Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = elemental composition of smectite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13898 KiB  
Article
Origin and Reservoir Significance of Authigenic Minerals in Lacustrine Shales: A Case Study from the Paleogene Dongying Sag, Bohai Bay Basin, East China
by Jihua Yan, Shiyue Chen, Zhiyun Yu, Pengfei Zhang and Guozheng Feng
Minerals 2025, 15(5), 493; https://doi.org/10.3390/min15050493 - 7 May 2025
Viewed by 602
Abstract
Authigenic minerals in shale are products of the co-evolution of organic and inorganic components, affecting the heterogeneity of shale reservoirs. However, due to their fine granularity and complex rock composition, studies on these minerals in shale are still insufficient. This research focuses on [...] Read more.
Authigenic minerals in shale are products of the co-evolution of organic and inorganic components, affecting the heterogeneity of shale reservoirs. However, due to their fine granularity and complex rock composition, studies on these minerals in shale are still insufficient. This research focuses on the lacustrine shales from the upper sub-member of the fourth member in the Eocene Shahejie Formation, Dongying Sag, East China. Utilizing core samples, thin sections, scanning electron microscope, X-ray diffraction, elemental geochemistry, and organic geochemistry, we systematically characterized the features and origins of authigenic minerals. The results identified several typical authigenic minerals, including authigenic quartz, framboidal and euhedral pyrite, ferroan dolomite, kaolinite, chlorite, and albite. Authigenic quartz is predominantly diagenetic silica formed through smectite illitization, acidic dissolution of K-feldspar, and alkaline dissolution of detrital quartz. Pyrite is a product of microbial sulfate reduction, with framboidal pyrite forming during an early diagenetic stage under conditions with sufficient solute supply and euhedral pyrite forming during a later stage under conditions with insufficient solute supply. Ferroan dolomite originates from the precipitation of Fe and Mg during smectite illitization, with slight contributions from the acidic dissolution of chlorite and calcite. Kaolinite stems from the acidic dissolution of K-feldspar, while chlorite results from the transformation of kaolinite. Albite primarily arises from the alkaline alteration of anorthite and K-feldspar. Most non-clay authigenic minerals likely enhance reservoir quality by slightly reducing the effects of compaction, whereas authigenic clay minerals typically exert detrimental effects on reservoir properties. This study constrains the genesis of authigenic minerals to assess their influence on reservoir quality in lacustrine shale. Full article
Show Figures

Figure 1

27 pages, 15613 KiB  
Article
Mineralogical and Geochemical Characterization of Argillaceous Rocks in the Upper Wuerhe Formation in the Mahu 1 Well Block of the Junggar Basin, NW China
by Hao Fu, Yongjun Li, Jianhua Qin, Fenghao Duan, Xueyi Xu, Nanhe Peng, Gaoxue Yang, Kai Liu, Xin Wang and Jing Zhang
Minerals 2025, 15(2), 157; https://doi.org/10.3390/min15020157 - 7 Feb 2025
Viewed by 810
Abstract
The Mahu Sag, where the Mahu 1 well block is located, is one of the most important hydrocarbon-rich depressions in the Junggar Basin, NW China. The Permian Upper Wuerhe Formation (UWF) constitutes the primary layer of the unconventional tight oil reservoir in the [...] Read more.
The Mahu Sag, where the Mahu 1 well block is located, is one of the most important hydrocarbon-rich depressions in the Junggar Basin, NW China. The Permian Upper Wuerhe Formation (UWF) constitutes the primary layer of the unconventional tight oil reservoir in the Mahu Oilfield. To explore the provenance and sedimentary environment during the deposition of the UWF in the study area, we determined the clay mineralogy and whole-rock geochemical composition of argillaceous rocks. The results show that the primary minerals in argillaceous rock are feldspar, clay minerals, quartz, and a minor amount of hematite. The clay minerals identified included illite, smectite, kaolinite, chlorite, and illite/smectite mixed layers. The tectonic setting of the provenance area for the UWF is a continental island arc, associated with a cutting magmatic arc. The main provenance area is related to the Baogutu tectonic belt (the Zhayier Mountain and the Hala’alate Mountain). The bedrock primarily consists of acidic igneous rocks, with minor occurrences of intermediate–basic igneous and sedimentary rock. The chemical index of alteration (CIA) shows that the parent rocks of the argillaceous rocks have experienced moderate–strong chemical weathering. Combining the Sr/Cu and ΣLREE/ΣHREE ratios, δEu values, and clay mineral characteristics, we determined that the paleoclimate during the deposition of the UWF was generally warm and humid, with occasional short-term dry and cold periods. The UWF gradually changes, according to the relative humidity and enhanced chemical weathering from the bottom to the top. An analysis of trace elements, paleosalinity, and paleowater depth indicate that the studied argillaceous rocks were deposited in a shallow-water oxidation environment of continental fresh water with weak hydrodynamic conditions. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

