Round-Shaped vs. Hexagonally Shaped Saw Chain: Cutting Efficiency and Vibration Comparison
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Objects
2.2. Research Limitations
3. Results and Discussion
3.1. Measurement Values and Data Overview
3.2. Cutting Efficiency Comparison
3.3. Vibration Magnitude Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colantoni, A.; Mazzocchi, F.; Cossio, F.; Cecchini, M.; Bedini, R.; Monarca, D. Comparisons between Battery Chainsaws and Internal Combustion Engine Chainsaws: Performance and Safety. Contemp. Eng. Sci. 2016, 9, 1315–1337. [Google Scholar] [CrossRef]
- Pandur, Z.; Šušnjar, M.; Jurič, I.; Pandur, I.I.; Landekić, M.; Šporčić, M.; Bačić, M. Vibration exposure of battery and petrol-powered chainsaws. Croat. J. For. Eng. 2025, 46, 10. [Google Scholar] [CrossRef]
- Bačić, M.; Landekić, M.; Šušnjar, M.; Šporčić, M.; Pandur, Z. Vibration levels and daily vibration exposure while using different tools in a forest cleaning. Cent. Eur. For. J. 2023, 69, 49–58. [Google Scholar] [CrossRef]
- Poje, A.; Potočnik, I.; Mihelič, M. Comparison of Electric and Petrol Chainsaws in Terms of Efficiency and Safety When Used in Young Spruce Stands in Small-Scale Private Forests. Small Scale For. 2018, 17, 411–422. [Google Scholar] [CrossRef]
- Neri, F.; Laschi, A.; Foderi, C.; Fabiano, F.; Bertuzzi, L.; Marchi, E. Determining Noise and Vibration Exposure in Conifer Cross-Cutting Operations by Using Li-Ion Batteries and Electric Chainsaws. Forests 2018, 9, 501. [Google Scholar] [CrossRef]
- Huber, M.; Hoffmann, S.; Brieger, F.; Hartsch, F.; Jaeger, D.; Sauter, U.H. Vibration and Noise Exposure During Pre-Commercial Thinning Operations: What are the Ergonomic Benefits of the Latest Generation Professional-Grade Battery-Powered Chainsaws? Forests 2021, 12, 1120. [Google Scholar] [CrossRef]
- Poje, A.; Mihelič, M. Influence of Chain Sharpness, Tension Adjustment and Type of Electric Chainsaw on Energy Consumption and Cross-Cutting Time. Forests 2020, 11, 1017. [Google Scholar] [CrossRef]
- Neri, F.; Laschi, A.; Frassinelli, N.; Fabiano, F.; Foderi, C.; Marchi, E.; Marra, E. Battery- and Petrol-Powered Chainsaws: An Investigation of Productivity in Conifer Thinning. Forests 2023, 14, 183. [Google Scholar] [CrossRef]
- Neri, F.; Laschi, A.; Marchi, E.; Marra, E.; Fabiano, F.; Frassinelli, N.; Foderi, C. Use of Battery- vs. Petrol-Powered Chainsaws in Forestry: Comparing Performances on Cutting Time. Forests 2022, 13, 683. [Google Scholar] [CrossRef]
- Pandur, Z.; Bačić, M.; Šušnjar, M.; Landekić, M.; Šporčić, M.; Jambreković, B.; Lepoglavec, K. Energy Consumption and Cutting Performance of Battery-Powered Chainsaws. Forests 2023, 14, 1329. [Google Scholar] [CrossRef]
- Otto, A.; Parmigiani, J. Test Apparatus for Powered Saw Chain Systems. In Proceedings of the IMECE Proceedings, San Diego, CA, USA, 15–21 November 2013. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Maleszewski, Ł.; Krzysiak, Z. Influence of saw chain type and wood species on the kickback angle of a chainsaw. Tech. Sci. 2018, 21, 323–334. [Google Scholar] [CrossRef]
