Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = elliptical vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5289 KB  
Article
Non-Invasive Three-Dimensional Cell Manipulation Technology Based on Acoustic Microfluidic Chips
by Lin Lin, Yiming Zhen, Wang Li, Guoqiang Dong, Rongxing Zhu and Minhui Liang
Micromachines 2025, 16(9), 1068; https://doi.org/10.3390/mi16091068 - 22 Sep 2025
Viewed by 502
Abstract
This study presents a non-invasive three-dimensional cell manipulation technique based on acoustic microfluidic chips, which generates acoustic flow fields through the vibration of micropillars induced by bulk acoustic waves to achieve precise multi-dimensional rotational manipulation of cells. Moreover, the characteristics of the acoustic [...] Read more.
This study presents a non-invasive three-dimensional cell manipulation technique based on acoustic microfluidic chips, which generates acoustic flow fields through the vibration of micropillars induced by bulk acoustic waves to achieve precise multi-dimensional rotational manipulation of cells. Moreover, the characteristics of the acoustic flow field under linear, quasi-circular, elliptical, and higher-order vibration modes were intensively studied, and the rotational manipulation performance of polystyrene microbeads and cancer cells was optimized by adjusting the frequency and voltage. The results showed that the rotational speed and direction of the particles varied significantly in different vibration modes, with the particles and cells achieving the highest rotational speed in the elliptical vibration mode (frequency: 44.9 kHz, and voltage: 60 Vpp). In addition, the technique successfully achieved in-plane and out-of-plane rotation of cancer cells, and cell viability tests showed that 94% of the cells remained active after manipulation, demonstrating the low damage and biocompatibility of the method. This study provides a new, efficient, precise and gentle approach to three-dimensional manipulation of cells, which holds significant potential in biomedical research and clinical applications. Full article
(This article belongs to the Special Issue Emerging Devices and Technologies in BioMEMS for Biomarker Detection)
Show Figures

Figure 1

17 pages, 3922 KB  
Article
Time–Frequency Domain Analysis of the Ground Vibration of an Elevated Railway and Study on the Elliptic Polarization Dispersion Characteristics of Rayleigh Waves
by Shijie Liu, Yulan Song, Zhengping Liu, Zhe Liu and Qingling Du
Computation 2025, 13(9), 215; https://doi.org/10.3390/computation13090215 - 4 Sep 2025
Viewed by 491
Abstract
Elevated railways are a crucial component of railway lines, characterized by their widespread distribution, simple structure, and low cost, while actively promoting local economic development. However, they also cause significant ground vibrations when trains pass. Similarly, considerable vibration levels are transmitted to the [...] Read more.
Elevated railways are a crucial component of railway lines, characterized by their widespread distribution, simple structure, and low cost, while actively promoting local economic development. However, they also cause significant ground vibrations when trains pass. Similarly, considerable vibration levels are transmitted to the subgrade and surrounding structures when trains operate on viaducts within the Loess Plateau region. However, research on mitigating these vibration effects remains relatively scarce. This study focused on the impacts of such vibrations on surrounding buildings and stratum structures and evaluated the effectiveness of a vibration isolation trench in mitigating these effects. Time frequency domain analysis of ground vibrations during train passage revealed that the characteristic frequency of the train-induced pulse excitation in the track structure had a pronounced peak in the spectrum curve. The introduction of a vibration isolation trench effectively blocked the propagation of vibration waves in the soil, reduced soil vibration, and significantly lowered the peak value in the spectrum. Numerical simulations were employed to analyze the elliptical polarization dispersion characteristics of surface wave propagation with the vibration isolation trench in place, confirming the effective damping performance of the trench. These findings could offer a valuable reference for high-speed railway vibration isolation and significantly advance the application of surface wave theory in high-speed railway technology. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

