Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (322)

Search Parameters:
Keywords = emulsification activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4980 KiB  
Article
Quinoa Protein/Sodium Alginate Complex-Stabilized Pickering Emulsion for Sustained Release of Curcumin and Enhanced Anticancer Activity Against HeLa Cells
by Yiqun Zhu, Jianan Li, Shuhong Liu, Hongli Yang, Fei Lu and Minpeng Zhu
Foods 2025, 14(15), 2705; https://doi.org/10.3390/foods14152705 (registering DOI) - 1 Aug 2025
Abstract
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of [...] Read more.
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of QPI and SA was investigated from pH 1.6 to 7.5, and the structural and interfacial characteristics of the complexes were analyzed using zeta potential measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact angle analysis. The results showed that the formation of QPI/SA complexes was primarily driven by electrostatic interactions, hydrogen bonding, and hydrophobic interactions, with enhanced amphiphilicity observed under optimal conditions (QPI/SA = 5:1, pH 5). The QPI/SA-stabilized Pickering emulsions demonstrated excellent emulsification performance and storage stability, maintaining an emulsification index above 90% after 7 d when prepared with 60% oil phase. In vitro digestion studies revealed stage-specific curcumin release, with sustained release in simulated gastric fluid (21.13%) and enhanced release in intestinal fluid (88.21%). Cytotoxicity assays using HeLa cells confirmed the biocompatibility of QPI/SA complexes (≤500 μg/mL), while curcumin-loaded emulsions exhibited dose-dependent anticancer activity. These findings suggest that QPI/SA holds significant potential for applications in functional foods and oral delivery systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 (registering DOI) - 31 Jul 2025
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

21 pages, 1652 KiB  
Article
Antimicrobial and Physicochemical Properties of Hemicellulose-Based Films Incorporating Carvacrol
by Syed Ammar Hussain, Brajendra K. Sharma, Phoebe X. Qi, Madhav P. Yadav and Tony Z. Jin
Polymers 2025, 17(15), 2073; https://doi.org/10.3390/polym17152073 - 29 Jul 2025
Viewed by 205
Abstract
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent [...] Read more.
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent through micro-emulsification produced by high-pressure homogenization (M-films). For comparison, films with the same formula were constructed using coarse emulsions (C-films) without high-pressure homogenization. These films were investigated for their antimicrobial efficacy, mechanical and barrier properties, and physicochemical attributes to explore their potential as sustainable antimicrobial packaging solutions. The M-films demonstrated superior antimicrobial activity, achieving reductions exceeding 4 Log CFU/mL against Listeria monocytogenes, Escherichia coli, and Salmonella enterica, compared to the C-films. High-pressure homogenization significantly reduced the emulsion’s particle size, from 11.59 to 2.55 μm, and considerably enhanced the M-film’s uniformity, hydrophobicity, and structural quality. Most importantly, the M-films exhibited lower oxygen transmission (35.14 cc/m2/day) and water vapor transmission rates (52.12 g/m2/day) than the C-films at 45.1 and 65.5 cc/m2/day, respectively, indicating superior protection against gas and moisture diffusion. Markedly improved mechanical properties, including foldability, toughness, and bubble-free surfaces, were also observed, making the M-films suitable for practical applications. This study highlights the potential of high-pressure homogenization as a method for enhancing the functional properties of hemicellulose-based films (i.e., M-films). The fabricated films offer a viable alternative to conventional plastic packaging, paving the way for safer and greener solutions tailored to modern industry needs. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

