with degraded micro- and nanoplastic (MNP) particles being consumed by a vast variety of species. MNPs, particles < 5 mm, contain endocrine-disrupting chemicals (EDCs), which can bind to hormone receptors and disrupt the proper [...] Read more.
Plastic overconsumption has emerged as a major environmental pollutant, with degraded micro- and nanoplastic (MNP) particles being consumed by a vast variety of species. MNPs, particles < 5 mm, contain endocrine-disrupting chemicals (EDCs), which can bind to hormone receptors and disrupt the proper endocrinological function of a variety of organs. This review explores the toxicological impact of MNPs on the hypothalamus, pituitary gland, thyroid, pineal body, ovaries, and testes, as well as the effects of the endocrinological regulatory axes, including the hypothalamic–pituitary–gonadal (HPG), hypothalamic–pituitary–thyroid (HPT), and hypothalamic–pituitary–adrenal (HPA) axes. The disruption of these hormonal feedback systems leads to reproductive dysfunction, neurotoxicity, cytotoxicity, immunotoxicity, and metabolic disorders. The gonads are particularly susceptible, with studies demonstrating oxidative stress, cellular apoptosis, and infertility due to MNP exposure. Given the widespread presence of MNPs and their impact on human health, further research is critical to understand their long-term effects and develop strategies to reduce exposure. Full article
(This article belongs to the Special Issue Toxicity of Metals, Metal-Based Drugs, and Microplastics)
Show Figures

Figure 1

19 pages, 703 KiB  
Systematic Review
Associations Between Endocrine-Disrupting Chemical Exposure and Fertility Outcomes: A Decade of Human Epidemiological Evidence
by Zoe Tzouma, Panagiota Dourou, Athina Diamanti, Vikentia Harizopoulou, Petros Papalexis, Grigorios Karampas, Alina Liepinaitienė, Audrius Dėdelė and Antigoni Sarantaki
Life 2025, 15(7), 993; https://doi.org/10.3390/life15070993 - 21 Jun 2025
Viewed by 1387
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system by mimicking or blocking the action of endogenous hormones such as estrogens, androgens, and thyroid hormones. This systematic review aims to evaluate the current epidemiological evidence linking EDC exposure with adverse [...] Read more.
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system by mimicking or blocking the action of endogenous hormones such as estrogens, androgens, and thyroid hormones. This systematic review aims to evaluate the current epidemiological evidence linking EDC exposure with adverse reproductive outcomes in males and females of reproductive age. A total of 14 observational studies published between 2014 and 2024 were included following structured searches in PubMed, Scopus, and Google Scholar. The most commonly studied EDCs included bisphenol A (BPA), its analogs (such as bisphenol S, BPS), phthalates, parabens, per- and polyfluoroalkyl substances (PFAS), and persistent organic pollutants (POPs). The review found consistent associations between EDC exposure and multiple reproductive endpoints, such as impaired semen quality, decreased ovarian reserve, infertility, polycystic ovary syndrome (PCOS), altered hormone levels—specifically estradiol (E2), luteinizing hormone (LH), and follicle-stimulating hormone (FSH)—and adverse outcomes in assisted reproductive technologies (ART), including in vitro fertilization (IVF). Despite methodological heterogeneity, the findings support the biological plausibility of EDCs in disrupting reproductive function. The review highlights the urgent need for regulatory measures, increased public awareness, and longitudinal studies to assess the cumulative effects of chronic EDC exposure on human fertility. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

