Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,827)

Search Parameters:
Keywords = emissions accounting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

23 pages, 331 KiB  
Article
Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
by Bartosz Jóźwik, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu and Robert Szwed
Energies 2025, 18(15), 4167; https://doi.org/10.3390/en18154167 - 6 Aug 2025
Abstract
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more [...] Read more.
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more than one-third of global emissions. Using annual data from 1990 to 2021, we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal stark national differences. For India, coal, natural gas consumption, and economic growth are the strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. We recommend retrofitting India’s coal- and gas-plants with carbon capture and storage, doubling clean-tech subsidies, and tripling annual solar-plus-storage auctions to displace fossil baseload. For China, priorities include ultra-supercritical upgrades with carbon capture, utilisation, and storage, green-bond-financed solar–wind buildouts, grid-scale storage deployments, and hydrogen-electric freight corridors. These data-driven pathways simultaneously cut flagship emitters, decouple GDP from carbon, provide replicable models for global net-zero research, and advance climate-resilient economic growth worldwide. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 4059 KiB  
Article
Vulnerability Assessment of Six Endemic Tibetan-Himalayan Plants Under Climate Change and Human Activities
by Jin-Dong Wei and Wen-Ting Wang
Plants 2025, 14(15), 2424; https://doi.org/10.3390/plants14152424 - 5 Aug 2025
Abstract
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed [...] Read more.
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed an improved Climate Niche Factor Analysis (CNFA) framework to assess the vulnerability of six representative alpine endemic herbaceous plants in this ecologically sensitive region under future climate changes. Our results show distinct spatial vulnerability patterns for the six species, with higher vulnerability in the western regions of the Tibetan-Himalayan region and lower vulnerability in the eastern areas. Particularly under high-emission scenarios (SSP5-8.5), climate change is projected to substantially intensify threats to these plant species, reinforcing the imperative for targeted conservation strategies. Additionally, we found that the current coverage of protected areas (PAs) within the species’ habitats was severely insufficient, with less than 25% coverage overall, and it was even lower (<7%) in highly vulnerable regions. Human activity hotspots, such as the regions around Lhasa and Chengdu, further exacerbate species vulnerability. Notably, some species currently classified as least concern (e.g., Stipa purpurea (S. purpurea)) according to the IUCN Red List exhibit higher vulnerability than species listed as near threatened (e.g., Cyananthus microphyllus (C. microphylla)) under future climate change. These findings suggest that existing biodiversity assessments, such as the IUCN Red List, may not adequately account for future climate risks, highlighting the importance of incorporating climate change projections into conservation planning. Our study calls for expanding and optimizing PAs, improving management, and enhancing climate resilience to mitigate biodiversity loss in the face of climate change and human pressures. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

33 pages, 7414 KiB  
Article
Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China
by Wei Wang, Xiang Liu, Xianghua Liu, Luqing Rong, Li Hao, Qiuzhi He, Fengchu Liao and Han Tang
Processes 2025, 13(8), 2474; https://doi.org/10.3390/pr13082474 - 5 Aug 2025
Abstract
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the [...] Read more.
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the MI from 2005 to 2021, employing the generalized Divisia index method (GDIM) to analyze the factors driving these emissions. Additionally, a system dynamics (SD) model was developed, integrating economic, demographic, energy, environmental, and policy variables to assess decarbonization strategies and the potential for carbon decoupling. The key findings include the following: (1) Carbon accounting analysis reveals a rising emission trend in Guangxi’s MI, predominantly driven by electricity consumption, with the non-ferrous metal mining sector contributing the largest share of total emissions. (2) The primary drivers of carbon emissions were identified as economic scale, population intensity, and energy intensity, with periodic fluctuations in sector-specific drivers necessitating coordinated policy adjustments. (3) Scenario analysis showed that the Emission Reduction Scenario (ERS) is the only approach that achieves a carbon peak before 2030, indicating that it is the most effective decarbonization pathway. (4) Between 2022 and 2035, carbon decoupling from total output value is projected to improve under both the Energy-Saving Scenario (ESS) and ERS, achieving strong decoupling, while the resource extraction shows limited decoupling effects often displaying an expansionary connection. This study aims to enhance the understanding and promote the advancement of green and low-carbon development within the MI in mineral-rich regions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 2743 KiB  
Article
Unlocking Synergies: How Digital Infrastructure Reshapes the Pollution-Carbon Reduction Nexus at the Chinese Prefecture-Level Cities
by Zhe Ji, Yuqi Chang and Fengxiu Zhou
Sustainability 2025, 17(15), 7066; https://doi.org/10.3390/su17157066 - 4 Aug 2025
Abstract
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, [...] Read more.
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, this study employs a multiperiod difference-in-differences (DID) approach, leveraging smart city pilot policies as a quasinatural experiment, to assess how digital infrastructure affects urban synergistic pollution-carbon mitigation (SPCM). The empirical results show that digital infrastructure increases the urban SPCM index by 1.5%, indicating statistically significant effects. Compared with energy and income effects, digital infrastructure can influence this synergistic effect through indirect channels such as the energy effect, economic agglomeration effect, and income effect, with the economic agglomeration effect accounting for a larger share of the total effect. Additionally, fixed-asset investment has a nonlinear moderating effect on this relationship, with diminishing marginal returns on emission reduction when investment exceeds a threshold. Heterogeneity tests reveal greater impacts in eastern, nonresource-based, and environmentally regulated cities. This study expands the theory of collaborative environmental governance from the perspective of new infrastructure, providing a theoretical foundation for establishing a long-term digital technology-driven mechanism for SPCM. Full article
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 (registering DOI) - 4 Aug 2025
Viewed by 37
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