14 pages, 1925 KiB  
Article
Chitosan Microparticles Coupled with MAGE-AX and CpGs as a Treatment for Murine Melanoma
by Gabriela Piñón-Zárate, Beatriz Hernández-Téllez, Ariel Ramírez-Cortés, Katia Jarquín-Yáñez, Enrique A. Sampedro-Carrillo, Miguel A. Herrera-Enríquez, Christian A. Cárdenas-Monroy and Andrés E. Castell-Rodríguez
Pharmaceutics 2025, 17(7), 932; https://doi.org/10.3390/pharmaceutics17070932 - 19 Jul 2025
Viewed by 330
Abstract
Background/Objectives: One current cancer treatment is immunotherapy, in which tumor antigens (such as MAGE) or adjuvants (such as CpGs) can be used to induce the destruction of tumor cells by the immune system; however, the therapeutic response is generally weak. Therefore, it is [...] Read more.
Background/Objectives: One current cancer treatment is immunotherapy, in which tumor antigens (such as MAGE) or adjuvants (such as CpGs) can be used to induce the destruction of tumor cells by the immune system; however, the therapeutic response is generally weak. Therefore, it is necessary to develop a strategy that increases the immune response induced by tumor antigens and CpGs. We propose the coupling of tumor antigens and adjuvants to chitosan (Cs) microparticles to improve the immune response against cancer, as these microparticles can activate the innate immune response when recognized by macrophages and dendritic cells (DCs). Methods: Cs microparticles coupled with CpGs and tumor antigens were constructed with the emulsification method; then, their morphology, in vitro biological effect on DCs, and therapeutic effect in a murine melanoma model were analyzed. Results: The Cs microparticles showed a rounded morphology and a size of approximately 5 μ; in addition, they were not cytotoxic in in vitro assays and induced the production of IFNα. Finally, in the murine model of melanoma, treatment with Cs microparticles coupled to MAGE or CpGs reduced the tumor growth rate and increased both survival and the presence of cell death areas in the tumor parenchyma in contrast to the control group. Conclusions: The results suggest that treatment with Cs microparticles coupled to tumor antigen and/or CpGs can be considered a promising strategy in the field of immunotherapy based on the use of biomaterials. Full article
Show Figures

Graphical abstract

25 pages, 3317 KiB  
Article
Biosurfactant Produced by Bacillus subtilis UCP 1533 Isolated from the Brazilian Semiarid Region: Characterization and Antimicrobial Potential
by Antônio P. da C. Albuquerque, Hozana de S. Ferreira, Yali A. da Silva, Renata R. da Silva, Carlos V. A. de Lima, Leonie A. Sarubbo and Juliana M. Luna
Microorganisms 2025, 13(7), 1548; https://doi.org/10.3390/microorganisms13071548 - 1 Jul 2025
Viewed by 339
Abstract
The increasing resistance of pathogenic microorganisms to antimicrobials has driven the search for safe and sustainable alternatives. In this context, microbial biosurfactants have gained prominence due to their antimicrobial activity, low toxicity, and high stability under extreme conditions. This study presents the production [...] Read more.
The increasing resistance of pathogenic microorganisms to antimicrobials has driven the search for safe and sustainable alternatives. In this context, microbial biosurfactants have gained prominence due to their antimicrobial activity, low toxicity, and high stability under extreme conditions. This study presents the production and characterization of a biosurfactant with antimicrobial potential, obtained from Bacillus subtilis isolated from soil, for application in the control of resistant strains. Bacterial identification was performed using mass spectrometry (MALDI-TOF), confirming it as Bacillus subtilis. The strain B. subtilis UCP 1533 was cultivated using different carbon sources (glucose, soybean oil, residual frying oil, and molasses) and nitrogen sources (ammonium chloride, sodium nitrate, urea, and peptone), with evaluations at 72, 96, and 120 h. The best condition involved a mineral medium supplemented with 2% soybean oil and 0.12% corn steep liquor, resulting in the production of 16 g·L−1 of biosurfactant, with a critical micelle concentration (CMC) of 0.3 g·L−1 and a reduction in water surface tension to 25 mN·m−1. The biosurfactant showed an emulsification index of 100% for used motor oil and ranged from 50% to 100% for different vegetable oils, maintaining stability across a wide range of pH, salinity, and temperature. FT-IR and NMR analyses confirmed its lipopeptide nature and anionic charge. Toxicity tests with Tenebrio molitor larvae showed 100% survival at all the tested concentrations. In phytotoxicity assays, seed germination rates above 90% were recorded for Solanum lycopersicum and Lactuca sativa. Antimicrobial tests revealed inhibitory activity against resistant strains of Escherichia coli and Pseudomonas aeruginosa, as well as against species of the genus Candida (C. glabrata, C. lipolytica, C. bombicola, and C. guilliermondii), highlighting the biosurfactant as a promising alternative in combating antimicrobial resistance (AMR). These results indicate the potential application of this biosurfactant in the development of antimicrobial agents for pharmaceutical formulations and sustainable strategies for phytopathogen control in agriculture. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Graphical abstract