22 pages, 9592 KB  
Article
A Rotational Order Vibration Reduction Method Using a Regular Non-Circular Pulley
by Shangbin Long, Yu Zhu, Zhihong Zhou, Fangrui Chen and Zisheng Li
Actuators 2025, 14(8), 371; https://doi.org/10.3390/act14080371 - 25 Jul 2025
Viewed by 482
Abstract
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which [...] Read more.
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which is used to counteract the regular order excitation and the regular load excitation. A toothed belt drive system with second-order excitation is taken as an example. According to the existing analytical model of the tooth belt drive system, the modeling process and analytical solution algorithm of the system are derived. Based on the coordinate transformation, the algorithms for any position of an elliptical pulley and the common tangent of the circular pulley are given. And the algorithm for the arc length of the elliptical pulley at any arc degree is proposed. The influence of the phase and eccentricity in the elliptical pulley on the dynamic performance of the system is analyzed. Then the experimental verification is carried out. This shows that this system can generate excitation opposite to the main order rotational vibration of the driving pulley and opposite to the load of the driven pulley. Under the combined effect of other load pulleys in the system, there will be an amplification phenomenon in its vibration response. Considering the decrease in the belt span tension and the decline in the performance of energy-absorbing components after long operation, the presented method can better maintain the stability of system performance. This method can provide new ideas for the vibration reduction optimization process of systems with first-order wave excitation. Full article
Show Figures

Figure 1

19 pages, 5491 KB  
Article
Design of an Angled Single-Excitation Elliptical Vibration System
by Qiang Liu, Xiping He, Weiguo Wang and Yanning Yang
Micromachines 2025, 16(7), 808; https://doi.org/10.3390/mi16070808 - 13 Jul 2025
Viewed by 426
Abstract
An angled single-excitation elliptical vibration system for ultrasonic-assisted machining was developed in this paper, which was composed of a giant magnetostrictive transducer and an angled horn. Based on the continuous boundary conditions between the components, the frequency equation of the angled vibration system [...] Read more.
An angled single-excitation elliptical vibration system for ultrasonic-assisted machining was developed in this paper, which was composed of a giant magnetostrictive transducer and an angled horn. Based on the continuous boundary conditions between the components, the frequency equation of the angled vibration system was derived, and the resonant frequencies of vibration systems with different angles were theoretically calculated. The finite element method was employed to investigate the impact of varying angles on the resonant frequency, elliptical trajectory, phase difference, and output amplitude of the vibration systems. The electrical impedance of the vibration system and the longitudinal and transverse vibration amplitudes at the end face of the horn were tested experimentally. The results show that the resonant frequency and phase difference in the vibration system decreased, the transverse amplitude of the output elliptical trajectory increased, and the longitudinal amplitude decreased with the increase in the included angle. The elliptical trajectories obtained from the test were generally consistent with the calculated results, and the calculated values of the resonant frequencies of the three angled vibration systems were in good agreement with the experimental test values. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

25 pages, 2616 KB  
Article
Bio-Fabricated Aluminum Oxide Nanoparticles Derived from Waste Pharmaceutical Packages: Insight into Characterization and Applications
by Jamilah M. Al-Ahmari, Reem M. Alghanmi and Ragaa A. Hamouda
Biomolecules 2025, 15(7), 984; https://doi.org/10.3390/biom15070984 - 10 Jul 2025
Cited by 1 | Viewed by 733
Abstract
This study examines the environmental challenges posed by azo-dye pollutants and aluminum industrial waste. Aluminum oxide nanoparticles (P/Al2O3-NPs) were produced using a green method that utilized pharmaceutical packaging waste as an aluminum source and marine algae extract (Padina pavonica [...] Read more.
This study examines the environmental challenges posed by azo-dye pollutants and aluminum industrial waste. Aluminum oxide nanoparticles (P/Al2O3-NPs) were produced using a green method that utilized pharmaceutical packaging waste as an aluminum source and marine algae extract (Padina pavonica) as reducing and stabilizing agents and that was characterized by XRD, EDX, SEM, TEM, and zeta potential. Batch biosorption studies were performed to assess the effectiveness of P/Al2O3-NPs in removing CR dye from aqueous solutions. The results demonstrate that the particle sizes range from 58.63 to 86.70 nm and morphologies vary from spherical to elliptical. FTIR analysis revealed Al–O lattice vibrations at 988 and 570 cm−1. The nanoparticles displayed a negative surface charge (−13 mV) and a pHzpc of 4.8. Adsorption experiments optimized parameters for CR dye removal, achieving 97.81% efficiency under native pH (6.95), with a dye concentration of 30 mg/L, an adsorbent dosage of 0.1 g/L, and a contact time of 30 min. Thermodynamic studies confirmed that the process is exothermic and spontaneous. Kinetic data fit well with the pseudo-second-order model, while equilibrium data aligned with the Langmuir isotherm. The adsorption mechanism involved van der Waals forces, hydrogen bonding, and π–π interactions, as supported by the influence of pH, isotherm data, and FTIR spectra. Overall, the study demonstrates the potential of eco-friendly P/Al2O3-NPs to efficiently remove CR dye from aqueous solutions. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

13 pages, 3694 KB  
Article
Round-Shaped vs. Hexagonally Shaped Saw Chain: Cutting Efficiency and Vibration Comparison
by Zdravko Pandur, Marin Bačić, Gordan Grden, Kristijan Mudrovčić, Václav Mergl and Matija Landekić
Forests 2025, 16(7), 1066; https://doi.org/10.3390/f16071066 - 26 Jun 2025
Viewed by 442
Abstract
Despite advances in technique and technology, the chainsaw is still the most widely used tool in forestry. For this reason, equipment manufacturers are developing new technical solutions to make working with a chainsaw as easy and efficient as possible. Some examples of this [...] Read more.
Despite advances in technique and technology, the chainsaw is still the most widely used tool in forestry. For this reason, equipment manufacturers are developing new technical solutions to make working with a chainsaw as easy and efficient as possible. Some examples of this are the development of professional battery-powered chainsaws and the development of new types of saw chains by the leading industry manufacturers. The aim of this paper was to determine the efficiency of the Stihl MSA 300C battery-powered chainsaw equipped with two different types of professional saw chains (Stihl Rapid Super and Stihl Rapid Hexa) when sawing round wood. The efficiency was determined based on measurements of electricity consumption, sawing speed, sawn wood cross-section, and wood chips and dust mass produced during sawing. The second aim was to determine whether there is a difference in measured vibration magnitude between the two tested saw chains. Fresh-fallen European beech (Fagus sylvatica L.) log, approx. 25 cm diameter without pronounced ellipticity, was used for sampling. Results indicate that although the saw chain manufacturer claims the new type of saw chain (Stihl Rapid Hexa) enables greater efficiency of the chainsaw, this was not the case. Results point to a 37% increase in mean sawing time, as well as a 23% increase in energy consumption when using the Rapid Hexa chain, with statistically significant difference (p ≤ 0.05). It should be emphasized that the manual operation of the chainsaw does not allow for a reliable determination of differences in energy consumption caused by changes in saw chain geometry. The advantages of this saw chain are that it is easier to maintain (sharpen) and significantly less wood chips and dust are produced. The measured vibration magnitude shows a statistically significant difference (p ≤ 0.05), i.e., a lower vibration total value on the front handle when using the Stihl Rapid Hexa chain. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

23 pages, 11780 KB  
Article
Experimental Study on Surface Integrity of Nickel-Based Superalloy in Ultrasonic Elliptical Vibration Cutting
by Gaofeng Hu, Yanjie Lu, Shengming Zhou, Min Zhang, Xin He, Fenghui Zhang and Guangjun Chen
Micromachines 2025, 16(7), 728; https://doi.org/10.3390/mi16070728 - 22 Jun 2025
Cited by 1 | Viewed by 505
Abstract
Nickel-based superalloys, renowned for their exceptional high-temperature strength, oxidation resistance, and corrosion resistance, have become essential materials in the aerospace, defense, and nuclear industries. However, due to their poor machinability, common cutting processes often result in poor surface quality, difficulties in chip breaking, [...] Read more.
Nickel-based superalloys, renowned for their exceptional high-temperature strength, oxidation resistance, and corrosion resistance, have become essential materials in the aerospace, defense, and nuclear industries. However, due to their poor machinability, common cutting processes often result in poor surface quality, difficulties in chip breaking, and significant tool wear. This study investigates the surface integrity of nickel-based superalloys during ultrasonic elliptical vibration cutting. The effects of various process parameters on the surface roughness, residual stress, and microhardness are systematically analyzed. The results indicate that under ultrasonic elliptical vibration cutting conditions, the surface roughness of the workpiece increases with the ultrasonic amplitude, cutting depth, and feed rate. It initially decreases and then increases with cutting speed, and decreases with an increase in the tool tip radius. The post-cutting residual stress in the nickel-based superalloy decreases with higher cutting speed and ultrasonic amplitude, but increases with greater cutting depth and tool tip radius. The surface microhardness increases with the cutting speed up to a point, after which it decreases, while it significantly increases with a higher ultrasonic amplitude, feed rate, and cutting depth. A comparative experiment was conducted between ultrasonic elliptical vibration and conventional cutting. The research results showed that when the cutting depth was 2 µm, the surface roughness and wear decreased by 19% and 53%, respectively, and the residual compressive stress and microhardness increased by 44% and 21%, respectively. This further verified the significant advantages of ultrasonic elliptical vibration cutting in optimizing machining performance. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 15657 KB  
Article
Metamaterial with Perforated Auxetic Core for Ultra-Low-Frequency Vibration Isolation of Lamb Waves
by Yating Gao and Hui Wang
Materials 2025, 18(12), 2857; https://doi.org/10.3390/ma18122857 - 17 Jun 2025
Cited by 1 | Viewed by 809
Abstract
Low-frequency vibration isolation metamaterials (LFVIMs) remain challenging in generating ultra-low-frequency bandgaps around 10 Hz and below. For this issue, a novel LFVIM composed of a square steel auxetic core perforated with orthogonally aligned peanut-shaped holes and a silicone rubber coating is proposed, leveraging [...] Read more.
Low-frequency vibration isolation metamaterials (LFVIMs) remain challenging in generating ultra-low-frequency bandgaps around 10 Hz and below. For this issue, a novel LFVIM composed of a square steel auxetic core perforated with orthogonally aligned peanut-shaped holes and a silicone rubber coating is proposed, leveraging the auxetic core’s unique resonance behavior. The superiority in bandgap creation of the peanut-shaped perforations is illustrated by comparing them to elliptical and rectangular perforations. Furthermore, a filled auxetic core is explored as well, to enhance its wave attenuation potential. The wave propagation mechanisms of both the unfilled and filled LFVIMs are comparatively studied by finite element simulation validated against an existing LFVIM design and scaled-down vibration testing. Compared to the unfilled LFVIM, the filled case merges smaller bandgaps into three wider full bandgaps, increasing the relative bandgap width (RBW) from 44.25% (unfilled) to 58.93% (filled). Subsequently, the role of each design parameter is identified by parametric analysis for bandgap tuning. The coating material shows a significant influence on the RBW. Particularly, optimizing the coating’s Poisson’s ratio to 0.2 yields a maximum RBW of 93.95%. These findings present a successful strategy for broadening LFVIM applications in the regulation of ultra-low-frequency Lamb waves. Full article
Show Figures

Figure 1

24 pages, 6641 KB  
Article
Separation Method for Installation Eccentricity Error of Workpiece
by Guanyao Qiao, Chunyu Zhao, Huihui Miao and Ye Chen
Appl. Sci. 2025, 15(12), 6788; https://doi.org/10.3390/app15126788 - 17 Jun 2025
Viewed by 555
Abstract
This work solves the challenge of separating the eccentricity error of a workpiece installation from the first harmonic of radial runout error of the spindle, which has a crucial impact on improving the machining quality of the workpiece. Firstly, a mathematical model for [...] Read more.
This work solves the challenge of separating the eccentricity error of a workpiece installation from the first harmonic of radial runout error of the spindle, which has a crucial impact on improving the machining quality of the workpiece. Firstly, a mathematical model for the synthesized elliptical motion for spindle vibration and eccentricity error is established. Subsequently, a novel separation method combining Particle swarm optimization (PSO) and the least squares method (LSM) is proposed. PSO is applied to determine phase angles, and the least squares method is applied to determine amplitudes, achieving precise error separation. Then, numerical simulations were used to verify the effectiveness and reliability of the proposed method, producing a calculation error of less than 0.07% and high consistency (R2 > 0.97). Finally, experimental tests at different spindle speeds, axial distances, and workpieces confirmed the robustness of the method, with a variation in eccentricity error calculation result of less than 0.6%. The results indicate that the installation eccentricity error of the experimental machine tool is independent of the spindle angular velocity and stems from the misalignment of the chuck. This method provides a reliable solution for accurately separating installation eccentricity errors in precision manufacturing. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

22 pages, 6676 KB  
Article
Design of a Longitudinal-Bending Elliptical Vibration Ultrasonic Transducer with a Bent Horn
by Zhiyong Huang, Mingshuo Zhang, Jiteng Li, Xinggang Jiang, Daxi Geng and Deyuan Zhang
Actuators 2025, 14(6), 280; https://doi.org/10.3390/act14060280 - 8 Jun 2025
Viewed by 1197
Abstract
The thin and straight horn of the ultrasonic transducer is located in the center of the thick transducer, so that the tool tip of the ultrasonic vibration turning tool holder cannot be located on the outermost side of the entire tool holder, which [...] Read more.
The thin and straight horn of the ultrasonic transducer is located in the center of the thick transducer, so that the tool tip of the ultrasonic vibration turning tool holder cannot be located on the outermost side of the entire tool holder, which leads to the structural interference between the tool holder and the part during turning. In order to solve this problem, this paper proposes a longitudinal-bending elliptical vibration ultrasonic transducer with a bending horn for ultrasonic vibration-assisted cutting (UVAC). The designed transducer can be used for the partial separation continuous high-speed elliptic ultrasonic vibration cutting (HEUVC) of external surface and internal cavity. The ultrasonic vibration amplitude of the transducer can meet the needs of HEUVC. When using an ultrasonic transducer with a bending horn for HEUVC, compared with conventional cutting (CC), HEUVC can improve the tool life by about 50%. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

12 pages, 1394 KB  
Article
Optimization of Plate Vibration Based on Innovative Elliptical Thickness Variation
by Neeraj Lather, Naveen Mani, Rahul Shukla and Amit Sharma
AppliedMath 2025, 5(2), 63; https://doi.org/10.3390/appliedmath5020063 - 29 May 2025
Viewed by 842
Abstract
This study innovatively explores vibrational control with reference to elliptical thickness variation. Traditionally, plate vibrations have been analysed by incorporating circular, linear, parabolic, and exponential thickness variations. However, these variations often fall short in optimizing vibrational characteristics. So, we develop a new formula [...] Read more.
This study innovatively explores vibrational control with reference to elliptical thickness variation. Traditionally, plate vibrations have been analysed by incorporating circular, linear, parabolic, and exponential thickness variations. However, these variations often fall short in optimizing vibrational characteristics. So, we develop a new formula specifically for orthotropic as well as isotropic plates with elliptical thickness profiles and employ the Rayleigh–Ritz method to calculate the vibrational frequencies of the plate. This research demonstrates that elliptical variation significantly reduces vibrational frequencies compared to conventional thickness profiles. The findings indicate that this unique configuration enhances vibrational control, offering potential applications in engineering fields where vibration reduction is essential. The results provide a foundation for further exploration of non-standard thickness variations in the design of advanced structural components. The study reveals that the elliptical variation in tapering parameter is a much better choice than other variation parameters studied in the literature for the purpose of optimizing the vibrational frequency of plates. Full article
Show Figures