24 pages, 9190 KiB  
Article
Modeling the Historical and Future Potential Global Distribution of the Pepper Weevil Anthonomus eugenii Using the Ensemble Approach
by Kaitong Xiao, Lei Ling, Ruixiong Deng, Beibei Huang, Qiang Wu, Yu Cao, Hang Ning and Hui Chen
Insects 2025, 16(8), 803; https://doi.org/10.3390/insects16080803 - 3 Aug 2025
Viewed by 264
Abstract
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add [...] Read more.
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add more uncertainty to its distribution, resulting in considerable ecological and economic damage globally. Therefore, we employed an ensemble model combining Random Forests and CLIMEX to predict the potential global distribution of A. eugenii in historical and future climate scenarios. The results indicated that the maximum temperature of the warmest month is an important variable affecting global A. eugenii distribution. Under the historical climate scenario, the potential global distribution of A. eugenii is concentrated in the Midwestern and Southern United States, Central America, the La Plata Plain, parts of the Brazilian Plateau, the Mediterranean and Black Sea coasts, sub-Saharan Africa, Northern and Southern China, Southern India, Indochina Peninsula, and coastal area in Eastern Australia. Under future climate scenarios, suitable areas in the Northern Hemisphere, including North America, Europe, and China, are projected to expand toward higher latitudes. In China, the number of highly suitable areas is expected to increase significantly, mainly in the south and north. Contrastingly, suitable areas in Central America, northern South America, the Brazilian Plateau, India, and the Indochina Peninsula will become less suitable. The total land area suitable for A. eugenii under historical and future low- and high-emission climate scenarios accounted for 73.12, 66.82, and 75.97% of the global land area (except for Antarctica), respectively. The high-suitability areas identified by both models decreased by 19.05 and 35.02% under low- and high-emission scenarios, respectively. Building on these findings, we inferred the future expansion trends of A. eugenii globally. Furthermore, we provide early warning of A. eugenii invasion and a scientific basis for its spread and outbreak, facilitating the development of effective quarantine and control measures. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

21 pages, 1260 KiB  
Review
Comprehensive Overview Assessment on Legal Guarantee System of Wetland Carbon Sink Trading for One Belt and One Road Initiative
by Jingjing Min, Wanwu Yuan, Wei He, Pingping Luo, Hanming Zhang and Yang Zhao
Land 2025, 14(8), 1583; https://doi.org/10.3390/land14081583 - 3 Aug 2025
Viewed by 201
Abstract
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks [...] Read more.
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks in these countries. It explores the necessity of legal system construction for their carbon sink trading. This study finds that smooth trading requires clear property rights definition rules, efficient market trading entities, definite carbon sink trading price rules, financial support aligned with the Equator Principles, and support from biodiversity-compatible environmental regulatory principles. Currently, there are still obstacles in wetland carbon sink trading in the Belt and Road, such as property rights confirmation, an accounting system, an imperfect market trading mechanism, and the coexistence of multiple trading risks. Therefore, this paper first proposes to clarify the goal of the legal guarantee mechanism. Efforts should focus on promoting a consensus on wetland carbon sink ownership and establishing a unified accounting standard system; simultaneously, the relevant departments should conduct field investigations and monitoring, standardize the market order, and strengthen government financial support and funding guarantees. Full article
Show Figures