21 pages, 2754 KiB  
Article
Repurposing Torrefied Biomass as a Novel Feedstock for Microbial Bioprocessing—A Proof-of-Concept of Low-Cost Biosurfactant Production
by Anjana Hari, Vahur Rooni, Udayakumar Veerabagu, Shiplu Sarker, Alar Konist and Timo Kikas
Polymers 2025, 17(13), 1808; https://doi.org/10.3390/polym17131808 - 29 Jun 2025
Viewed by 382
Abstract
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a [...] Read more.
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a low-value final product as well as the dead end of the biomass value chain. Herein, we demonstrate the proof-of-concept for the utilisation of torrefaction as a pretreatment to convert low-value wood waste into biosurfactants, a high-value specialty biochemical. Wood waste was torrefied at 225 °C, 250 °C, 275 °C, and 300 °C and physicochemically characterised using proximate and ultimate analyses, FTIR, XRD, TGA–DTG, and SEM–EDX to assess its suitability as fermentation feedstock. Aspen waste torrefied at temperatures less than 250 °C was directly utilised by Burkholderia thailandensis DSM 13276 via semi-solid-state fermentation to yield biosurfactants, and 225 °C was selected for further experiments as it resulted in the production of biosurfactants which reduced the surface tension of the production medium to 36.8 mN/m and had an emulsification index of 64.1%. Tension and emulsification activities decreased with the increase in torrefaction temperature. The biosurfactant derived from torrefaction at 225 °C formed highly stable emulsions with diesel oil (lasting >40 days), in addition to low interfacial tension, suggesting potential applications in diesel bioremediation. This integrated, chemical-free strategy offers an alternative application for torrefied wood waste as well as a feasible solution for the cost-effective chemical-free production of biosurfactants, incorporating circular economy principles. Full article
Show Figures

Graphical abstract

19 pages, 8480 KiB  
Article
(W/O/W) Double Emulsions-Filled Chitosan Hydrogel Beads for Topical Application
by Rui Sun, Yufeng Sun, Xiaoyan Tang and Juling Ji
Gels 2025, 11(7), 504; https://doi.org/10.3390/gels11070504 - 27 Jun 2025
Viewed by 372
Abstract
The aim of this study was to develop double emulsions-filled chitosan hydrogel beads for topical application and to elucidate their skin penetration behavior. Double emulsions were prepared by a two-step emulsification method, and double emulsions-filled chitosan hydrogel beads were prepared by the extrusion [...] Read more.
The aim of this study was to develop double emulsions-filled chitosan hydrogel beads for topical application and to elucidate their skin penetration behavior. Double emulsions were prepared by a two-step emulsification method, and double emulsions-filled chitosan hydrogel beads were prepared by the extrusion method. The structure, stability, and skin penetration behavior were investigated. The results of yield efficiency (above 80%) and microstructure observation confirmed the feasibility of the preparation method. After loading the hydrophilic active ingredients (vitamin C) into this system, the retention ratio after storage for 6 weeks increased by 77.6%. Furthermore, hydrogel beads could promote the permeation of hydrophilic active ingredients loaded in double emulsions. When the concentration of chitosan was 3% (w/v), the permeation coefficient of vitamin C from hydrogel beads exhibited an increase (1.7-fold) compared with double emulsions. This system could affect the orderliness of lipid structures in the stratum corneum. In addition, the results indicated that this system could be used for the topical delivery of hydrophobic active ingredients (quercetin) as well. This is the first report of chitosan bead stabilization of W/O/W emulsions, yielding a 2.6-fold increase in skin uptake of hydrophilic actives. Full article
(This article belongs to the Special Issue Recent Advances in Gels for Pharmaceutical Application)
Show Figures