21 pages, 6306 KiB  
Article
Enrichment of Trace Elements in the Early Carboniferous Coals from the Machala Mine in Eastern Qiangtang Basin, Eastern Tibet, SW China
by Junwei Qiao, Duo Wang, Fangpeng Du, Xinru Fu, Hafiz Zameer ul Hassan, Hui Zhang, Cheng Yang, Yi Jiang and Lingchen Li
Minerals 2025, 15(1), 34; https://doi.org/10.3390/min15010034 - 30 Dec 2024
Viewed by 924
Abstract
The Machala Mine, which is located in the Eastern Tibetan Plateau, was one of the highest coal mines in the world, with an elevation of 5200 m. The Machala coals are rich in a variety of critical and harmful elements. However, the occurrence [...] Read more.
The Machala Mine, which is located in the Eastern Tibetan Plateau, was one of the highest coal mines in the world, with an elevation of 5200 m. The Machala coals are rich in a variety of critical and harmful elements. However, the occurrence and enrichment mechanisms of these elements are not well understood, which hinders the assessment of their environmental impacts and recycling potential. Furthermore, the enrichment mechanism identified in the Machala coals is expected to extend our understanding of the simultaneous enrichment of multiple elements in coal. A total of 18 coal samples were collected from 14 coal (or carbonaceous mudstone) seams at the Machala open-pit mine for systematic analyses, including macerals, coal quality, minerals, trace, and major elements of coals. The results suggested that the coal seams in the Machala Mine were dominated by low-sulfur (mainly less than 1%), medium-to-low-ash (average: 18.15%), low-volatile (average: 16.01%), and medium-high-to-high-calorific (average: 27.23 MJ/kg) coals. The coal macerals were predominantly vitrinite, with the collodetrinite being the most abundant, followed by collotelinite and vitroderinite, while telinite was present in low amounts. The mineral compositions were mainly quartz and kaolinite, with average contents of 37.8% and 48.2%, respectively, which were followed by illite and smectite-mixed layers, with average contents of 4.7% and 3.3%, respectively. Other minerals, including plagioclase, pyrite, siderite, chlorite, and potassium feldspar, were present in low quantities. However, C3 coal seam was an exception, with a high pyrite content of 23.2% (low-temperature ash sample). The Machala coal seams were characterized by varying degrees of enrichment in Li, As, Pb, Hg, and Sn. Correlation analyses and energy spectrum analyses indicated that clays were their major host minerals. The enrichment of Li in the Machala Coal Mine was mainly attributed to volcanic ash during the sedimentation period, while As, Pb, Hg, and Sn were primarily sourced from hydrothermal fluids in the late stages. Full article
Show Figures

Figure 1

22 pages, 6542 KiB  
Article
The Development of METAL-WRF Regional Model for the Description of Dust Mineralogy in the Atmosphere
by Stavros Solomos, Christos Spyrou, Africa Barreto, Sergio Rodríguez, Yenny González, Marina K. A. Neophytou, Petros Mouzourides, Nikolaos S. Bartsotas, Christina Kalogeri, Slobodan Nickovic, Ana Vukovic Vimic, Mirjam Vujadinovic Mandic, Goran Pejanovic, Bojan Cvetkovic, Vassilis Amiridis, Olga Sykioti, Antonis Gkikas and Christos Zerefos
Atmosphere 2023, 14(11), 1615; https://doi.org/10.3390/atmos14111615 - 27 Oct 2023
Cited by 3 | Viewed by 2194
Abstract
The mineralogical composition of airborne dust particles is an important but often neglected parameter for several physiochemical processes, such as atmospheric radiative transfer and ocean biochemistry. We present the development of the METAL-WRF module for the simulation of the composition of desert dust [...] Read more.
The mineralogical composition of airborne dust particles is an important but often neglected parameter for several physiochemical processes, such as atmospheric radiative transfer and ocean biochemistry. We present the development of the METAL-WRF module for the simulation of the composition of desert dust minerals in atmospheric aerosols. The new development is based on the GOCART-AFWA dust module of WRF-Chem. A new wet deposition scheme has been implemented in the dust module alongside the existing dry deposition scheme. The new model includes separate prognostic fields for nine (9) minerals: illite, kaolinite, smectite, calcite, quartz, feldspar, hematite, gypsum, and phosphorus, derived from the GMINER30 database and also iron derived from the FERRUM30 database. Two regional model sensitivity studies are presented for dust events that occurred in August and December 2017, which include a comparison of the model versus elemental dust composition measurements performed in the North Atlantic (at Izaña Observatory, Tenerife Island) and in the eastern Mediterranean (at Agia Marina Xyliatos station, Cyprus Island). The results indicate the important role of dust minerals, as dominant aerosols, for the greater region of North Africa, South Europe, the North Atlantic, and the Middle East, including the dry and wet depositions away from desert sources. Overall, METAL-WRF was found to be capable of reproducing the relative abundances of the different dust minerals in the atmosphere. In particular, the concentration of iron (Fe), which is an important element for ocean biochemistry and solar absorption, was modeled in good agreement with the corresponding measurements at Izaña Observatory (22% overestimation) and at Agia Marina Xyliatos site (4% overestimation). Further model developments, including the implementation of newer surface mineralogical datasets, e.g., from the NASA-EMIT satellite mission, can be implemented in the model to improve its accuracy. Full article
Show Figures