Figure 1

27 pages, 2929 KiB  
Article
Comparative Performance Analysis of Gene Expression Programming and Linear Regression Models for IRI-Based Pavement Condition Index Prediction
by Mostafa M. Radwan, Majid Faissal Jassim, Samir A. B. Al-Jassim, Mahmoud M. Elnahla and Yasser A. S. Gamal
Eng 2025, 6(8), 183; https://doi.org/10.3390/eng6080183 - 3 Aug 2025
Viewed by 186
Abstract
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values [...] Read more.
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values based on International Roughness Index (IRI) measurements from Iraqi road networks, offering an environmentally conscious and resource-efficient approach to pavement management. The study incorporated 401 samples of IRI and PCI data through comprehensive visual inspection procedures. The developed GEP model exhibited exceptional predictive performance, with coefficient of determination (R2) values achieving 0.821 for training, 0.858 for validation, and 0.8233 overall, successfully accounting for approximately 82–85% of PCI variance. Prediction accuracy remained robust with Mean Absolute Error (MAE) values of 12–13 units and Root Mean Square Error (RMSE) values of 11.209 and 11.00 for training and validation sets, respectively. The lower validation RMSE suggests effective generalization without overfitting. Strong correlations between predicted and measured values exceeded 0.90, with acceptable relative absolute error values ranging from 0.403 to 0.387, confirming model effectiveness. Comparative analysis reveals GEP outperforms alternative regression methods in generalization capacity, particularly in real-world applications. This sustainable methodology represents a cost-effective alternative to conventional PCI evaluation, significantly reducing environmental impact through decreased field operations, lower fuel consumption, and minimized traffic disruption. By streamlining pavement management while maintaining assessment reliability and accuracy, this approach supports environmentally responsible transportation systems and aligns contemporary sustainability goals in infrastructure management. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 200
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

19 pages, 1667 KiB  
Article
Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach
by Emmanouil Tziolas, Andreas Papadopoulos, Vasiliki Lappa, Georgios Bakogiorgos, Stavroula Galanopoulou, María Rosa Mosquera-Losada and Anastasia Pantera
Forests 2025, 16(8), 1262; https://doi.org/10.3390/f16081262 - 2 Aug 2025
Viewed by 202
Abstract
Silvopastoral systems, though ecologically beneficial, remain underrepresented in the European Union’s Common Agricultural Policy and are seldom studied in Mediterranean contexts. The current study assesses both the environmental and economic aspects of five typical silvopastoral systems in central Greece, encompassing cattle, sheep, and [...] Read more.
Silvopastoral systems, though ecologically beneficial, remain underrepresented in the European Union’s Common Agricultural Policy and are seldom studied in Mediterranean contexts. The current study assesses both the environmental and economic aspects of five typical silvopastoral systems in central Greece, encompassing cattle, sheep, and goat farming. A Life Cycle Assessment approach was implemented to quantify greenhouse gas emissions using economic allocation, distributing impacts between milk and meat outputs. Enteric fermentation was the major emission source, accounting for up to 65.14% of total emissions in beef-based systems, while feeding and soil emissions were more prominent in mixed and small ruminant systems. Total farm-level emissions ranged from 60,609 to 273,579 kg CO2eq per year. Economically, only beef-integrated systems achieved an average annual profitability above EUR 20,000 per farm, based on financial data averaged over the last five years (2020–2024) from selected case studies in central Greece, while the remaining systems fell below the national poverty threshold for an average household, underscoring concerns about their economic viability. The findings underline the dual challenges of economic viability and policy neglect, stressing the need for targeted support if these multifunctional systems are to add value to EU climate goals and rural sustainability. Full article
(This article belongs to the Special Issue Forestry in the Contemporary Bioeconomy)
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Preliminary Comparison of Ammonia- and Natural Gas-Fueled Micro-Gas Turbine Systems in Heat-Driven CHP for a Small Residential Community
by Mateusz Proniewicz, Karolina Petela, Christine Mounaïm-Rousselle, Mirko R. Bothien, Andrea Gruber, Yong Fan, Minhyeok Lee and Andrzej Szlęk
Energies 2025, 18(15), 4103; https://doi.org/10.3390/en18154103 - 1 Aug 2025
Viewed by 252
Abstract
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two [...] Read more.
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two systems were modelled in Ebsilon 15 software: a natural gas case (benchmark) and an ammonia-fueled case, both based on the same on-design parameters. Off-design simulations evaluated performance over variable ambient temperatures and loads. Idealized, unrecuperated cycles were adopted to isolate the thermodynamic impact of the fuel switch under complete combustion assumption. Under these assumptions, the study shows that the ammonia system produces more electrical energy and less excess heat, yielding marginally higher electrical efficiency and EUF (26.05% and 77.63%) than the natural gas system (24.59% and 77.55%), highlighting ammonia’s utilization potential in such a context. Future research should target validating ammonia combustion and emission profiles across the turbine load range, and updating the thermodynamic model with a recuperator and SCR accounting for realistic pressure losses. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

29 pages, 1079 KiB  
Article
Electricity-Related Emissions Factors in Carbon Footprinting—The Case of Poland
by Anna Lewandowska, Katarzyna Joachimiak-Lechman, Jolanta Baran and Joanna Kulczycka
Energies 2025, 18(15), 4092; https://doi.org/10.3390/en18154092 - 1 Aug 2025
Viewed by 158
Abstract
Electricity is a significant factor in the life cycle of many products, so the reliability of greenhouse gas (GHG) emissions data is crucial. The article presents publicly available sources of emission factors representative of Poland. The aim of the study is to assess [...] Read more.
Electricity is a significant factor in the life cycle of many products, so the reliability of greenhouse gas (GHG) emissions data is crucial. The article presents publicly available sources of emission factors representative of Poland. The aim of the study is to assess their strengths and weaknesses in the context of the calculation requirements of carbon footprint analysis in accordance with the GHG Protocol. The article presents the results of carbon footprint calculations for different ranges of emissions in the life cycle of 1 kWh of electricity delivered to a hypothetical organization. Next, a discussion on the quality of the emissions factors has been provided, taking account of data quality indicators. It was concluded that two of the emissions factors that are compared—those based on the national consumption mix and the residual mix for Poland—have been recognized as suitable for use in carbon footprint calculations. Beyond the calculation results, the research highlights the significance of the impact of the selection of emissions factors on the reliability of environmental analysis. The article identifies methodological challenges, including the risk of double counting, limited transparency, methodological inconsistency, and low correlation of data with specific locations and technologies. The insights presented contribute to improving the robustness of carbon footprint calculations. Full article
Show Figures

Figure 1

13 pages, 553 KiB  
Article
Biorefinery-Based Energy Recovery from Algae: Comparative Evaluation of Liquid and Gaseous Biofuels
by Panagiotis Fotios Chatzimaliakas, Dimitrios Malamis, Sofia Mai and Elli Maria Barampouti
Fermentation 2025, 11(8), 448; https://doi.org/10.3390/fermentation11080448 - 1 Aug 2025
Viewed by 210
Abstract
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested [...] Read more.
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested and sedimented algal biomass. Employing a factorial experimental design, various trials were conducted, with ethanol yield as the primary optimization target. The findings indicated that the sodium hydroxide concentration during pretreatment and the amylase dosage in enzymatic hydrolysis were key parameters influencing the ethanol production efficiency. Under optimized conditions—using 0.3 M NaOH, 25 μL/g starch, and 250 μL/g cellulose—fermentation yielded ethanol concentrations as high as 2.75 ± 0.18 g/L (45.13 ± 2.90%), underscoring the significance of both enzyme loading and alkali treatment. Biomethane potential tests on the residues of fermentation revealed reduced methane yields in comparison with the raw algal feedstock, with a peak value of 198.50 ± 25.57 mL/g volatile solids. The integrated process resulted in a total energy recovery of up to 809.58 kWh per tonne of algal biomass, with biomethane accounting for 87.16% of the total energy output. However, the energy recovered from unprocessed biomass alone was nearly double, indicating a trade-off between sequential valorization steps. A comparison between fresh and dried feedstocks also demonstrated marked differences, largely due to variations in moisture content and biomass composition. Overall, this study highlights the promise of integrated algal biomass utilization as a viable and energy-efficient route for sustainable biofuel production. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

Back to TopTop