Figure 1

18 pages, 3194 KB  
Article
Ritz Solution of Vibration Analysis of Functionally Graded Porous Elliptic Shells and Panels Under Various Arbitrary Boundary Types
by Qingtao Gong, Tao Liu, Yao Teng, Binjie Ma and Xin Li
Materials 2025, 18(5), 1101; https://doi.org/10.3390/ma18051101 - 28 Feb 2025
Viewed by 713
Abstract
This paper seeks to establish a generalized numerical model to examine the free vibration behavior of functionally graded porous (FGP) elliptical shells and panels with various boundary types. The model is built on first-order shear deformation theory (FSDT) to express structural displacements. A [...] Read more.
This paper seeks to establish a generalized numerical model to examine the free vibration behavior of functionally graded porous (FGP) elliptical shells and panels with various boundary types. The model is built on first-order shear deformation theory (FSDT) to express structural displacements. A segmentation technique is used to maintain continuity between shell elements, and virtual spring boundary techniques are employed to simulate arbitrary boundaries. Variable-coefficient Jacobi polynomials are introduced as admissible functions for displacement. Finally, the Ritz variational method, combined with the least-squares weighted residual method (LSWRM), is used for constructing the energy functional and solving the energy equations. Validation of the numerical model against finite element and literature results confirms its reliability and convergence properties. This study also explores the effects of geometric parameters and boundary conditions on FG elliptical shells and panels, providing a theoretical basis for future research. Full article
(This article belongs to the Special Issue Numerical Analysis of Sandwich and Laminated Composites)
Show Figures

Figure 1

20 pages, 24743 KB  
Article
Investigation of Chip Morphology in Elliptical Vibration Micro-Turning of Silk Fibroin
by Zhengjian Wang, Xichun Luo, Jining Sun, Wenkun Xie, Yinchuan Piao, Yonghang Jiang and Xiuyuan Chen
Micromachines 2025, 16(1), 110; https://doi.org/10.3390/mi16010110 - 19 Jan 2025
Cited by 1 | Viewed by 1461
Abstract
Silk fibroin, known for its biocompatibility and biodegradability, holds significant promise for biomedical applications, particularly in drug delivery systems. The precise fabrication of silk fibroin particles, specifically those ranging from tens of nanometres to hundreds of microns, is critical for these uses. This [...] Read more.
Silk fibroin, known for its biocompatibility and biodegradability, holds significant promise for biomedical applications, particularly in drug delivery systems. The precise fabrication of silk fibroin particles, specifically those ranging from tens of nanometres to hundreds of microns, is critical for these uses. This study introduces elliptical vibration micro-turning as a method for producing silk fibroin particles in the form of cutting chips to serve as carriers for drug delivery systems. A hybrid finite element and smoothed particle hydrodynamics (FE-SPH) model was used to investigate how vibration parameters, such as frequency and amplitude, influence chip formation and morphology. This research is essential for determining the size and shape of silk fibroin particles, which are crucial for their effectiveness in drug delivery systems. The results demonstrate the superior capability of elliptical vibration micro-turning for producing shorter, spiral-shaped chips in the size range of tens of microns, in contrast to the long, continuous chips with zig-zag folds and segmented edges generated by conventional micro-turning. The unique zig-zag shapes result from the interplay between the high flexibility and hierarchical structure of silk fibroin and the controlled cutting environment provided by the diamond tool. Additionally, higher vibration frequencies and lower vertical amplitudes promote chip curling, facilitate breakage, and improve chip control, while reducing cutting forces. Experimental trials further validate the accuracy of the hybrid model. This study represents a significant advancement in the processing of silk fibroin film, offering a complementary approach to fabricating short, spiral-shaped silk fibroin particles with a high surface-area-to-volume ratio compared to traditional spheroids, which holds great potential for enhancing drug-loading efficiency in high-precision drug delivery systems. Full article
(This article belongs to the Special Issue Advances in Digital Manufacturing and Nano Fabrication)
Show Figures