Figure 1

16 pages, 2125 KiB  
Article
Aluminosilicates as a Double-Edged Sword: Adsorption of Aflatoxin B1 and Sequestration of Essential Trace Minerals in an In Vitro Gastrointestinal Poultry Model
by Sara Paola Hernández-Martínez, Armando Delgado-Cedeño, Yareellys Ramos-Zayas, Moisés Armides Franco-Molina, Gerardo Méndez-Zamora, Alicia Guadalupe Marroquín-Cardona and Jorge R. Kawas
Toxins 2023, 15(9), 519; https://doi.org/10.3390/toxins15090519 - 24 Aug 2023
Cited by 9 | Viewed by 2325
Abstract
Aflatoxins can cause intoxication and poisoning in animals and humans. Among these molecules, aflatoxin B1 (AFB1) is the most dangerous because of its carcinogenic and mutagenic properties. To mitigate these effects, clay adsorbents are commonly included in the diet of [...] Read more.
Aflatoxins can cause intoxication and poisoning in animals and humans. Among these molecules, aflatoxin B1 (AFB1) is the most dangerous because of its carcinogenic and mutagenic properties. To mitigate these effects, clay adsorbents are commonly included in the diet of animals to adsorb the carcinogens and prevent their absorption in the gastrointestinal tract. In this study, four clays, three smectites (C-1, C-2, and C-3), and one zeolite (C-4), were compared as adsorbents of AFB1 and trace inorganic nutrients using an in vitro gastrointestinal model for poultry. Characterization of the clays using Fourier transform infrared spectroscopy revealed characteristic bands of smectites in C-1, C-2, and C-3 (stretching vibrations of Si-O, Al-O-Si, and Si-O-Si). The C-4 presented bands related to the bending vibration of structural units (Si-O-Si and Al-O-Si). X-ray diffraction analysis showed that C-1 is a montmorillonite, C-2 is a beidellite, C-3 is a beidellite-Ca-montmorillonite, and C-4 is a clinoptilolite. The elemental compositions of the clays showed alumina, silica, iron, calcium, and sodium contents. The cation exchange capacity was higher in C-3 clay (60.2 cmol(+)/kg) in contrast with the other clays. The AFB1 adsorption of C-1 was the highest (99.5%; p ˂ 0.001), followed by C-2 (92.02%). However, all the clays also sequestered trace inorganic nutrients (Fe, Mn, Zn, and Se). Both smectites, montmorillonite and beidellite, were the most suitable for use as adsorbents of AFB1. Full article
Show Figures

Graphical abstract

25 pages, 4023 KiB  
Article
Seasonal Variations of Mineralogical and Chemical Composition of Particulate Matter in a Large Boreal River and Its Tributaries
by Ivan V. Krickov, Artem G. Lim, Vladimir P. Shevchenko, Dina P. Starodymova, Olga M. Dara, Yuri Kolesnichenko, Dmitri O. Zinchenko, Sergey N. Vorobyev and Oleg S. Pokrovsky
Water 2023, 15(4), 633; https://doi.org/10.3390/w15040633 - 6 Feb 2023
Cited by 4 | Viewed by 3217
Abstract
Despite the importance of river suspended matter (RSM) for carbon, nutrient, and trace metal transfer from the land to the ocean, the mineralogical control on major and trace element speciation in the RSM remains poorly constrained. To gain a better understanding of environmental [...] Read more.
Despite the importance of river suspended matter (RSM) for carbon, nutrient, and trace metal transfer from the land to the ocean, the mineralogical control on major and trace element speciation in the RSM remains poorly constrained. To gain a better understanding of environmental and seasonal factors controlling the mineral and chemical composition of riverine suspended load, we studied, over several hydrological seasons, including winter baseflow, the RSM of a large boreal river in Western Siberia (Ob in its middle course) and its two small tributaries. The concentration of RSM increased from 2–18 mg/L in winter to 15–105 mg L−1 during the spring flood. Among the dominant mineral phases of the RSM in the Ob River, quartz (20–40%), albite (4–18%), smectite (2–14%), and chlorite (6–16%) increased their relative proportions with an increase in discharge in the order “winter ≤ summer < spring flood”; illite (5–15%) was not affected by seasons or discharge, whereas the abundance of calcite (0–30%) decreased with discharge, from winter to summer and spring. Seasonal variation of elemental composition of the Ob River’s RSM allowed distinguishing three main groups of elements. Sodium, K, Si, Al, trivalent, and tetravalent hydrolysates increased their concentrations in the RSM with an increase in discharge, reflecting enhanced contribution of lithogenic material during high flow, whereas the concentration of alkaline-earth metals (Ca, Sr, Ba), P, Mn, and As decreased with discharge, reflecting accumulation of these elements in the suspended matter under ice. At the same time, a number of nutrients and trace elements demonstrated progressive accumulation in the RSM during winter (Ca, P, Cu, Zn, Mo, As, Cd, Sb). Micronutrients (V, Co), Fe, and Cr exhibited a minimum during summer, which could reflect both the uptake of these elements by the biota during baseflow (micronutrients) and their enhanced export during winter and spring compared to summer (Fe). The RSM of small tributaries demonstrated quite a different pattern compared to the Ob River main stem. Maximal concentration of suspended matter was observed at low discharges during the winter. During this period, the RSM was dominated by amorphous Fe hydroxides. Overall, the obtained results confirm the overwhelming impact of peatlands on element export in suspended form in small rivers of Western Siberia, and strong seasonal variations of both mineralogy and chemistry of the RSM in the Ob River main stem. Elemental yields (watershed-normalized export), assessed for the first time for the middle course of the Ob River and tributaries, were shifted towards the more important role of particulate vs. dissolved export for a number of trace elements, compared to that of the small and medium-sized rivers of Western Siberia, draining the taiga forest and peatlands of the boreal zone. The contrasting pattern of RSM chemical composition across the year demonstrated the importance of seasonal approach for sampling river suspended matter and calls a need for addressing strongly understudied RSM sources during winter baseflow, under ice. Full article
Show Figures

