The Origin of Quartz Cement in the Upper Triassic Second Member of the Xujiahe Formation Sandstones, Western Sichuan Basin, China
Abstract
:1. Introduction
2. Geologic Setting
3. Materials and Methods
4. Results
4.1. Petrographic Description
4.2. Diagenesis Types and Characteristics
4.3. Fluid Inclusion Analysis of the Quartz Cements
4.4. The δ18O Data of the Quartz Cements and Quartz Grains
4.5. Electron Probe Analysis of the Quartz Cements
5. Discussion
5.1. Nature and Origin of the Fluid
5.2. Silica Sources
6. Conclusions
- Three quartz cement phases are identified based on thin section analysis, CL, and fluid inclusion microthermometry, with three distinct temperature intervals of 56–85, 90–125, and 130–175 °C. Hydrocarbon fluid inclusions are mainly found in the Q2 and Q3 quartz cements, which emit blue fluorescence under fluorescence microscopy.
- The δ18O values of the quartz cements range from 6.56 to 18.91‰ (n = 23) (average: 14.33‰) and are higher than those of the detrital quartz grains. The δ18O(VSMOW) value of the Q1 quartz cement ranges from 18.3 to 19.05‰, that of the Q2 quartz cement ranges from 15 to 17.99‰, while that of the Q3 quartz cement ranges from 12.79 to 15.47‰.
- The Q1 quartz cement has the lowest Al2O3 content with an average of 0.014%. The Q2 quartz cement exhibits the highest Al2O3 content with a mean value of 0.148%. The Q3 quartz cement is Al-depleted, with a mean value of 0.075%. Moreover, some Q2 and Q3 quart cements samples achieve a relatively high K2O content.
- The dissolution of feldspar and unstable volcanic rock fragments appears to have been the most important source of silica for the Q1 quartz cement. The variations in δ18O(water) and trace element composition from the Q2 quartz cement to the Q3 quartz cement suggest that hydrocarbon emplacement and water–rock interactions greatly altered the chemistry of the pore fluid. The dissolution of feldspar, clay mineral transformation, and pressure dissolution appear to have been the most important sources of silica for the Q2 and Q3 quartz cements. The transformation of the clay minerals in the external shale unit was a limited source of silica.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houseknecht, D.W. Influence of Grain Size and Thermal Maturity on Intergranular Pressure Solution and Quartz Cementation in a Quartz-Rich Sandstone. J. Sediment. Petrol. 1984, 54, 348–361. [Google Scholar] [CrossRef]
- Bjorlykke, K.; Egeberg, P. Quartz Cementation in Sedimentary Basins. AAPG Bull. 1993, 77, 1538–1548. [Google Scholar]
- Worden, R.H.; Morad, S. Quartz Cementation in Sandstones; International Association of Sedimentologists, Special Publication, Blackwell Science: Oxford, UK, 2000. [Google Scholar]
- Marchand, A.M.E.; Macaulay, C.I.; Haszeldine, R.S.; Fallick, A.E. Pore water evolution in oilfield sandstones: Constraints from oxygen isotope microanalyses of quartz cement. Chem. Geol. 2002, 191, 285–304. [Google Scholar] [CrossRef] [Green Version]
- Mcbride, E.F. Quartz cement in sandstones: A review. Earth-Sci. Rev. 1989, 26, 69–112. [Google Scholar] [CrossRef]
- Lander, R.H.; Larese, R.E.; Bonnell, L.M. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates. Aapg Bull. 2008, 92, 1537–1563. [Google Scholar] [CrossRef]
- Bukar, M. Does Oil Emplacement Stop Diagenesis and Quartz Cementation in Deeply Buried Sandstone Reservoirs; University of Liverpool: Liverpool, UK, 2013. [Google Scholar]
- Van de Kamp, P.C. Smectite-illite-muscovite transformations, quartz dissolution, and Silica release in shales. Clays Clay Miner. 2008, 56, 66–81. [Google Scholar] [CrossRef]