Figure 1

18 pages, 4663 KB  
Article
Variational Method for Vibration Analysis of Elliptic Cylinders Reinforced with Functionally Graded Carbon Nanotubes
by Qingtao Gong, Tao Liu, Yao Teng, Binjie Ma and Xin Li
Materials 2025, 18(1), 43; https://doi.org/10.3390/ma18010043 - 26 Dec 2024
Viewed by 767
Abstract
This study introduces a novel analytical framework for investigating the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) elliptical cylindrical shells under arbitrary boundary conditions. Unlike previous studies that focused on simplified geometries or specific boundary conditions, this work combines the least-squares [...] Read more.
This study introduces a novel analytical framework for investigating the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) elliptical cylindrical shells under arbitrary boundary conditions. Unlike previous studies that focused on simplified geometries or specific boundary conditions, this work combines the least-squares weighted residual method (LSWRM) with an adapted variational principle, addressing high-order vibration errors and ensuring continuity across structural segments. The material properties are modeled using an extended rule of mixtures, capturing the effects of carbon nanotube volume fractions and distribution types on structural dynamics. Additionally, virtual boundary techniques are employed to generalize elastic boundary conditions, enabling the analysis of complex boundary-constrained structures. Numerical validation against existing methods confirms the high accuracy of the proposed framework. Furthermore, the influence of geometric parameters, material characteristics, and boundary stiffness on vibration behavior is comprehensively explored, offering a robust and versatile tool for designing advanced FG-CNTRC structures. This innovative approach provides significant insights into the optimization of nanoscale reinforced composites, making it a valuable reference for engineers and researchers in aerospace, marine, and construction industries. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

18 pages, 8535 KB  
Article
Rotary–Linear Type Piezoelectric Actuator Based on Double-Elliptical Stator
by Andrius Čeponis and Dalius Mažeika
Actuators 2024, 13(12), 478; https://doi.org/10.3390/act13120478 - 25 Nov 2024
Cited by 1 | Viewed by 1114
Abstract
This paper introduces a novel piezoelectric actuator designed for precise linear and rotational movements of a cylindrical slider-rotor. The actuator’s design features two elliptical frames interconnected by two plates, with a cylindrical contact situated on the top of the upper plate to facilitate [...] Read more.
This paper introduces a novel piezoelectric actuator designed for precise linear and rotational movements of a cylindrical slider-rotor. The actuator’s design features two elliptical frames interconnected by two plates, with a cylindrical contact situated on the top of the upper plate to facilitate the motion or rotation of the slider. Two piezoelectric multilayer transducers are housed within each elliptical frame and are used to excite vibrations of the elliptical frames using two harmonic signals with a phase difference of π/2 and varying excitation schemes. This excitation pattern generates elliptical motion trajectories of the contact in two orthogonal planes, enabling both linear and rotational displacements of the slider-rotor. Numerical and experimental investigations were conducted to validate the performance and accuracy of the actuator. Additionally, harmonic response and transient analysis were performed to investigate elliptical motion trajectories of the contact in perpendicular planes under various excitation schemes and frequencies. The results confirm that the rotational and linear motions of the slider-rotor can be independently controlled. The actuator achieved a maximum rotational speed of 163.1 RPM and a maximum linear speed of 41.4 mm/s, with a corresponding peak output torque and force of 236.1 mN·mm and 368.1 mN, respectively. A resolution measurements showed that the actuator can achieve an angular resolution of 1.02 mrad and a linear resolution of 53.8 µm. Full article
(This article belongs to the Section Actuator Materials)
Show Figures

Figure 1

Back to TopTop