30 pages, 8229 KiB  
Article
RNA-Seq Uncovers Association of Endocrine-Disrupting Chemicals with Hub Genes and Transcription Factors in Aggressive Prostate Cancer
by Diaaidden Alwadi, Quentin Felty, Mayur Doke, Deodutta Roy, Changwon Yoo and Alok Deoraj
Int. J. Mol. Sci. 2025, 26(12), 5463; https://doi.org/10.3390/ijms26125463 - 6 Jun 2025
Viewed by 765
Abstract
This study analyzes publicly available RNA-seq data to comprehensively include the complex heterogeneity of prostate cancer (PCa) etiology. It combines prostate and prostate cancer (PCa) cell lines, representing primary PCa cells, Gleason scores, ages, and PCa of different racial origins. Additionally, some cell [...] Read more.
This study analyzes publicly available RNA-seq data to comprehensively include the complex heterogeneity of prostate cancer (PCa) etiology. It combines prostate and prostate cancer (PCa) cell lines, representing primary PCa cells, Gleason scores, ages, and PCa of different racial origins. Additionally, some cell lines were exposed to endocrine-disrupting chemicals (EDCs). The research aims to identify hub genes and transcription factors (TFs) of the prostate carcinogenesis pathway as molecular targets for clinical investigations to elucidate EDC-induced aggressiveness and to develop potential biomarkers for their exposure risk assessments. PCa cells rely on androgen receptor (AR)-mediated signaling to survive, develop, and function. Fifteen various RNA-seq datasets were normalized for distribution, and the significance (p-value < 0.05) threshold of differentially expressed genes (DEGs) was set based on |log2FC| ≥ 2 change. Through integrated bioinformatics, we applied cBioPortal, UCSC-Xena, TIMER2.0, and TRRUST platforms, among others, to associate hub genes and their TFs based on their biologically meaningful roles in aggressive prostate carcinogenesis. Among all RNA-Seq datasets, we found 75 overlapping DEGs, with BUB1B (32%) and CCNB1 (29%) genes exhibiting the highest degree of mutation, amplification, and deletion. EDC-associated CCNB1, BUB1B, and CCNA2 in PCa cells exposed to EDCs were consistently shown to be associated with high Gleason scores (≥4 + 3) and in the >60 age group of patients. Selected TFs (E2F4, MYC, and YBX1) were also significantly associated with DEGs (NCAPG, MKI67, CCNA2, CCNB1, CDK1, CCNB2, AURKA, UBE2C, BUB1B) and influenced the overall survival (p-value < 0.05) of PCa cases. This is one of the first comprehensive studies combining 15 publicly available RNA-seq datasets to demonstrate the association of EDC-associated hub genes and their TFs aligning with the aggressive carcinogenic pathways in the higher age group (>60 years) of patients. The findings highlight the potential of these hub genes as candidates for further studies to develop molecular biomarkers for assessing the EDC-related PCa risk, diagnosing PCa aggressiveness, and identifying therapeutic targets. Full article
(This article belongs to the Special Issue Environmental Epigenome and Endocrine Disrupting Chemicals)
Show Figures

Figure 1

18 pages, 2056 KiB  
Article
Exploring the Role of Bifenthrin in Recurrent Implantation Failure and Pregnancy Loss Through Network Toxicology and Molecular Docking
by Shengyuan Jiang, Yixiao Wang, Haiyan Chen, Yuanyuan Teng, Qiaoying Zhu and Kaipeng Xie
Toxics 2025, 13(6), 454; https://doi.org/10.3390/toxics13060454 - 29 May 2025
Viewed by 634
Abstract
Bifenthrin (BF) is a widely used pyrethroid pesticide recognized as an endocrine-disrupting chemical (EDC). Previous studies have confirmed that chronic exposure to BF is associated with various health risks. However, its potential association with recurrent implantation failure (RIF) and recurrent pregnancy loss (RPL) [...] Read more.
Bifenthrin (BF) is a widely used pyrethroid pesticide recognized as an endocrine-disrupting chemical (EDC). Previous studies have confirmed that chronic exposure to BF is associated with various health risks. However, its potential association with recurrent implantation failure (RIF) and recurrent pregnancy loss (RPL) remains unclear. In this study, the potential targets of BF were identified using several databases, including the Comparative Toxicogenomics Database (CTD), TargetNet, GeneCards, SwissTargetPrediction, and STITCH. Differentially expressed genes (DEGs) associated with RIF were obtained from bulk RNA-seq datasets in the GEO database. Candidate targets were identified by intersecting the predicted BF-related targets with the RIF-associated DEGs, followed by functional enrichment analysis using the DAVID and g:Profiler platforms. Subsequently, hub genes were identified based on the STRING database and Cytoscape. A diagnostic model was then constructed based on these hub genes in the RIF cohort and validated in an independent recurrent pregnancy loss (RPL) cohort. Additionally, we performed single-cell type distribution analysis and immune infiltration profiling based on single-cell RNA-seq and bulk RNA-seq data, respectively. Molecular docking analysis using AutoDock Vina was conducted to evaluate the binding affinity between BF and the four hub proteins, as well as several hormone-related receptors. Functional enrichment results indicated that the candidate genes were mainly involved in apoptotic and oxidative stress-related pathways. Ultimately, four hub genes—BCL2, HMOX1, CYCS, and PTGS2—were identified. The diagnostic model based on these genes exhibited good predictive performance in the RIF cohort and was successfully validated in the RPL cohort. Single-cell transcriptomic analysis revealed a significant increase in the proportion of myeloid cells in RPL patients, while immune infiltration analysis showed a consistent downregulation of M2 macrophages in both RIF and RPL. Moreover, molecular docking analysis revealed that BF exhibited high binding affinity to all four hub proteins and demonstrated strong binding potential with multiple hormone receptors, particularly pregnane X receptor (PXR), estrogen receptor α (ESRα), and thyroid hormone receptors (TR). In conclusion, the association of BF with four hub genes and multiple hormone receptors suggests a potential link to immune and endocrine dysregulation observed in RIF and RPL. However, in vivo and in vitro experimental evidence is currently lacking, and further studies are needed to elucidate the mechanisms by which BF may contribute to RIF and RPL. Full article
Show Figures