Figure 1

20 pages, 2474 KiB  
Article
The Effects of Tea Polyphenols on the Emulsifying and Gelling Properties of Minced Lamb After Repeated Freeze–Thaw Cycles
by Xueyan Yun, Ganqi Yang, Limin Li, Ying Wu, Xujin Yang and Aiwu Gao
Foods 2025, 14(13), 2259; https://doi.org/10.3390/foods14132259 - 26 Jun 2025
Viewed by 423
Abstract
Minced lamb remains one of the most produced meat products in the meat industry, across both the food service and retail sectors. Tea polyphenols (TPs), renowned for their diverse biological activities, are increasingly being employed as natural food additives in research and development. [...] Read more.
Minced lamb remains one of the most produced meat products in the meat industry, across both the food service and retail sectors. Tea polyphenols (TPs), renowned for their diverse biological activities, are increasingly being employed as natural food additives in research and development. Tea polyphenols at concentrations of 0.00% (CG), 0.01% (TP1), 0.10% (TP2), and 0.30% (TP3) were added to lamb which had undergone a series of freeze–thaw cycles. The presence of tea polyphenols led to a significant decrease in the number of disulfide bonds, resulting in a slower oxidation rate. In addition, the surface hydrophobicity and juice loss of the minced lamb supplemented with tea polyphenols were 91.23 ± 0.22 and 20.00 ± 0.46, respectively, representing a reduction of 1.5% and 7.59% compared to the group without the addition of tea polyphenols. However, the addition of high-dose tea polyphenols also led to a reduction in emulsification stability, alterations in protein conformation, and changes in water migration. Furthermore, the incorporation of a minimal quantity of tea polyphenols (0.01%) resulted in enhanced emulsification stability, water retention, textural properties, and microstructures in minced lamb. This suggests that tea polyphenols have the potential to improve the quality of minced lamb following freezing and thawing processes. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

14 pages, 2758 KiB  
Article
Effects of the Maillard Reaction on the Structural and Functional Properties of Camel Whey Protein
by Ying Liu, Chunyan Ran, Hongyi Zhang, Yaqi Cheng, Minaer Huanbieke, Yuying Liu, Jie Yang, Yuqing Mei and Yang Qu
Foods 2025, 14(13), 2201; https://doi.org/10.3390/foods14132201 - 23 Jun 2025
Viewed by 371
Abstract
Consumer demand for dairy products like cheese and curds has resulted in a rise in whey production, which has caused significant waste and environmental issues. For this reason, improving the functional characteristics of whey proteins and their usage value are essential. In this [...] Read more.
Consumer demand for dairy products like cheese and curds has resulted in a rise in whey production, which has caused significant waste and environmental issues. For this reason, improving the functional characteristics of whey proteins and their usage value are essential. In this study, camel whey protein–galactose conjugates (CWP-Gal) and camel whey protein–glucose conjugates (CWP-Glu) were prepared through the Maillard reaction, and their structural and functional properties were characterized. Improvements in solubility of 14.90% and 8.17%, emulsification activity of 15.53% and 13.64%, and foaming capacity of 113.95% and 106.03% were demonstrated by CWP-Gal and CWP-Glu in comparison to camel whey protein (CWP). Circular dichroism analysis revealed secondary structure alterations in CWP-Gal and CWP-Glu compared to CWP. SDS-PAGE, FT-IR, and intrinsic fluorescence spectroscopy all verified that sugar molecules and proteins were covalently conjugated. SEM analysis revealed that the conjugates had a more sparsely packed microstructure. The results demonstrate that CWP-Gal exhibits enhanced structural stability and superior functional properties, providing a scientific basis for its potential utilization in the food industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