Figure 1

23 pages, 3639 KiB  
Article
Assessment of Some Clay-Based Products Available on Market and Designed for Topical Use
by Carla Marina Bastos and Fernando Rocha
Geosciences 2022, 12(12), 453; https://doi.org/10.3390/geosciences12120453 - 13 Dec 2022
Cited by 9 | Viewed by 3600
Abstract
The establishment of quality requirements of clay-based products, for medicinal, wellness, and aesthetic purposes, is mainly sustained by the good interactions between the clay-based formulation and the skin. The release of ionizable elements and their availability to percutaneous absorption should be, ideally, physiologically [...] Read more.
The establishment of quality requirements of clay-based products, for medicinal, wellness, and aesthetic purposes, is mainly sustained by the good interactions between the clay-based formulation and the skin. The release of ionizable elements and their availability to percutaneous absorption should be, ideally, physiologically effective during passive percutaneous absorption. Clay-based products are promoted in the European market as therapeutic clays or aesthetics, which is labeling that combines characteristics of medicinal products along with cosmetics. Different countries regulate these products under different legal frameworks. This study focuses on the mineralogical, chemical, and technological characterization of some clay-based products available on the market, designed for topical use, framed in the peloids concept, and claimed as natural products. The main goals are to contribute to the establishment of clay-based products quality criteria as reliable scientific information, aiming for the compliance of intended use, the information for the potential health hazards and toxicological effects of clay-based products, and the distinction in what concerns therapeutic compliance and aesthetic or wellbeing product certification. There were 13 clayed products for cosmetic purposes, available online and in commercial stores, together with three thermal peloids, that were studied. Mineralogical composition of the 16 studied samples reveals a polymineralic association with the presence of variable quantities of quartz, calcite, and feldspars, whereas clay minerals are not predominant and characterized by the presence of clay-based fraction content, composed mainly by illite, smectite, and kaolinite in variable amounts and with several mineral associations. The clay-based products contain median values of 17 ppm As, 315 ppm Ba, 79 ppm Cr, 11 ppm Co, 29 ppm Pb, 26 ppm Ni, and 62 ppm Zn. One sample presented 4.1 ppm of Cd. The studied samples have safety concerns about specific limits of As, Ba, Cd, Cr, Co, Pb, Ni, and Zn which are above the regulated avoidable limits. Samples’ pH is out of range of skin’s natural pH as well. Full article
Show Figures

Figure 1

12 pages, 3543 KiB  
Article
The Origin of Quartz Cement in the Upper Triassic Second Member of the Xujiahe Formation Sandstones, Western Sichuan Basin, China
by Jie Ren, Zhengxiang Lv, Honghui Wang, Jianmeng Wu and Shunli Zhang
Water 2021, 13(14), 1890; https://doi.org/10.3390/w13141890 - 8 Jul 2021
Cited by 4 | Viewed by 2783
Abstract
High-precision in situ δ18O values obtained using secondary ion mass spectrometry (SIMS) for μm-size quartz cement are applied to constrain the origin of the silica in the deep-buried Upper Triassic second member of Xujiahe Formation tight sandstones, western Sichuan Basin, China. [...] Read more.
High-precision in situ δ18O values obtained using secondary ion mass spectrometry (SIMS) for μm-size quartz cement are applied to constrain the origin of the silica in the deep-buried Upper Triassic second member of Xujiahe Formation tight sandstones, western Sichuan Basin, China. Petrographic, cathodoluminescence (CL), and fluid inclusion data from the quartz cements in the Xu2 sandstones indicate three distinct, separate quartz precipitation phases (referred to as Q1, Q2, and Q3). The Q1 quartz cement was formed at temperatures of approximately 56–85 °C and attained the highest δ18O values (ranging from 18.3 to 19.05‰ Vienna Standard Mean Ocean Water (VSMOW)). The Q2 quartz cement was generated at temperatures of approximately 90–125 °C, accompanying the main phase of hydrocarbon fluid inclusions, with the highest Al2O3 content and high δ18O values (ranging from 15 to 17.99‰ VSMOW). The Q3 quartz cement was formed at temperatures of approximately 130–175 °C, with the lowest δ18O values (ranging from 12.79 to 15.47‰ VSMOW). A portion of the Q2 and Q3 quartz cement has a relatively high K2O content. The dissolution of feldspar and volcanic rock fragments was likely the most important source of silica for the Q1 quartz cement. The variations in δ18O(water) and trace element composition from the Q2 quartz cement to the Q3 quartz cement suggest that hydrocarbon emplacement and water-rock interactions greatly altered the chemistry of the pore fluid. Feldspar dissolution by organic acids, clay mineral reactions (illitization and chloritization of smectite), and pressure dissolution were the main sources of silica for the Q2 and Q3 quartz cements, while transformation of the clay minerals in the external shale unit was a limited silica source. Full article
Show Figures