- Harwood, J.; Aplin, A.C.; Fialips, C.; Iliffe, J.E.; Kozdon, R.; Ushikubo, T.; Valley, J.W. Quartz cementation history of sandstones revealed by high-resolution SIMS oxygen isotope analysis. J. Sediment. Res. 2013, 83, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Oye, O.J.; Aplin, A.C.; Jones, S.J.; Gluyasa, J.G.; Bowenb, L.; Orlandc, I.J.; Valley, J.W. Vertical effective stress as a control on quartz cementation in sandstones. Mar. Pet. Geol. 2018, 98, 640–652. [Google Scholar] [CrossRef] [Green Version]
- Walderhaug, O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs. AAPG Bull. 1996, 80, 731–745. [Google Scholar]
- Walderhaug, O. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjørn field, northern North Sea. AAPG Bull. 2000, 84, 1325–1339. [Google Scholar] [CrossRef]
- Lander, R.H.; Walderhaug, O. Predicting porosity through simulating sandstone compaction and quartz cementation. AAPG Bull. 1999, 83, 433–449. [Google Scholar]
- Hiatt, E.E.; Kurtis, T.K.; Fayek, M.; Polito, P.; Holk, G.J.; Riciputi, L.R. Early quartz cements and evolution of paleohydraulic properties of basal sandstones in three Paleoproterozoic continental basins: Evidence from in situ δ18O analysis of quartz cements. Chem. Geol. 2007, 238, 19–37. [Google Scholar] [CrossRef]
- Hyodo, A.; Kozdon, R.; Pollington, A.D.; Valley, J.W. Evolution of quartz cementation and burial history of the Eau Claire Formation based on in situ oxygen isotope analysis of quartz overgrowths. Chem. Geol. 2014, 384, 168–180. [Google Scholar] [CrossRef]
- Longstaffe, F.J.; Ayalon, A. Oxygen-Isotope Studies of Clastic Diagenesis in the Lower Cretaceous Viking Formation, Alberta: Implications for the Role of Meteoric Water; Geological Society, Special Publications: London, UK, 1987; Volume 36, pp. 277–296. [Google Scholar]
- Guo, Z.W.; Deng, K.L.; Han, Y.H. Formation and Evolution of the Sichuan Basin; Geological Publishing House: Beijing, China, 1996; pp. 1–200, (In Chinese with English Abstract). [Google Scholar]
- Gao, B.; Tian, F.; Pan, R.; Zheng, W.H.; Li, R.; Huang, T.J.; Liu, Y.S. Hydrothermal Dolomite Paleokarst Reservoir Development in Wolonghe Gasfield, Sichuan Basin, Revealed by Seismic Characterization. Water 2020, 12, 579. [Google Scholar] [CrossRef] [Green Version]
- Yue, D.L.; Wu, S.H.; Xu, Z.Y.; Xiong, L.; Chen, D.X.; Ji, Y.L. Reservoir quality, natural fractures, and gas productivity of upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China. Mar. Pet. Geol. 2018, 89, 370–386. [Google Scholar] [CrossRef]
- Ni, Y.Y.; Dai, J.X.; Tao, S.Z.; Wu, X.Q.; Liao, F.R.; Wu, W.; Zhang, D.J. Helium signatures of gases from the Sichuan Basin, China. Org. Geochem. 2014, 74, 33–43. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Ran, Y.; Zhou, Z.L. Predictive distribution of high-quality reservoirs of tight gas sandstones by linking diagenesis to depositional facies: Evidence from Xu-2 sandstones in the Penglai area of the central Sichuan basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 97–111. [Google Scholar] [CrossRef]
- Tao, S.Z.; Zou, C.N.; Mi, J.K.; Gao, X.H.; Yang, C.; Zhang, X.X.; Fan, J.W. Geochemical comparison between gas in fluid inclusions and gas produced from the Upper Triassic Xujiahe Formation, Sichuan Basin, SW China. Org. Geochem. 2014, 74, 59–65. [Google Scholar] [CrossRef]