Figure 1

13 pages, 674 KiB  
Review
The Interplay Between Body Weight and the Onset of Puberty
by Alexandros K. Kythreotis, Marina Nicolaou, Eirini Mitsinga, Habib Daher and Nicos Skordis
Children 2025, 12(6), 679; https://doi.org/10.3390/children12060679 - 25 May 2025
Viewed by 818
Abstract
This overview explores the complex relationship between environmental factors, particularly obesity, and the timing of puberty, with a focus on how hormonal and genetic interactions are influenced by external conditions. Puberty (gonadarche) is characterised by the activation of the hypothalamic–pituitary–gonadal (HPG) axis. The [...] Read more.
This overview explores the complex relationship between environmental factors, particularly obesity, and the timing of puberty, with a focus on how hormonal and genetic interactions are influenced by external conditions. Puberty (gonadarche) is characterised by the activation of the hypothalamic–pituitary–gonadal (HPG) axis. The onset and progression of puberty vary significantly among individuals, primarily due to genetic factors, with key genes like kisspeptin 1 (KISS1) and makorin ring finger protein 3 (MKRN3) playing a crucial role. Cohesively, this paper emphasises that environmental factors, particularly obesity and exposure to endocrine-disrupting chemicals (EDCs), have become significant influences on the timing of puberty. Childhood obesity has risen significantly in recent decades and the age of pubertal onset has declined over the same period. Obesity greatly disrupts hormone regulation in pre-pubertal children. Leptin accelerates the onset of puberty in girls but not in boys. The underlying mechanism is proposed to be the increase in Kiss1/GnRH signalling. On the contrary, excess leptin in boys suppresses testosterone production by increasing oestrogen conversion. Low adiponectin in obese girls may contribute to earlier puberty due to a reduced inhibition of Kiss1/GnRH signalling. Low adiponectin in boys is linked to delayed puberty due to its role in maintaining insulin sensitivity and testosterone production. Hyperinsulinemia influences pubertal timing through central and peripheral mechanisms. Insulin acting synergistically with leptin promotes the earlier onset of puberty in girls but not in boys. The effects of exposure to certain EDCs—mostly obesogenic chemicals that mimic the action of natural hormones—on the timing of puberty remain unclear; hence, further research on this topic is needed. Addressing and preventing obesity in children could potentially mitigate these alterations in pubertal timing. Full article
(This article belongs to the Section Pediatric Endocrinology & Diabetes)
Show Figures

Figure 1

14 pages, 491 KiB  
Article
Analysis of Women’s Knowledge, Health Risk Perceptions, Beliefs and Avoidance Behaviour in Relation to Endocrine-Disrupting Chemicals in Personal Care and Household Products
by Adrianna Trifunovski, Nooshin Khobzi Rotondi, Jennifer Abbass-Dick and Caroline Barakat
Toxics 2025, 13(5), 414; https://doi.org/10.3390/toxics13050414 - 21 May 2025
Viewed by 893
Abstract
Evidence highlights the association between endocrine-disrupting chemicals (EDCs) found in personal care and household products (PCHPs) and adverse reproductive and developmental health outcomes. Women are disproportionately at risk due to frequent use of PCHPs, encountering a variety of different chemicals daily. Despite known [...] Read more.
Evidence highlights the association between endocrine-disrupting chemicals (EDCs) found in personal care and household products (PCHPs) and adverse reproductive and developmental health outcomes. Women are disproportionately at risk due to frequent use of PCHPs, encountering a variety of different chemicals daily. Despite known health risks, existing policies often fail to provide adequate protection, with gaps remaining in understanding women’s knowledge, risk perceptions, and beliefs about EDCSs in PCHP, as well as how these influence avoidance behaviours. This study examines women’s knowledge, health risk perceptions, beliefs, and avoidance behaviors regarding EDCs commonly found in PCHPs, including bisphenol A, lead, parabens, phthalates, perchloroethylene, and triclosan. Guided by the Health Belief Model, a questionnaire was administered to 200 women in the preconception and conception periods in Toronto, Canada. Analyses revealed that lead and parabens were the most recognized EDCs, while triclosan and perchloroethylene were the least known. Greater knowledge of lead, parabens, bisphenol A, and phthalates significantly predicted chemical avoidance in PCHPs. Higher risk perceptions of parabens and phthalates also predicted greater avoidance. Women with higher education and chemical sensitivities were more likely to avoid lead. These findings support the need for targeted education to improve awareness to reduce EDC exposure—especially among women. Full article
(This article belongs to the Special Issue Endocrine-Disrupting Chemicals and Reproductive Toxicology)
Show Figures

Graphical abstract

Back to TopTop