- Warguła, Ł.; Wojtkowiak, D.; Kukla, M.; Talaśka, K. Modelling the process of splitting wood and chipless cutting Pinus sylvestris L. wood in terms of designing the geometry of the tools and the driving force of the machine. Eur. J. Wood Prod. 2023, 81, 223–237. [Google Scholar] [CrossRef]
- Otto, A.; Parmigiani, J. Velocity, Depth-of-Cut, and Physical Property Effects on Saw Chain Cutting. BioResources 2015, 10, 7273–7291. [Google Scholar] [CrossRef]
- Otto, A.; Parmigiani, J. Cutting performance comparison of low-kickback saw chain. Int. J. For. Eng. 2018, 29, 83–91. [Google Scholar] [CrossRef]
- Kuvik, T.; Krilek, J.; Kováč, J.; Melicherčík, J. Impact of cutting speed and feed rate for cross cutting with saw chains. BioResources 2021, 16, 5341. [Google Scholar] [CrossRef]
- Jakubek, B.; Rukat, W. The influence of the cutting tooth design and wear of a saw chain on the vibration level of a chainsaw. Vib. Phys. Syst. 2017, 28, 2017009. [Google Scholar]
- Kováč, J.; Krilek, J.; Dado, M.; Beňo, P. Investigating the influence of design factors on noise and vibrations in the case of chainsaws for forestry work. FME Trans. 2018, 46, 513–519. [Google Scholar] [CrossRef]
- Rottensteiner, C.; Tsioras, P.; Stampfer, K. Wood Density Impact on Hand-Arm Vibration. Croat. J. For. Eng. 2012, 33, 303–312. [Google Scholar]
- Rukat, W.; Jakubek, B.; Barczewski, R.; Wróbel, M. The Influence of the Direction of Wood Cutting on the Vibration and Noise of Chainsaws. Tech. Gaz. 2020, 27, 1879–1886. [Google Scholar] [CrossRef]
- Matache, M.; Munteanu, M.; Dumitru, D.; Epure, M. Evaluation of hand transmitted chainsaw vibrations during wood cutting. E3S Web Conf. 2020, 180, 03013. [Google Scholar] [CrossRef]
- Rukat, W.; Barczewski, R.; Jakubek, B.; Wróbel, M. The comparison of vibro-acoustic impact of chainsaws with electric and combustion drives. MATEC Web Conf. 2018, 182, 02020. [Google Scholar] [CrossRef]
- Bačić, M.; Pandur, Z.; Šušnjar, M.; Landekić, M. Exposure to Hand-Arm Vibration (HAV) in Forestry: An Empirical Review. In ERGONOMICS 2024, Proceedings of the 10th International Ergonomics Conference, Zagreb, Croatia, 5–6 December 2025; Springer: Berlin/Heidelberg, Germany, 2025; Volume 53, pp. 265–271. [Google Scholar] [CrossRef]
- Rapid Hexa. Available online: https://shop.stihl.com.au/rapid-hexa (accessed on 20 May 2025).
- Stihl RapidTM HexaTM Chain. Available online: https://www.stihlusa.com/products/chain-saws/saw-chains/hexachain/ (accessed on 20 May 2025).
- Marenče, J.; Mihelič, M.; Poje, A. Influence of Chain Filing, Tree Species and Chain Type on Cross Cutting Efficiency and Health Risk. Forests 2017, 8, 464. [Google Scholar] [CrossRef]
- ISO 8041-1:2017; Human Response to Vibration—Measuring Instrumentation—Part 1: General Purpose Vibration Meters. International Standard Organization: Geneva, Switzerland, 2017; pp. 1–106.
- ISO 5349-1:2001; Mechanical Vibration—Measurement and Evaluation of Human Exposure to Hand Transmitted Vibration. Part 1: General Requirements. International Standard organization: Geneva, Switzerland, 2001; pp. 1–26.
- ISO 5349-2:2001; Mechanical Vibration—Measurement and Evaluation of Human Exposure to Hand-Transmitted Vibration—Part 2: Practical Guidance for Measurement at the Workplace. International Standard Organization: Geneva, Switzerland, 2001; pp. 1–39.