- Luo, L.; Meng, W.B.; Gluyas, J.; Tan, X.F.; Gao, X.Z.; Feng, M.S.; Kong, X.Y.; Shao, H.B. Diagenetic characteristics, evolution, controlling factors of diagenetic system and their impacts on reservoir quality in tight deltaic sandstones: Typical example from the Xujiahe Formation in Western Sichuan Foreland Basin, SW China. Mar. Pet. Geol. 2019, 103, 231–254. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.L.; Lv, Z.X.; Wen, Y.; Liu, S.B. Origins and Geochemistry of Dolomites and Their Dissolution in the Middle Triassic Leikoupo Formation, Western Sichuan Basin, China. Minerals 2018, 8, 289. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Guo, X.S.; Hao, F.; Zou, H.Y.; Li, P. Lithologic characteristics and diagenesis of the upper triassic Xujiahe Formation, yuanba area, northeastern Sichuan Basin. J. Nat. Gas Sci. Eng. 2016, 35, 1320–1335. [Google Scholar] [CrossRef]
- Xu, C.M.; Gehenn, J.M.; Zhao, D.H.; Xie, G.Y.; Teng, M.K. The fluvial and lacustrine sedimentary systems and stratigraphic correlation in the Upper Triassic Xujiahe Formation in Sichuan Basin, China. AAPG Bull. 2015, 99, 2023–2041. [Google Scholar] [CrossRef]
- Yuan, G.H.; Cao, Y.C.; Gluyas, J.; Cao, X.; Zhang, W.B. Petrography, fluid-inclusion, isotope, and trace-element constraints on the origin of quartz cementation and feldspar dissolution and the associated fluid evolution in arkosic sandstones. AAPG Bull. 2018, 102, 761–792. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; He, B.; Li, W.X.; Li, Q.L.; Gao, Y.Y.; Wang, X.C. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chem. Geol. 2012, 328, 195–207. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Aplin, A.C.; Warren, E.A. Oxygen isotopic indications of the mechanisms of silica transport and quartz cementation in deeply buried sandstones. Geology 1994, 22, 847–850. [Google Scholar] [CrossRef]
- Wilkinson, M.; Crowley, S.F.; Marshall, J.D. Model for the evolution of oxygen isotope ratios in the pore fluids of mudrocks during burial. Mar. Pet. Geol. 1992, 9, 98–105. [Google Scholar] [CrossRef]
- Girard, J.P.; Munz, I.A.; Johansen, H.; Hill, S.; Canham, A. Conditions and timing of quartz cementation in Brent reservoirs, Hild Field, North Sea: Constraints from fluid inclusions and SIMS oxygen isotope microanalysis. Chem. Geol. 2001, 176, 73–92. [Google Scholar] [CrossRef]
- Muttoni, G.; Mazza, M.; Mosher, D.; Katz, M.E.; Kent, D.V.; Balini, M. A Middle-Late Triassic (Ladinian-Rhaetian) carbon and oxygen isotope record from the Tethyan Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 399, 246–259. [Google Scholar] [CrossRef]
- Korte, C.; Kozur, H.W.; Veizer, J. δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 226, 287–306. [Google Scholar] [CrossRef]
- Liu, S.B.; Huang, S.J.; Shen, Z.M.; Lv, Z.X.; Song, R.C. Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan Province, China. Sci. China Earth Sci. 2014, 57, 1077–1092, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hurst, A.; Irwin, H. Geological modelling of clay diagenesis in sandstones. Clay Miner. 1982, 17, 5–22. [Google Scholar] [CrossRef]
- Franca, A.B.; Aranujo, L.M.; Maynard, J.B.; Potter, P.E. Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America. AAPG Bull. 2003, 87, 1073–1082. [Google Scholar] [CrossRef]
- Liu, Y.F.; Hu, W.X.; Cao, J.; Wang, X.L.; Tang, Q.S.; Wu, H.G.; Kang, X. Diagenetic constraints on the heterogeneity of tight sandstone reservoirs: A case study on the Upper Triassic Xujiahe Formation in the Sichuan Basin, southwest China. Mar. Pet. Geol. 2018, 92, 650–669. [Google Scholar] [CrossRef]
- Sun, H.T.; Zhong, D.K.; Zhan, W.J. Reservoir characteristics in the Cretaceous volcanic rocks of Songliao Basin, China: A case of dynamics and evolution of the volcano-porosity and diagenesis. Energy Explor. Exploit. 2019, 37, 607–625. [Google Scholar] [CrossRef] [Green Version]
- Leder, F.; Park, W. Porosity reduction in sandstone by quartz overgrowth. Aapg Bull. 1986, 70, 1713–1728. [Google Scholar]
- Morad, S.; AlDahan, A.A. A SEM study of diagenetic kaolinitization and illitization of detrital feldspar in sandstones. Clay Miner. 1987, 22, 237–243. [Google Scholar] [CrossRef]
- Zaid, S.M. Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. J. Afr. Earth Sci. 2012, 66–67, 56–71. [Google Scholar] [CrossRef]
- Perry, E.A.; Hower, J. Burial diagenesis in Gulf Coast pelitic sediments. Clay Clay Miner. 1970, 18, 167–177. [Google Scholar] [CrossRef]
- Lynch, F.L.; Mack, L.E.; Land, L.S. Burial diagenesis of illite/smectite in shales and the origins of authigenic quartz and secondary porosity in sandstones. Geochim. Cosmochim. Acta 1997, 61, 1995–2006. [Google Scholar] [CrossRef]
- Chang, H.K.; Mackenzie, F.T.; Schoonmaker, J. Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays Clay Miner. 1986, 34, 407–423. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Bjorkum, P.A.; Murphy, W.M. A petrographic and computational investigation of quartz cementation and porosity reduction in North Sea sandstones. Am. J. Sci. 1996, 296, 420–452. [Google Scholar] [CrossRef]
- Walderhaug, O. Kaolin-Coating of Stylolites, Effect on Quartz Cementation and General Implications for Dissolution at Mineral Interfaces. J. Sediment. Res. 2006, 76, 234–243. [Google Scholar] [CrossRef]
Point | Sample ID | δ18O‰(SMOW) | 2SE | Cements and Detrital Quartz Grains |
---|---|---|---|---|
1 | 44-2 | 15.35 | 0.13 | Q3 quartz |
2 | 44-1 | 17.99 | 0.18 | Q2 quartz |
3 | 44 | 18.56 | 0.22 | Q1 quartz |
4 | 44-3 | 8.21 | 0.18 | Detrital quartz grain |
5 | 77-3 | 12.79 | 0.12 | Q3 quartz |
6 | 77-5 | 17.97 | 0.22 | Q2 quartz |
7 | 77-2 | 18.30 | 0.19 | Q1 quartz |
8 | 77-4 | 7.98 | 0.30 | Detrital quartz grain |
9 | 77-1 | 7.20 | 0.20 | Detrital quartz grain |
10 | 77 | 6.76 | 0.22 | Detrital quartz grain |
11 | x10-1 | 14.54 | 0.12 | Q3 quartz |
12 | x10-2 | 14.84 | 0.20 | Q3 quartz |
13 | x10-5 | 15.00 | 0.18 | Q2 quartz |
14 | x10-4 | 17.82 | 0.19 | Q2 quartz |
15 | x10-3 | 15.99 | 0.18 | Q2 quartz |
16 | x10-8 | 18.32 | 0.20 | Q1 quartz |
17 | x10-9 | 18.91 | 0.15 | Q1 quartz |
18 | x10-12 | 7.77 | 0.18 | Detrital quartz grain |
19 | x10-10 | 7.44 | 0.18 | Detrital quartz grain |
20 | x10-11 | 6.56 | 0.19 | Detrital quartz grain |
21 | 121-2 | 14.05 | 0.08 | Q3 quartz |
22 | 121-3 | 13.98 | 0.24 | Q3 quartz |
23 | 121-4 | 13.91 | 0.31 | Q3 quartz |
24 | 121 | 13.78 | 0.28 | Q3 quartz |
25 | 121-7 | 15.47 | 0.13 | Q3 quartz |
26 | 121-6 | 13.52 | 0.18 | Q3 quartz |
27 | 121-8 | 16.44 | 0.19 | Q2 quartz |
28 | 121-9 | 16.11 | 0.19 | Q2 quartz |
29 | 121-10 | 19.05 | 0.23 | Q1 quartz |
30 | 121-11 | 18.45 | 0.18 | Q1 quartz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Lv, Z.; Wang, H.; Wu, J.; Zhang, S. The Origin of Quartz Cement in the Upper Triassic Second Member of the Xujiahe Formation Sandstones, Western Sichuan Basin, China. Water 2021, 13, 1890. https://doi.org/10.3390/w13141890
Ren J, Lv Z, Wang H, Wu J, Zhang S. The Origin of Quartz Cement in the Upper Triassic Second Member of the Xujiahe Formation Sandstones, Western Sichuan Basin, China. Water. 2021; 13(14):1890. https://doi.org/10.3390/w13141890
Chicago/Turabian StyleRen, Jie, Zhengxiang Lv, Honghui Wang, Jianmeng Wu, and Shunli Zhang. 2021. "The Origin of Quartz Cement in the Upper Triassic Second Member of the Xujiahe Formation Sandstones, Western Sichuan Basin, China" Water 13, no. 14: 1890. https://doi.org/10.3390/w13141890
APA StyleRen, J., Lv, Z., Wang, H., Wu, J., & Zhang, S. (2021). The Origin of Quartz Cement in the Upper Triassic Second Member of the Xujiahe Formation Sandstones, Western Sichuan Basin, China. Water, 13(14), 1890. https://doi.org/10.3390/w13141890