Figure 1

21 pages, 5271 KiB  
Article
REE-Rich Turonian Phosphates in the Bohemian Cretaceous Basin, Czech Republic: Assessment as Source of Critical Elements and Implications for Future Exploration
by Khaldoun Al-Bassam, Petr Rambousek and Stanislav Čech
Minerals 2021, 11(3), 246; https://doi.org/10.3390/min11030246 - 26 Feb 2021
Cited by 3 | Viewed by 3481
Abstract
Numerous phosphate occurrences are located in the Bohemian Cretaceous Basin (BCB) of the Czech Republic, within the Cenomanian–Turonian sequences. Small phosphate occurrences have been reported in the Upper Cenomanian, Lower Turonian, and Upper Turonian marine glauconitic siliciclasts. The phosphates are generally <1 m [...] Read more.
Numerous phosphate occurrences are located in the Bohemian Cretaceous Basin (BCB) of the Czech Republic, within the Cenomanian–Turonian sequences. Small phosphate occurrences have been reported in the Upper Cenomanian, Lower Turonian, and Upper Turonian marine glauconitic siliciclasts. The phosphates are generally <1 m thick, present as phosphatized hardgrounds, nodules, coprolites, skeletal remains, phosphatized shells, peloids, sponges, and tube-fills, associated with black mudstone and other siliciclasts. Only recently the critical elements have been highlighted in these phosphates. The present study covers eight of these occurrences and provides information on petrography, mineralogy, and chemical composition of major elements, trace elements, and stable isotopes. The phosphate mineralogy is comprised of carbonate-fluorapatite, associated with quartz, glauconite, smectite, kaolinite, and pyrite. Most of the phosphates are rich in organic matter. The phosphate chemistry is dominated by P2O5, CaO, F, Na2O, SO3, and CO2. Minor amounts of SiO2, Al2O3, K2O, and MgO are found, related to quartz and alumino-silicate impurities. Evidence of fossil microbial structures is revealed. The indices derived from rare earth elements (REE) indicate phosphogenesis at various redox conditions, ranging from anoxic to oxic, whereas the carbon stable isotopes of the apatite suggest generally reducing conditions. The critical and other valuable elements found in these Mid-Cretaceous phosphates include P2O5 (18.9–26.76 wt. %), F (1.67–3.25 wt. %), REE (325–1338 ppm), Y (74–368 ppm), and U (10.4–37.9 ppm). The investigation of the Turonian phosphate occurrences show that those located at the base of the Bílá Hora Formation (earliest Turonian) are the most persistent in the southern margins of the BCB, and found in localities extending for about 200 km. They were developed at the onset of the Early Turonian global transgression and are strata-bound to the base of the Bílá Hora Formation. Future exploration for marine sedimentary phosphorites should focus on thicker and better developed deposits at the base of the Turonian sediments as the main target. Full article
Show Figures

Figure 1

28 pages, 4598 KiB  
Review
Spectroscopic Studies of Synthetic and Natural Saponites: A Review
by J. Theo Kloprogge and Concepcion P. Ponce
Minerals 2021, 11(2), 112; https://doi.org/10.3390/min11020112 - 23 Jan 2021
Cited by 25 | Viewed by 5053
Abstract
Saponite is a trioctahedral 2:1 smectite with the ideal composition MxMg3AlxSi4−xO10(OH,F)2.nH2O (M = interlayer cation). Both the success of the saponite synthesis and the determination of its applications depends [...] Read more.
Saponite is a trioctahedral 2:1 smectite with the ideal composition MxMg3AlxSi4−xO10(OH,F)2.nH2O (M = interlayer cation). Both the success of the saponite synthesis and the determination of its applications depends on robust knowledge of the structure and composition of saponite. Among the routine characterization techniques, spectroscopic methods are the most common. This review, thus, provides an overview of various spectroscopic methods to characterize natural and synthetic saponites with focus on the extensive work by one of the authors (JTK). The Infrared (IR) and Raman spectra of natural and synthetic saponites are discussed in detail including the assignment of the observed bands. The crystallization of saponite is discussed based on the changes in the IR and Raman spectra and a possible crystallization model is provided. Infrared emission spectroscopy has been used to study the thermal changes of saponite in situ including the dehydration and (partial) dehydroxylation up to 750 °C. 27Al and 29Si magic-angle-spinning nuclear magnetic resonance spectroscopy is discussed (as well as 11B and 71Ga for B- and Ga-Si substitution) with respect to, in particular, Al(IV)/Al(VI) and Si/Al(IV) ratios. X-ray photoelectron spectroscopy provides chemical information as well as some information related to the local environments of the different elements in the saponite structure as reflected by their binding energies. Full article
Show Figures