15 pages, 2683 KiB  
Article
Study on Mechanism of Surfactant Adsorption at Oil–Water Interface and Wettability Alteration on Oil-Wet Rock Surface
by Xinyu Tang, Yaoyao Tong, Yuhui Zhang, Pujiang Yang, Chuangye Wang and Jinhe Liu
Molecules 2025, 30(12), 2541; https://doi.org/10.3390/molecules30122541 - 10 Jun 2025
Viewed by 712
Abstract
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification [...] Read more.
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification of heavy oil. Consequently, investigating the adsorption behavior of surfactants at oil–water interfaces and the underlying mechanisms of wettability alteration is of considerable importance. In this study, the surface tension of four surfactants and their interfacial tension with Gudao heavy oil were measured. Among these, BS-12 exhibited a critical micelle concentration (CMC) of 6.26 × 10−4 mol·dm−3, a surface tension of 30.15 mN·m−1 at the CMC, and an adsorption efficiency of 4.54. In low-salinity systems, BS-12 achieved an ultralow interfacial tension on the order of 10−3 mN·m−1, demonstrating excellent surface activity. Therefore, BS-12 was selected as the preferred emulsifier for Gudao heavy oil recovery. Additionally, FT-IR, SEM, and contact angle measurements were used to elucidate the interfacial adsorption mechanism between BS-12 and aged cores. The results indicate that hydrophobic interactions between the hydrophobic groups of BS-12 and the adsorbed crude oil fractions play a key role. Core flooding experiments, simulating the formation of low-viscosity oil-in-water (O/W) emulsions under reservoir conditions, showed that at low flow rates, crude oil and water interact more effectively within the pores. The extended contact time between heavy oil and the emulsifier led to significant changes in rock wettability, enhanced interfacial activity, improved oil recovery efficiency, and increased oil content in the emulsion. This study analyzes the role of surfactants in interfacial adsorption and the multiphase flow behavior of emulsions, providing a theoretical basis for surfactant-enhanced oil recovery. Full article
Show Figures

Figure 1

14 pages, 1230 KiB  
Article
Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation
by Yan Liu, Tingwei Zhu, Fusheng Chen, Xingfeng Guo, Chenxian Yang, Yu Chen and Lifen Zhang
Foods 2025, 14(11), 1999; https://doi.org/10.3390/foods14111999 - 5 Jun 2025
Viewed by 380
Abstract
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose [...] Read more.
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose mass ratio, temperature, and time) on the functional properties of PM were investigated, and its structural properties were evaluated using water contact angle measurements, fluorescence spectroscopy, and Fourier-transform infrared spectroscopy. It was found that TGase-coupled glycation modification altered the secondary structure of PM and increased both the water contact angle and the surface hydrophobicity, thereby significantly affecting its functional properties. Additionally, superior emulsification, foaming, and oil-absorbing properties were achieved for the modified PM, which were named EPM, FPM, and OPM, respectively (specimens under different modification conditions). Notably, the emulsification activity of the EPM sample was enhanced by 69.8% (i.e., from 18.48 to 31.38 m2/g); the foaming capacity of the FPM specimen was increased by 84.00% (i.e., from 21.00 to 46.00%); and the oil-absorbing capacity of the OPM sample was enhanced by 359.57% (i.e., from 1.41 to 6.48 g/g protein). Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