- Maciak, A.; Kubuśka, M.; Moskalik, T. Instantaneous Cutting Force Variability in Chainsaws. Forests 2018, 9, 660. [Google Scholar] [CrossRef]
Chainsaw Type | Mass 1 | Max Power Output 2 | Bar Length | Chain Speed 3 |
Stihl MSA300C | 4.5 kg | 3.3 kW | 45 cm | 20; 24; 30 m/s |
Battery Type | Mass | Nominal Voltage | Capacity (Ah) | Capacity (Wh) |
Stihl AP500S | 2 kg | 36 V | 8.8 Ah | 337 Wh |
Chain Type | Chain Pitch | Chain Gauge | Number of Drive Links | Cutter Shape | Cutter Width | Sharpening Angle | File Shape |
---|---|---|---|---|---|---|---|
Rapid Super | 3/8″ | 0.063″ | 66 | Full chisel | 4.5 mm | 30° | Round |
Rapid Hexa | 3/8″ | 0.063″ | 66 | Full chisel | 4.1 mm | 25° | Hexagonal |
Cutout Number | E (Wh) | D1 (mm) | D2 (mm) | μ D (mm) | A (m2) | T (s) | E/A (Wh/m2) | T/A (s/m2) | VTV-F (m/s2) | VTV-R (m/s2) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 6.3 | 257 | 224 | 240.5 | 0.0454 | 7.44 | 138.68 | 163.78 | 3.16 | |
2 | 6.3 | 256 | 221 | 238.5 | 0.0447 | 7.91 | 141.02 | 177.06 | 3.10 | |
3 | 6.2 | 256 | 220 | 238 | 0.0445 | 7.76 | 139.36 | 174.43 | 3.06 | |
4 | 6.7 | 256 | 219 | 237.5 | 0.0443 | 8.17 | 151.24 | 184.42 | 3.06 | |
5 | 6.1 | 257 | 218 | 237.5 | 0.0443 | 6.47 | 137.69 | 146.05 | 3.16 | |
6 | 6.5 | 257 | 217 | 237 | 0.0441 | 7.35 | 147.34 | 166.61 | 3.29 | |
7 | 7 | 256 | 217 | 236.5 | 0.0439 | 8.45 | 159.35 | 192.36 | 2.74 | |
8 | 5.8 | 256 | 217 | 236.5 | 0.0439 | 8.01 | 132.03 | 182.34 | 2.92 | |
9 | 5.3 | 254 | 215 | 234.5 | 0.0432 | 6.77 | 122.72 | 156.75 | 3.4 | |
10 | 5.1 | 255 | 216 | 235.5 | 0.0436 | 6.59 | 117.08 | 151.29 | 3.23 | |
11 | 5.7 | 256 | 217 | 236.5 | 0.0439 | 6.76 | 129.75 | 153.88 | 3.48 | |
12 | 5.6 | 255 | 215 | 235 | 0.0434 | 7.91 | 129.11 | 182.37 | 2.48 | |
13 | 5.7 | 255 | 214 | 234.5 | 0.0432 | 7.21 | 131.98 | 166.94 | 3.21 | |
14 | 4.3 | 256 | 160 | 208 | 0.0340 | 5.01 | 126.55 | 147.44 | 1.91 | |
15 | 5.9 | 257 | 217 | 237 | 0.0441 | 6.74 | 133.74 | 152.78 | 4.28 | |
16 | 4.8 | 258 | 215 | 236.5 | 0.0439 | 5.21 | 109.27 | 118.60 | 3.19 | |
17 | 5.1 | 258 | 215 | 236.5 | 0.0439 | 5.46 | 116.10 | 124.29 | 3.25 | |
18 | 5.4 | 260 | 215 | 237.5 | 0.0443 | 6.27 | 121.89 | 141.53 | 3.03 | |
19 | 5.7 | 259 | 214 | 236.5 | 0.0439 | 5.75 | 129.75 | 130.89 | 3.62 | |
20 | 5 | 262 | 214 | 238 | 0.0445 | 6.01 | 112.39 | 135.09 | 3.23 | |
21 | 4.7 | 261 | 213 | 237 | 0.0441 | 5.50 | 106.54 | 124.67 | 3.11 | |
22 | 4.2 | 262 | 213 | 237.5 | 0.0443 | 5.25 | 94.81 | 118.51 | 3.32 | |
23 | 5.5 | 261 | 213 | 237 | 0.0441 | 6.10 | 124.67 | 138.27 | 3.48 | |
24 | 5.7 | 262 | 214 | 238 | 0.0445 | 5.93 | 128.12 | 133.29 | 2.84 | |
25 | 4.7 | 258 | 211 | 234.5 | 0.0432 | 5.71 | 108.82 | 132.21 | 3.19 | |
26 | 5.8 | 259 | 215 | 237 | 0.0441 | 6.77 | 131.47 | 153.46 | 2.72 | |
27 | 5.7 | 258 | 221 | 239.5 | 0.0451 | 6.10 | 126.52 | 135.40 | 2.85 | |
28 | 4.9 | 258 | 228 | 243 | 0.0464 | 5.99 | 105.66 | 129.16 | 3.01 | |
29 | 6.7 | 258 | 230 | 244 | 0.0468 | 6.93 | 143.29 | 148.21 | 2.94 | |
30 | 5.3 | 258 | 230 | 244 | 0.0468 | 6.25 | 113.35 | 133.66 | 4.28 |
Cutout Number | E (Wh) | D1 (mm) | D2 (mm) | μ D (mm) | A (m2) | T (s) | E/A (Wh/m2) | T/A (s/m2) | VTV-F (m/s2) | VTV-R (m/s2) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 8.9 | 269 | 240 | 254.5 | 0.0509 | 11.80 | 174.95 | 231.96 | 2.62 | |
2 | 6.6 | 268 | 239 | 253.5 | 0.0505 | 9.17 | 130.77 | 181.69 | 3.30 | |
3 | 6.8 | 268 | 238 | 253 | 0.0503 | 9.45 | 135.26 | 187.98 | 2.38 | |
4 | 6.7 | 264 | 235 | 249.5 | 0.0489 | 7.91 | 137.04 | 161.79 | 2.44 | |
5 | 6.3 | 234 | 265 | 249.5 | 0.0489 | 7.75 | 128.86 | 158.52 | 2.62 | |
6 | 7.2 | 267 | 235 | 251 | 0.0495 | 9.09 | 145.51 | 183.71 | 2.15 | |
7 | 7.1 | 267 | 234 | 250.5 | 0.0493 | 8.74 | 144.06 | 177.34 | 2.35 | |
8 | 7.1 | 268 | 234 | 251 | 0.0495 | 9.43 | 143.49 | 190.58 | 2.49 | |
9 | 8.2 | 267 | 234 | 250.5 | 0.0493 | 10.76 | 166.38 | 218.33 | 2.35 | |
10 | 8.2 | 268 | 235 | 251.5 | 0.0497 | 10.49 | 165.06 | 211.16 | 2.62 | |
11 | 7.1 | 272 | 235 | 253.5 | 0.0505 | 9.99 | 140.67 | 197.93 | 2.37 | |
12 | 7.5 | 234 | 271 | 252.5 | 0.0501 | 9.75 | 149.78 | 194.71 | 2.69 | |
13 | 7.1 | 274 | 270 | 272 | 0.0581 | 8.84 | 122.19 | 152.13 | 2.53 | |
14 | 7.3 | 232 | 232 | 232 | 0.0423 | 8.96 | 172.69 | 211.95 | 2.44 | |
15 | 6.8 | 232 | 231 | 231.5 | 0.0421 | 7.75 | 161.55 | 184.12 | 2.96 | |
16 | 8 | 272 | 233 | 252.5 | 0.0501 | 10.59 | 159.76 | 211.49 | 2.69 | |
17 | 7.6 | 275 | 233 | 254 | 0.0507 | 10.26 | 149.99 | 202.48 | 2.66 | |
18 | 7.9 | 268 | 266 | 267 | 0.0560 | 9.66 | 141.10 | 172.53 | 3.06 | |
19 | 7.4 | 267 | 266 | 266.5 | 0.0558 | 9.69 | 132.66 | 173.72 | 3.35 | |
20 | 7.6 | 230 | 236 | 233 | 0.0426 | 8.46 | 178.24 | 198.41 | 4.13 | |
21 | 7.3 | 233 | 267 | 250 | 0.0491 | 9.25 | 148.71 | 188.44 | 3.84 | |
22 | 6.7 | 270 | 226 | 248 | 0.0483 | 9.25 | 138.70 | 191.49 | 4.12 | |
23 | 6.8 | 229 | 232 | 230.5 | 0.0417 | 8.51 | 162.96 | 203.94 | 3.18 | |
24 | 5.3 | 210 | 226 | 218 | 0.0373 | 7.25 | 142.00 | 194.24 | 3.36 | |
25 | 5.9 | 265 | 232 | 248.5 | 0.0485 | 7.82 | 121.65 | 161.24 | 3.37 | |
26 | 5.8 | 264 | 226 | 245 | 0.0471 | 7.75 | 123.03 | 164.39 | 4.14 | |
27 | 5.5 | 229 | 264 | 246.5 | 0.0477 | 6.40 | 115.25 | 134.11 | 2.45 | |
28 | 5 | 264 | 229 | 246.5 | 0.0477 | 7.01 | 104.77 | 146.89 | 2.80 | |
29 | 4.9 | 264 | 229 | 246.5 | 0.0477 | 9.34 | 102.68 | 195.71 | 4.04 | |
30 | 4.9 | 265 | 226 | 245.5 | 0.0473 | 8.52 | 103.52 | 179.99 | 3.13 |
Energy (Wh) | Time (s) | Area (m2) | Energy/Area (Wh/m2) | Time/Area (s/m2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RS | RH | RS | RH | RS | RH | RS | RH | RS | RH | |
Mean | 5.6 | 6.9 | 6.59 | 8.99 | 0.044 | 0.049 | 127.01 | 141.44 | 149.86 | 185.43 |
Median | 5.7 | 7.1 | 6.53 | 9.13 | 0.044 | 0.049 | 128.62 | 141.55 | 147.82 | 188.21 |
Mode | 5.7 | 7.1 | 7.91 | 7.75 | 0.044 | 0.048 | 129.75 | #N/A | #N/A | #N/A |
Std. Dev. | 0.7 | 1.0 | 0.96 | 1.21 | 0.002 | 0.004 | 14.71 | 20.80 | 21.05 | 22.40 |
Minimum | 4.2 | 4.9 | 5.01 | 6.4 | 0.034 | 0.037 | 94.81 | 102.68 | 118.51 | 134.11 |
Maximum | 7.0 | 8.9 | 8.45 | 11.8 | 0.047 | 0.058 | 159.35 | 178.24 | 192.36 | 231.96 |
Sum | 167.7 | 205.5 | 197.78 | 269.64 | 1.320 | 1.457 | 3810.30 | 4243.29 | 4495.75 | 5562.97 |
Count | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Weight of the wood chips and dust totaled to 123.2 N (12.56 kg) (RS) and 100.6 N (10.25 kg) (RH) |
VTV-R (m/s2) | VTV-F (m/s2) | |||
---|---|---|---|---|
RS | RH | RS | RH | |
Mean | 3.05 | 3.35 | 3.20 | 2.55 |
Median | 3.16 | 3.35 | 3.19 | 2.49 |
Mode | 3.16 | #N/A | 3.19 | 2.62 |
Std. Dev. | 0.42 | 0.58 | 0.38 | 0.28 |
Range | 1.7 | 1.69 | 1.56 | 1.15 |
Minimum | 1.91 | 2.45 | 2.72 | 2.15 |
Maximum | 3.61 | 4.14 | 4.28 | 3.3 |
Count | 15 | 15 | 15 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandur, Z.; Bačić, M.; Grden, G.; Mudrovčić, K.; Mergl, V.; Landekić, M. Round-Shaped vs. Hexagonally Shaped Saw Chain: Cutting Efficiency and Vibration Comparison. Forests 2025, 16, 1066. https://doi.org/10.3390/f16071066
Pandur Z, Bačić M, Grden G, Mudrovčić K, Mergl V, Landekić M. Round-Shaped vs. Hexagonally Shaped Saw Chain: Cutting Efficiency and Vibration Comparison. Forests. 2025; 16(7):1066. https://doi.org/10.3390/f16071066
Chicago/Turabian StylePandur, Zdravko, Marin Bačić, Gordan Grden, Kristijan Mudrovčić, Václav Mergl, and Matija Landekić. 2025. "Round-Shaped vs. Hexagonally Shaped Saw Chain: Cutting Efficiency and Vibration Comparison" Forests 16, no. 7: 1066. https://doi.org/10.3390/f16071066
APA StylePandur, Z., Bačić, M., Grden, G., Mudrovčić, K., Mergl, V., & Landekić, M. (2025). Round-Shaped vs. Hexagonally Shaped Saw Chain: Cutting Efficiency and Vibration Comparison. Forests, 16(7), 1066. https://doi.org/10.3390/f16071066