Figure 1

38 pages, 58388 KiB  
Article
Biosignatures in Subsurface Filamentous Fabrics (SFF) from the Deccan Volcanic Province, India
by Jens Götze, Beda Hofmann, Tomasz Machałowski, Mikhail V. Tsurkan, Teofil Jesionowski, Hermann Ehrlich, Reinhard Kleeberg and Berthold Ottens
Minerals 2020, 10(6), 540; https://doi.org/10.3390/min10060540 - 16 Jun 2020
Cited by 13 | Viewed by 5325
Abstract
The morphology, chemical, and mineralogical composition of subsurface filamentous fabrics (SFF) from the Deccan Volcanic Province (DVP) were investigated to determine the origin of these spectacular aggregates. SFF occur in a wide variety of morphologies ranging from pseudo-stalactites to irregular fabrics and are [...] Read more.
The morphology, chemical, and mineralogical composition of subsurface filamentous fabrics (SFF) from the Deccan Volcanic Province (DVP) were investigated to determine the origin of these spectacular aggregates. SFF occur in a wide variety of morphologies ranging from pseudo-stalactites to irregular fabrics and are classified as SFFIr (irregular) or SFFMa (matted). The SFF samples exhibit a thread-like (or filament-like) center from which mineral precipitation starts to form the final macroscopic morphologies. Detailed investigations revealed organic material (fungal chitin) in the innermost filamentous core, which may have acted as an initial nucleus for the mineralization processes. The morphometric characteristics of certain filamentous fabrics are very similar to those of microbial filaments and the fabrics formed from them but are clearly distinct from similar types of non-biological precipitates (fibrous minerals, speleothems, and “chemical gardens”). These features indicate that the filamentous cores might be products of microbial communities that were active in the basaltic cavities. The SFF cross-sections display similar concentric layers of the mineral succession and reach thicknesses of several centimeters with spectacular lengths up to 100 cm and constant diameters. The typical mineralization sequence points to temporal variation in the chemical composition of the mineralizing fluids from Fe(Mg)-rich (Fe-oxides/-hydroxides, Fe-rich sheet silicates such as celadonite and di-/tri-smectite) to Ca-dominated (Ca-rich zeolites) and finally pure SiO2 (opal-CT, chalcedony, and macro-crystalline quartz). Assuming biological activity at least during the early mineralization processes, circumneutral pH conditions and maximum temperatures of 100–120 °C were supposed. The formation of filamentous cores including Fe-bearing phyllosilicates probably occurred near the surface after cooling of the lava, where the elements necessary for mineral formation (i.e., Si, Mg, Al, Fe) were released during alteration of the volcanic host rocks by percolating fluids. Full article
Show Figures

Figure 1

38 pages, 14731 KiB  
Article
Fractionation Trends and Variability of Rare Earth Elements and Selected Critical Metals in Pelagic Sediment from Abyssal Basin of NE Pacific (Clarion-Clipperton Fracture Zone)
by Dominik Zawadzki, Łukasz Maciąg, Tomasz Abramowski and Kevin McCartney
Minerals 2020, 10(4), 320; https://doi.org/10.3390/min10040320 - 2 Apr 2020
Cited by 31 | Viewed by 6997
Abstract
The geochemical and mineralogical characteristics of pelagic sediments collected from the Interoceanmetal Joint Organization (IOM) claim area, located in the eastern part of the Clarion-Clipperton Fracture Zone (CCFZ; eastern tropical Pacific), are described in this paper. The concentrations of rare earth elements (REE), [...] Read more.
The geochemical and mineralogical characteristics of pelagic sediments collected from the Interoceanmetal Joint Organization (IOM) claim area, located in the eastern part of the Clarion-Clipperton Fracture Zone (CCFZ; eastern tropical Pacific), are described in this paper. The concentrations of rare earth elements (REE), as well as other selected critical elements contained in 135 sediment samples of siliceous clayey silts, are presented. The vertical and spatial variabilities of elements, with particular emphasis on REE as well as metals of the highest economic interest such as Cu, Ni, and Co, are detailed. The applied methods include grain size analysis by laser diffraction, geochemistry examination using ICP-MS, XRF, AAS, and CNS spectrometry, and XRD analysis of mineral composition (Rietveld method). Additionally, statistical methods such as factor analysis (FA) and principal components analysis (PCA) were applied to the results. Finally, a series of maps was prepared by geostatistical methods (universal kriging). Grain size analysis showed poor sorting of the examined fine-grained silts. ICP-MS indicated that total REE contents varied from 200 to 577 ppm, with a mean of 285 ppm, which is generally low. The contents of critical metals such as Cu, Ni, and Co were also low to moderate, apart from some individual sampling stations where total contents were 0.15% or more. Metal composition in sediments was dominated by Cu, Ni, and Zn. A mineral composition analysis revealed the dominance of amorphous biogenic opaline silica (27–58%), which were mostly remnants of diatoms, radiolarians, and sponges associated with clay minerals (23% to 48%), mostly Fe-smectite and illite, with mixed-layered illite/smectite. The high abundance of diagenetic barite crystals found in SEM−EDX observations explains the high content of Ba (up to 2.4%). The sediments showed complex lateral and horizontal fractionation trends for REE and critical metals, caused mostly by clay components, early diagenetic processes, admixtures of allogenic detrital minerals, or scavenging by micronodules. Full article
(This article belongs to the Special Issue Marine Geology and Minerals)
Show Figures

Graphical abstract

18 pages, 5670 KiB  
Article
Microbial Diversity Responding to Changes in Depositional Conditions during the Last Glacial and Interglacial Period: NE Ulleung Basin, East Sea (Sea of Japan)
by Kee Hwan Lee, Chang Hwan Kim, Chan Hong Park, Kiho Yang, Sang Hoon Lee, In Soo Lee, You Jin Kwack, Jae Woo Kwak, Jaewoo Jung and Jinwook Kim
Minerals 2020, 10(3), 208; https://doi.org/10.3390/min10030208 - 26 Feb 2020
Cited by 2 | Viewed by 3505
Abstract
Microbial interaction with minerals are significantly linked with depositional conditions during glacial and interglacial periods, providing a unique redox condition in the sedimentary process. Abiotic geophysical and geochemical properties, including sedimentary facies, magnetic susceptibility, grain size, clay mineralogy, and distribution of elemental compositions [...] Read more.
Microbial interaction with minerals are significantly linked with depositional conditions during glacial and interglacial periods, providing a unique redox condition in the sedimentary process. Abiotic geophysical and geochemical properties, including sedimentary facies, magnetic susceptibility, grain size, clay mineralogy, and distribution of elemental compositions in the sediments, have been widely used to understand paleo-depositional environments. In this study, microbial abundance and diversity in the core sediments (6.7 m long) from the northeastern slope of Dokdo Island were adapted to characterize the conventionally defined sedimentary depositional units and conditions in light of microbial habitats. The units of interglacial (Unit 1, <11.5 ka) and late glacial (Unit 2, 11.5–14.5 ka) periods in contrast to the glacial period (Unit 3, >14.5 ka) were distinctively identified in the core, showing a sharp boundary marked by the laminated Mn-carbonate (CaM) mud between bioturbated (Unit 1 and 2) and laminated mud (Unit 3). Based on the marker beds and the occurrence of sedimentary facies, core sediments were divided into three units, Unit 1 (<11.5 ka, interglacial), Unit 2 (11.5–14.5 ka, late glacial), and Unit 3 (>14.5 ka, glacial), in descending order. The sedimentation rate (0.073 cm/year), which was three times higher than the average value for the East Sea (Sea of Japan) was measured in the late glacial period (Unit 2), indicating the settlement of suspended sediments from volcanic clay in the East Sea (Sea of Japan), including Doldo Island. The Fe and Mg-rich smectite groups in Unit 2 can be transported from volcanic sediments, such as from the volcanic island in the East Sea or the east side of Korea, while the significant appearance of the Al-rich smectite group in Unit 1 was likely transported from East China by the Tsushima Warm Current (TWC). The appearance of CaM indicates a redox condition in the sedimentary process because the formation of CaM is associated with an oxidation of Mn2+ forming Mn-oxide in the ocean, and a subsequent reduction of Mn-oxide occurred, likely due to Mn-reducing bacteria resulting in the local supersaturation of Mn2+ and the precipitation of CaM. The low sea level (−120 m) in the glacial period (Unit 3) may restrict water circulation, causing anoxic conditions compared to the late glacial period (Unit 2), inducing favorable redox conditions for the formation of CaM in the boundary of the two units. Indeed, Planctomycetaceae, including anaerobic ammonium oxidation (ANAMMOX) bacteria capable of oxidizing ammonium coupled with Mn-reduction, was identified in the CaM layer by Next Generation Sequencing (NGS). Furthermore, the appearance of aerobic bacteria, such as Alphaproteobacteria, Gammaproteobacteria, and Methylophaga, tightly coupled with the abundance of phytoplankton was significantly identified in Unit 1, suggesting open marine condition in the interglacial period. Bacterial species for each unit displayed a unique grouping in the phylogenetic tree, indicating the different paleo-depositional environments favorable for the microbial habitats during the glacial and interglacial periods. Full article
(This article belongs to the Special Issue Clays and Micro-Organisms: From Nature to Industry)
Show Figures

Figure 1

17 pages, 3597 KiB  
Article
Mineralogical and Geochemical Characteristics of Triassic Lithium-Rich K-Bentonite Deposits in Xiejiacao Section, South China
by Yongjie Lin, Mianping Zheng, Yongsheng Zhang, Enyuan Xing, Simon A. T. Redfern, Jianming Xu, Jiaai Zhong and Xinsheng Niu
Minerals 2020, 10(1), 69; https://doi.org/10.3390/min10010069 - 16 Jan 2020
Cited by 20 | Viewed by 5428
Abstract
Widespread alteration in the Early–Middle Triassic volcanic ash of the Xiejiacao section, south China, has resulted in significant occurrences of lithium-rich K-bentonite deposits with economic potential. Detailed mineralogical and geochemical investigations of Li-rich K-bentonite deposits from the Xiejiacao section of Guangan city, South [...] Read more.
Widespread alteration in the Early–Middle Triassic volcanic ash of the Xiejiacao section, south China, has resulted in significant occurrences of lithium-rich K-bentonite deposits with economic potential. Detailed mineralogical and geochemical investigations of Li-rich K-bentonite deposits from the Xiejiacao section of Guangan city, South China, are presented here. The X-ray diffraction (XRD) data and major element chemistry indicates that the Li-rich K-bentonite deposits contain quartz, clay minerals, feldspar, calcite and dolomite, and the clay minerals are dominated by illite and ordered (R3) illite/smectite (I/S). The concentrations of major and trace elements in Li-rich K-bentonite deposits altered from volcanic ashes are most likely derived from felsic magmas, associated with intense volcanic arc activity. The composition of the clay components suggests that the Li-rich K-bentonite deposits are probably altered from the smectite during diagenesis, whereas smectite is mainly formed by submarine alterations of volcanic materials and subsequently the I/S derived from the volcanogenic smectite illitization. Moreover, accurate determination of the structure in I/S reveals that the temperatures reached by the sedimentary series are around 180 °C with a burial depth of ~6000 m. The widely distributed lithium-rich clay deposits strongly indicate widespread eruptions of volcanic ashes in the Early–Middle Triassic, which released huge amounts of volcanic ash. Lithium fixed in the illite and I/S is considered to have leached from the volcanogenic products by a mixed fluid source (i.e., meteoric, porewater and hydrothermal fluids). These Li-rich clay minerals in the marine basin contain economically extractable levels of metal and are a promising new target for lithium exploration. Full article
(This article belongs to the Special Issue Evolution of Li-rich Brines)
Show Figures

Figure 1

14 pages, 3668 KiB  
Article
Elemental Compositions of Smectites Reveal Detailed Sediment Provenance Changes during Glacial and Interglacial Periods: The Southern Drake Passage and Bellingshausen Sea, Antarctica
by Young Kyu Park, Jae Il Lee, Jaewoo Jung, Claus-Dieter Hillenbrand, Kyu-Cheul Yoo and Jinwook Kim
Minerals 2019, 9(5), 322; https://doi.org/10.3390/min9050322 - 26 May 2019
Cited by 12 | Viewed by 5950
Abstract
Variations in clay mineral assemblages have been widely used to understand changes in sediment provenance during glacial and interglacial periods. Smectite clay minerals, however, have a range of various elemental compositions that possibly originated from multiple different sources. Therefore, it might be crucial [...] Read more.
Variations in clay mineral assemblages have been widely used to understand changes in sediment provenance during glacial and interglacial periods. Smectite clay minerals, however, have a range of various elemental compositions that possibly originated from multiple different sources. Therefore, it might be crucial to distinguish the various types of smectites by analyzing their elemental composition in order to verify the sediment provenances with certainty. This hypothesis was tested for the clay mineral characteristics in a marine sediment core from the southern Drake Passage (GC05-DP02). Rare earth elements and ε N d data had previously indicated that fine grained detritus was supplied from the Weddell Sea to the core site during interglacial periods, when the sediments contained more Al-rich smectite (montmorillonite). Indeed, marine sediments collected close to the Larsen Ice Shelf on the eastern Antarctic Peninsula continental shelf, western Weddell Sea embayment, show more Al-rich smectite components as compared with other possible West Antarctic sources, such as the Ross Sea embayment or King George Island, South Shetland Islands. Furthermore, two types of smectite (Al-rich and Al-poor) were identified in core GC360 from the Bellingshausen Sea shelf, suggesting that during glacial periods some sediment is derived from subglacial erosion of underlying pre-Oligocene sedimentary strata containing predominantly Al-rich montmorillonite. This finding reveals different sources for smectites in sediments deposited at site GC360 during the last glacial period and during the present interglacial that show only minor differences in smectite contents. For the interglacial period, two groups of smectite with a wide range of Al-rich and Mg–Fe-rich were identified, which indicate delivery from two different sources: (1) the detritus with high contents of Mg–Fe-rich smectite supplied from Beethoven Peninsula, southwestern Alexander island and (2) the detritus with higher contents of Al-rich smectite (montmorillonite) possibly derived from the subglacial reworking of pre-Oligocene sedimentary strata. These results demonstrate that the elemental compositions of smectites can be used to differentiate the sources of smectites in marine sediments, which is an important tool to define sediment provenance in detail, when down-core changes observed in clay mineral assemblages are interpreted. Full article
(This article belongs to the Special Issue Clays and Micro-Organisms: From Nature to Industry)
Show Figures

Figure 1

Back to TopTop