28 pages, 3637 KiB  
Article
Okra Flower Polysaccharide–Pea Protein Conjugates Stabilized Pickering Emulsion Enhances Apigenin Stability, Bioaccessibility, and Intestinal Absorption In Vitro
by Nuo Zhang, Jiale You, Xiaoli Yan, Hongchen Ji, Wenxuan Ji, Zhengyu Liu, Min Zhang, Peng Liu, Panpan Yue, Zain Ullah, Ting Zhao and Liuqing Yang
Foods 2025, 14(11), 1923; https://doi.org/10.3390/foods14111923 - 28 May 2025
Viewed by 699
Abstract
The covalent interactions of polysaccharides and protein can improve the emulsification and stability of Pickering emulsions, which are promising systems for the delivery of active substances. Okra flowers, which commonly represent agricultural waste, have high-viscosity polysaccharides that can be used for the development [...] Read more.
The covalent interactions of polysaccharides and protein can improve the emulsification and stability of Pickering emulsions, which are promising systems for the delivery of active substances. Okra flowers, which commonly represent agricultural waste, have high-viscosity polysaccharides that can be used for the development of protein–polysaccharide-based emulsifiers. In this study, the Maillard reaction was performed under optimized conditions (70 °C, pH 10, and 12 h) with a 1:1 mass ratio to generate pea protein isolate (PPI)–okra flower polysaccharide (OP) conjugate with the highest grafting degree of 22.80 ± 0.26%. The covalent binding of OP facilitated variations in the secondary and tertiary structures of PPI, decreasing its particle size (from 535.70 to 212.05 nm) and zeta-potential (from −30.37 to −44.39 mV). The emulsifying stability of the emulsion stabilized by OP-PPI conjugates was significantly improved due to the formation of a stable interfacial layer, showing an 80.39% increase compared to that of free PPI. Simultaneously, the emulsions prepared with the conjugates demonstrated excellent stability across diverse environmental conditions by enhancing the interaction between the lipid and protein. Moreover, the conjugate-stabilized emulsion not only exhibited a higher encapsulation efficiency of 91.52 ± 0.75% and superior protective efficacy but also controlled the release of apigenin (API) during gastrointestinal digestion, achieving the highest API bioaccessibility (74.58 ± 1.19%). Furthermore, it also contributed to the absorption and transmembrane transport efficiency of API in Caco-2 cells, improving its bioavailability. These results confirmed that covalent conjugation with OP is a valuable strategy for enhancing the emulsifying features of PPI. The PPI–OP emulsion delivery system holds great potential for nutrient delivery. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

36 pages, 1505 KiB  
Review
Whey Proteins and Bioactive Peptides: Advances in Production, Selection and Bioactivity Profiling
by Anna Luparelli, Daniela Trisciuzzi, William Matteo Schirinzi, Leonardo Caputo, Leonardo Smiriglia, Laura Quintieri, Orazio Nicolotti and Linda Monaci
Biomedicines 2025, 13(6), 1311; https://doi.org/10.3390/biomedicines13061311 - 27 May 2025
Viewed by 1711
Abstract
The whey protein (WP) fraction represents 18–20% of the total milk nitrogen content. It was originally considered a dairy industry waste, but upon its chemical characterization, it was found to be a precious source of bioactive components, growing in popularity as nutritional and [...] Read more.
The whey protein (WP) fraction represents 18–20% of the total milk nitrogen content. It was originally considered a dairy industry waste, but upon its chemical characterization, it was found to be a precious source of bioactive components, growing in popularity as nutritional and functional food ingredients. This has generated a remarkable increase in interest in applications in the different sectors of nutrition, food industry, and pharmaceutics. WPs comprise immunoglobulins and proteins rich in branched and essential amino acids, and peptides endowed with several biological activities (antimicrobial, antihypertensive, antithrombotic, anticancer, antioxidant, opioid, immunomodulatory, and gut microbiota regulation) and technological properties (gelling, water binding, emulsification, and foaming ability). Currently, various process technologies and biotechnological methods are available to recover WPs and convert them into BioActive Peptides (BAPs) for commercial use. Additionally, in silico approaches could have a significant impact on the development of novel foods and/or ingredients and therapeutic agents. This review provides an overview of current and emerging methods for the production, selection, and application of whey peptides, offering insights into bioactivity profiling and potential therapeutic targets. Recent updates in legislation related to commercialized WPs-based products are also presented. Full article
Show Figures

Figure 1

24 pages, 13577 KiB  
Article
Comparative Characterization of Oil Body Proteins from Hemp, Plum, and Jujube Seed and Their Application in Curcumin-Loaded Artificial Oleosomes
by Yuhan Cao, Qin Hu and Feng Xue
Polymers 2025, 17(10), 1346; https://doi.org/10.3390/polym17101346 - 15 May 2025
Cited by 1 | Viewed by 2478
Abstract
The structural and functional characteristics of oil body proteins (OBPs) isolated from hemp, plum, and jujube seeds were systematically investigated, along with their potential application in constructing curcumin-loaded artificial oleosomes (AOs). OBPs were extracted through alkaline extraction coupled with ultrasonic disruption, followed by [...] Read more.
The structural and functional characteristics of oil body proteins (OBPs) isolated from hemp, plum, and jujube seeds were systematically investigated, along with their potential application in constructing curcumin-loaded artificial oleosomes (AOs). OBPs were extracted through alkaline extraction coupled with ultrasonic disruption, followed by comprehensive physicochemical characterization using SDS-PAGE, FTIR spectroscopy, fluorescence spectroscopy, and evaluation of particle size, zeta potential, surface hydrophobicity, solubility, thermal stability, and emulsification properties. Plum seed-derived OBPs were found to demonstrate superior emulsifying capacity and solubility, which were attributed to distinctive structural features, including the following: an elevated random coil content (13%), enhanced surface hydrophobicity (21,781 A.U.), reduced particle size (103 nm), and higher zeta potential (−46 mV). These structural advantages were correlated with improved interfacial adsorption capacity and colloidal stability. When employed in AO fabrication, plum seed OBPs produced curcumin-loaded systems exhibiting maximum encapsulation efficiency (92%), minimal droplet size (5.99 μm), and optimal bio-accessibility (50%) compared to their hemp- and jujube-based counterparts. Furthermore, AOs utilizing plum seed OBPs displayed enhanced antioxidant activity and significantly improved stability. The collective findings establish plum seed OBPs as exceptional natural emulsifiers with strong potential for bioactive compound delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 2152 KiB  
Article
Optimizing Rhamnolipid Performance by Modulating the Expression of Fatty Acid Synthesis Genes fabA and fabZ in Pseudomonas aeruginosa PAO1
by Junpeng Lu, Zhenhua Chen, Huiming Zhu, Qinghai Tang and Zhili Yang
Genes 2025, 16(5), 515; https://doi.org/10.3390/genes16050515 - 28 Apr 2025
Viewed by 577
Abstract
Background/Objectives: Rhamnolipids (RLs) are biosurfactants with significant industrial and environmental potential, which physicochemical properties depend greatly on their fatty acyl chain composition. This study investigated the impact of genetically modulating the fatty acid synthesis genes fabA and fabZ on RL composition and functionality [...] Read more.
Background/Objectives: Rhamnolipids (RLs) are biosurfactants with significant industrial and environmental potential, which physicochemical properties depend greatly on their fatty acyl chain composition. This study investigated the impact of genetically modulating the fatty acid synthesis genes fabA and fabZ on RL composition and functionality in Pseudomonas aeruginosa PAO1. Methods and Results: Using temperature-sensitive mutants and suppressor strains for these essential genes, we successfully engineered RLs with altered fatty acyl chain lengths and saturation levels. LC–MS/MS analyses showed that deletion and overexpression of fabA and fabZ significantly shifted RL fatty acid profiles. Functional analyses indicated that these structural changes markedly influenced RL emulsification activity and critical micelle concentration (CMC). Conclusions: These findings demonstrate the feasibility of optimizing RL properties through targeted genetic manipulation, offering valuable insights for designing customized biosurfactants for diverse industrial and environmental applications. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop