Assessment of Some Clay-Based Products Available on Market and Designed for Topical Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Description
2.2. Methods
2.2.1. Mineralogy and Granulometry
2.2.2. Physicochemical Properties
3. Results
3.1. Mineralogy and Granulometry
3.2. Physicochemical Properties
3.2.1. Chemical Composition
- sample C13’s high concentration of Al2O3 reflects its high kaolinite content;
- the highest values on K2O and Fe2O3 can be associated to mica/illite contents and distinguished C5, C9, C11, C12, and C14 samples;
- samples C4 and C6 reveal higher values of CaO and LOI, which can be associated with their carbonate minerals composition (calcite and dolomite contents);
- samples C2 and C3 are differentiated by Na2O content reflecting the halite (C3) and smectite (C2) contents;
- sample C15 is distinguished by the MgO value related to its dolomite content and due to the nature of the clay, which is a magnesian smectite.
3.2.2. Cation Exchange Capacity
3.2.3. pH
3.2.4. Specific Surface Area, Expandability, Abrasiveness Index, and Relative Density
3.2.5. Cooling Kinetics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, C.D.S.F. Healing and edible clays: A review of basic concepts, benefits and risks. Environ. Geochem. Health 2018, 40, 1739–1765. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.; Carretero, M.I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J.L.; Teixeira, F.; Rautureau, M.; Delgado, R. Peloids and pelotherapy: Historical evolution, classification and glossary. Appl. Clay Sci. 2013, 75–76, 28–38. [Google Scholar] [CrossRef]
- Calderan, A.; Carraro, A.; Honisch, C.; Lalli, A.; Ruzza, P.; Tateo, F. Euganean therapeutic mud (NE Italy): Chlorophyll a variations over two years and relationships with mineralogy and geochemistry. Appl. Clay Sci. 2020, 185, 105361. [Google Scholar] [CrossRef]
- Komar, D.; Dolenec, T.; Dolenec, M.; Vrhovnik, P.; Lojen, S.; Belak, Z.L.; Kniewald, G.; Šmuc, R. Physico-chemical and geochemical characterization of Makirina Bay peloid mud and its evaluation for potential use in balneotherapy (N Dalmatia, Republic of Croatia). Indian J. Tradit. Knowl. 2015, 1, 5–12. [Google Scholar]
- Da Silva, P.S.C.; Torrecilha, J.K.; Gouvea, P.F.D.M.; Máduar, M.F.; de Oliveira, S.M.B.; Scapin, M.A. Chemical and radiological characterization of Peruíbe Black Mud. Appl. Clay Sci. 2015, 118, 221–230. [Google Scholar] [CrossRef]
- Baschini, M.; Pettinari, G.; Vallés, J.; Aguzzi, C.; Cerezo, P.; Galindo, A.L.; Setti, M.; Viseras, C. Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Appl. Clay Sci. 2010, 49, 205–212. [Google Scholar] [CrossRef]
- Khiari, I.; Mefteh, S.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C.; López-Galindo, A.; Jamoussi, F.; Iborra, C.V. Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Appl. Clay Sci. 2014, 101, 141–148. [Google Scholar] [CrossRef]
- Khiari, I.; Sánchez-Espejo, R.; García-Villén, F.; Cerezo, P.; Aguzzi, C.; López-Galindo, A.; Jamoussi, F.; Viseras, C. Rheology and cation release of tunisian medina mud-packs intended for topical applications. Appl. Clay Sci. 2019, 171, 110–117. [Google Scholar] [CrossRef]
- Tateo, F.; Summa, V. Element mobility in clays for healing use. Appl. Clay Sci. 2007, 36, 64–76. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Appl. Clay Sci. 2009, 46, 73–80. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl. Clay Sci. 2010, 47, 171–181. [Google Scholar] [CrossRef]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Galindo, A.L. Uses of clay minerals in semisolid health care and therapeutic products. Appl. Clay Sci. 2007, 36, 37–50. [Google Scholar] [CrossRef]
- Carretero, M. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Armijo, F.; Maraver, F.; Pozo, M.; Carretero, M.I.; Armijo, O.; Fernández-Torán, M.; Fernández-González, M.V.; Corvillo, I. Thermal behaviour of clays and clay-water mixtures for pelotherapy. Appl. Clay Sci. 2016, 126, 50–56. [Google Scholar] [CrossRef]
- Karakaya, M.Ç.; Karakaya, N.; Sarıoğlan, Ş.; Koral, M. Some properties of thermal muds of some spas in Turkey. Appl. Clay Sci. 2010, 48, 531–537. [Google Scholar] [CrossRef]
- Veniale, F.; Bettero, A.; Jobstraibizer, P.; Setti, M. Thermal muds: Perspectives of innovations. Appl. Clay Sci. 2007, 36, 141–147. [Google Scholar] [CrossRef]
- Casás, L.; Pozo, M.; Gómez, C.; Pozo, E.; Bessières, L.; Plantier, F.; Legido, J. Thermal behavior of mixtures of bentonitic clay and saline solutions. Appl. Clay Sci. 2013, 72, 18–25. [Google Scholar] [CrossRef]
- Tateo, F.; Ravaglioli, A.; Andreoli, C.; Bonina, F.; Coiro, V.; Degetto, S.; Giaretta, A.; Orsini, A.M.; Puglia, C.; Summa, V. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl. Clay Sci. 2009, 44, 83–94. [Google Scholar] [CrossRef]
- Quintela, A.; Terroso, D.; da Silva, E.F.; Rocha, F. Certification and quality criteria of peloids used for therapeutic purposes. Clay Miner. 2012, 47, 441–451. [Google Scholar] [CrossRef]
- Favero, J.D.S.; Parisotto-Peterle, J.; Weiss-Angeli, V.; Brandalise, R.N.; Gomes, L.B.; Bergmann, C.P.; dos Santos, V. Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Appl. Clay Sci. 2016, 124–125, 252–259. [Google Scholar] [CrossRef]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Miner. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- Cozzi, F.; Ciprian, L.; Carrara, M.; Galozzi, P.; Zanatta, E.; Scanu, A.; Sfriso, P.; Punzi, L. Balneotherapy in chronic inflammatory rheumatic diseases—A narrative review. Int. J. Biometeorol. 2018, 62, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Morer, C.; Roques, C.-F.; Françon, A.; Forestier, R.; Maraver, F. The role of mineral elements and other chemical compounds used in balneology: Data from double-blind randomized clinical trials. Int. J. Biometeorol. 2017, 61, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Forestier, R.; Forestier, F.B.E.; Francon, A. Spa therapy and knee osteoarthritis: A systematic review. Ann. Phys. Rehabil. Med. 2016, 59, 216–226. [Google Scholar] [CrossRef]
- Tenti, S.; Cheleschi, S.; Galeazzi, M.; Fioravanti, A. Spa therapy: Can be a valid option for treating knee osteoarthritis? Int. J. Biometeorol. 2015, 59, 1133–1143. [Google Scholar] [CrossRef]
- Güngen, G.; Ardic, F.; Fιndıkoğlu, G.; Rota, S. The effect of mud pack therapy on serum YKL-40 and hsCRP levels in patients with knee osteoarthritis. Rheumatol. Int. 2012, 32, 1235–1244. [Google Scholar] [CrossRef]
- Bellometti, S.; Cecchettin, M.; Galzigna, L. Mud pack therapy in osteoarthrosis: Changes in serum levels of chondrocyte markers. Clin. Chim. Acta 1997, 268, 101–106. [Google Scholar] [CrossRef]
- Viseras, C.; Sánchez-Espejo, R.; Palumbo, R.; Liccardi, N.; García-Villén, F.; Borrego-Sánchez, A.; Massaro, M.; Riela, S.; López-Galindo, A. Clays in cosmetics and personal-care products. Clays Clay Miner. 2021, 69, 561–575. [Google Scholar] [CrossRef]
- Bastos, C.M.; Rocha, F.; Gomes, N.; Marinho-Reis, P. The Challenge in Combining Pelotherapy and Electrotherapy (Iontophoresis) in One Single Therapeutic Modality. Appl. Sci. 2022, 12, 1509. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D. Mud therapy and skin microbiome: A review. Int. J. Biometeorol. 2018, 62, 2037–2044. [Google Scholar] [CrossRef]
- Knorst-Fouran, A.; Casás, L.; Legido, J.; Coussine, C.; Bessières, D.; Plantier, F.; Lagière, J.; Dubourg, K. Influence of dilution on the thermophysical properties of Dax peloid (TERDAX®). Thermochim. Acta 2012, 539, 34–38. [Google Scholar] [CrossRef]
- Rossi, D.; Jobstraibizer, P.G.; Bosco, C.D.; Bettero, A. A combined chemico-mineralogical and tensiometric approach for evaluation of Euganean Thermal Mud (ETM) quality. J. Adhes. Sci. Technol. 2013, 27, 30–45. [Google Scholar] [CrossRef]
- Poli, A.; Romano, I.; Cordella, P.; Orlando, P.; Nicolaus, B.; Berrini, C.C. Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 2009, 13, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Ortega, E.; Gálvez, I.; Hinchado, M.D.; Guerrero, J.; Martín-Cordero, L.; Torres-Piles, S. Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical benefits of pelotherapy in osteoarthritis patients: Regulation of the altered inflammatory and stress feedback response. Int. J. Biometeorol. 2017, 61, 1777–1785. [Google Scholar] [CrossRef]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Chfaira, R.; Mounir, C. Interfacial electrochemical properties of natural Moroccan Ghassoul (stevensite) clay in aqueous suspension. Heliyon 2020, 6, e03634. [Google Scholar] [CrossRef]
- Oliveira, A.; Rocha, F.; Rodrigues, A.; Jouanneau, J.; Dias, A.; Weber, O.; Gomes, C. Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Prog. Oceanogr. 2002, 52, 233–247. [Google Scholar] [CrossRef]
- Galhano, C.; Rocha, F.; Gomes, C. Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the ‘Argilas de Aveiro’ Formation (Portugal). Clay Miner. 1999, 34, 109–116. [Google Scholar] [CrossRef]
- Rebelo, M.; Viseras, C.; López-Galindo, A.; Rocha, F.; da Silva, E.F. Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Appl. Clay Sci. 2011, 52, 219–227. [Google Scholar] [CrossRef]
- Quintela, A.; Costa, C.; Terroso, D.; Rocha, F. Liquid limit determination of clayey material by Casagrande method, fall cone test and EBS parameter. Mater. Technol. 2014, 29 (Suppl. S3), B82–B87. [Google Scholar] [CrossRef]
- Quintela, A.; Costa, C.; Terroso, D.; Rocha, F. Abrasiveness index of dispersions of Portuguese clays using the Einlehner method: Influence of clay parameters. Clay Miner. 2014, 49, 27–34. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology; Wiley: New York, NY, USA, 1986; Volume 2, p. 646. ISBN 0-471-83743-1. [Google Scholar]
- Sánchez-Espejo, R.; Aguzzi, C.; Cerezo, P.; Salcedo, I.; López-Galindo, A.; Viseras, C. Folk pharmaceutical formulations in western Mediterranean: Identification and safety of clays used in pelotherapy. J. Ethnopharmacol. 2014, 155, 810–814. [Google Scholar] [CrossRef] [PubMed]
- García-Villén, F.; Sánchez-Espejo, R.; Borrego-Sánchez, A.; Cerezo, P.; Perioli, L.; Viseras, C. Safety of Nanoclay/Spring Water Hydrogels: Assessment and Mobility of Hazardous Elements. Pharmaceutics 2020, 12, 764. [Google Scholar] [CrossRef] [PubMed]
- Bund, B. Technically avoidable heavy metal contents in cosmetic products. J. Consum. Prot. Food Saf. 2017, 12, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C. Argilas—Aplicações na Indústria. Aveiro; O Liberal-Empresa de Artes Gráficas, Lda.: Funchal, Portugal, 2002; ISBN 972-8684-12-6. [Google Scholar]
- Karakaya, M.; Karakaya, N.; Aydin, S. The physical and physicochemical properties of some Turkish thermal muds and pure clay minerals and their uses in therapy. Turk. J. Earth Sci. 2017, 26, 395–409. [Google Scholar] [CrossRef]
- Hepp, N.M.; Mindak, W.R.; Gasper, J.W.; Thompson, C.B.; Barrows, J.N. Survey of cosmetics for arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel content. J. Cosmet. Sci. 2014, 65, 125–145. [Google Scholar] [PubMed]
- Aldayel, O.; Hefne, J.; Alharbi, K.N.; Al-Ajyan, T. Heavy Metals Concentration in Facial Cosmetics. Nat. Prod. Chem. Res. 2018, 6, 1. [Google Scholar] [CrossRef]
- Petry, T.; Bury, D.; Fautz, R.; Hauser, M.; Huber, B.; Markowetz, A.; Mishra, S.; Rettinger, K.; Schuh, W.; Teichert, T. Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications. Toxicol. Lett. 2017, 280, 70–78. [Google Scholar] [CrossRef]
- Iwegbue, C.M.; Bassey, F.I.; Obi, G.; Tesi, G.; Martincigh, B. Concentrations and exposure risks of some metals in facial cosmetics in Nigeria. Toxicol. Rep. 2016, 3, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Ma’Or, Z.; Halicz, L.; Portugal-Cohen, M.; Russo, M.Z.; Robino, F.; Vanhaecke, T.; Rogiers, V. Safety evaluation of traces of nickel and chrome in cosmetics: The case of Dead Sea mud. Regul. Toxicol. Pharmacol. 2015, 73, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Marinovich, M.; Boraso, M.S.; Testai, E.; Galli, C.L. Metals in cosmetics: An a posteriori safety evaluation. Regul. Toxicol. Pharmacol. 2014, 69, 416–424. [Google Scholar] [CrossRef]
- Bocca, B.; Pino, A.; Alimonti, A.; Forte, G. Toxic metals contained in cosmetics: A status report. Regul. Toxicol. Pharmacol. 2014, 68, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Giordani, M.; Mattioli, M.; Cangiotti, M.; Fattori, A.; Ottaviani, M.F.; Betti, M.; Ballirano, P.; Pacella, A.; Di Giuseppe, D.; Scognamiglio, V.; et al. Characterisation of potentially toxic natural fibrous zeolites by means of electron paramagnetic resonance spectroscopy and morphological-mineralogical studies. Chemosphere 2022, 291, 133067. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.; Carretero, M.I.; Maraver, F.; Pozo, E.; Gómez, I.; Armijo, F.; Rubi, J.A.M. Composition and physico-chemical properties of peloids used in Spanish spas: A comparative study. Appl. Clay Sci. 2013, 83–84, 270–279. [Google Scholar] [CrossRef]
- Summa, V.; Tateo, F. The use of pelitic raw materials in thermal centres: Mineralogy, geochemistry, grain size and leaching tests. Examples from the Lucania area (southern Italy). Appl. Clay Sci. 1998, 12, 403–417. [Google Scholar] [CrossRef]
- De Gomes, C.S.F.; Silva, J.B.P. Minerals and clay minerals in medical geology. Appl. Clay Sci. 2007, 36, 4–21. [Google Scholar] [CrossRef]
- Galindo, A.L.; Viseras, C.; Cerezo, P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sci. 2007, 36, 51–63. [Google Scholar] [CrossRef]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef]
- Ferrand, T.; Yvon, J. Thermal properties of clay pastes for pelotherapy. Appl. Clay Sci. 1991, 6, 21–38. [Google Scholar] [CrossRef]
- Veniale, F.; Barberis, E.; Carcangiu, G.; Morandi, N.; Setti, M.; Tamanini, M.; Tessier, D. Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters. Appl. Clay Sci. 2004, 25, 135–148. [Google Scholar] [CrossRef]
Commercial ID | Country | Composition |
---|---|---|
C1 2 | Spain | AQUA (mineral medicinal water) bentonite, aloe barbadensis extract, menta piperita extract, arnica montana. |
C2 2 | Spain | AQUA (mineral medicinal water), bentonite, aloe barbadensis extract, menta piperita extract. |
C3 2 | Spain | AQUA (mineral medicinal water), bentonite, aloe barbadensis extract, calendula officinalis extract, menta piperita extract. |
C4 2 | Israel | Silt (Dead Sea mud), Aqua (Mineral Thermal water), Maris Slat (Dead Sea Salt), Phenoxyethanol, Caprylyl Glycol, Chlorphenesin. |
C5 2 | France | Controlled combination of muds from L’Adour river, mineral water and biological ingredients (Clostridium bifermentans and Cyanobacteria) |
C6 2 | Italy | Solum Fullonum (Fuller’s earth) AQUA Termale di Abano, phenoxyethanol, sodium dehydroacetate, ethylhexyglycerin, citric acid |
C7 1 | Hungary | Zeomineral Products 100% natural mineral (zeolite)Internal use. |
C8 2 | Argentine | Bentonite, volcanic sediments, Kauline, Petrolatum Glycerin, Cetilic alcohol, isopropyl miristate, Triethanolamin, Etoxilaed lanolin, Polysorbate 20, Carbopol, Pentaglycan, Methylparaben, Propylparaben, Parfum, Deionized water. |
C9 1 | France | Aqua, Kauline, illite, montmorillonite, propanediol, glyceryl Undecylenate (natural origin ingredients) |
C10 2 | Spain | - |
C11 1 | Spain | Green Montmorillonite |
C12 1 | Spain | Yellow Montmorillonite |
C13 1 | Spain | Kaoline |
C14 1 | Spain | Red Illite |
C15 1 | Spain | Ghassoul (Morocco) |
C16 2 | Portugal | - |
ID | Label Indications for Use | Therapeutic or Aesthetic Action | ||||
---|---|---|---|---|---|---|
Temperature | Application Dose | Action Time and Procedure | Periodic Application | Adverse Effects Caution | ||
C1 | 2 min/43 °C (Microwave) 15 min (double boiler method) | Not quantified (“enough quantity”) | Leave 20 min covered with transparent film. Remove simultaneously with film, clean with water and dry. | 2–3 times a week. Recommended daily application | - | Antioxidant action on the skin and other body parts. It effectively neutralizes and combats the damage caused by the action of free radicals that cause aging, causing a barrier effect on them and consequently preventing and improving their symptoms. Muscle relaxant (relief from contractures). |
C2 | 2 min/43 °C (Microwave) 15 min (double boiler method) | Not quantified (“enough quantity”) | Leave 20 min covered with transparent film. Remove simultaneously with film, clean with water and dry. | 2–3 times a week. Recommended daily application | - | Antioxidant action on the skin and other body parts. It effectively neutralizes and combats the damage caused by the action of free radicals that cause aging, causing a barrier effect on them and consequently preventing and improving their symptoms. Muscle relaxant (relief from contractures). |
C3 | Cold application | Not quantified (“enough quantity”) | Leave 15 min covered with transparent film. Remove simultaneously with film, clean with water and dry. | 2–3 times a week. Recommended daily application | - | Effective and efficiency action in the immediate and prolonged relief of discomfort by feeling tired and heavy legs, preserving the biological venous structures. Delays the appearance of varicose veins. Antioxidant action on the skin and other body parts. It effectively neutralizes and fights the damage caused by the action of free radicals that cause aging, causing a barrier effect on them. Emollient, exfoliating, revitalizing, sebum regulator, keratolytic and keratoplastic effect. |
C4 | Cold application and Microwave or double boiler method—2 min/medium temperature | Not quantified (“spread generously on the skin”) | Leave 5 to 10 min and rinse well with water. To relieve sore muscles and joints, heat the package | - | Avoid open wounds and irritated skin areas | The Black Mineral Peloid acts in depth, cleansing, purifying and restoring the skin’s natural moisture balance for a smooth, radiant, revitalized look [30]. |
C5 | Hot application | - | - | - | - | Musculoskeletal disorders [1,31] |
C6 | Cold application | Mix 1/3 of clay (500 g) and 1/3 of colored clay (200 g). | Body clay massage for 10 min. Leave 15 min for clay action and then clean and relax 10 min in a hot bath. At the end hydrate the body with thermal water and/or Abano Spa body cream with a massage. | - | - | Dermatological beneficiation. Antiage protection; antiage intensive; body tonic, body slim and microscrub effect. Musculoskeletal disorders [22,30,32,33] |
C7 | - | - | - | - | - | Treatment of diarrhea, abdominal pain and heartburn. For the treatment and prevention and relief of food allergies, food intolerance, enteric infections and mild food poisoning. Medical supplement for additional treatment and reduction in symptoms of chronic digestive disorders, irritable bowel syndrome (IBS), ulcerative colitis and cholecystopathy (gallstone). |
C8 | Cold application | - | Applied as a face mask for 10–15 min. Clean with water. | 2 times a week. Perfervidly by the morning and after bath. | Avoid eyes and lips contact | Dermatological beneficiation. Decongestant, anti-inflammatory, purifying, refreshing and vigorous properties. Cell regeneration stimulation and promote better blood circulation in the treated area. Strengthen the skin tension, toning and firming it. It generates skin softness [30]. |
C9 | Cold application | Not quantified (“thick layer”) | Applied as a face and neck mask for 10 min. Clean with warm water, dry, moisturize with cream. Apply as a cataplasm leaving about 2–3 cm thick of clay in contact with the skin. Wrap with thin gauze and leave on for 1 h. Remove the clay, clean with warm water and dry. | - | Avoid contact with eyes and lips. Avoid sensitized skin. | Beauty mask. Effective on mixed and oily skins. Absorbent, purifying and regenerating properties It absorbs and regulates excess sebum, removes impurities, revitalizes the skin and promotes cell renewal. It generates skin softness. |
C10 | Hot application. | - | Cataplasm and mud bath | - | - | Musculoskeletal disorders [34] |
C11 | Cold application | Not quantified (“Make a paste with a little flower water”) | Applied as a face mask. Leave for 15 min before rinsing off. May add a few drops of essential oil to the mixture. | - | - | Purifying and demineralizing, particularly suitable for gentle cleansing of oily skin. |
C12 | Cold application | Not quantified (“Make a paste with a little flower water”) | Applied as a face mask. Leave for 15 min before rinsing off. May add a few drops of essential oil to the mixture. | - | - | Highly absorbent, particularly suitable for deep cleansing of oily skin. |
C13 | Cold application | Not quantified (“Make a paste with a little flower water”) | Applied as a face mask. Leave for 15 min before rinsing off. May add a few drops of essential oil to the mixture and a teaspoon of vegetable oil to the mixture. | - | - | Soothing and remineralizer, particularly suitable for sensitive and irritated skin. |
C14 | Cold application | Not quantified (“Make a paste with a little flower water”) | Applied as a face mask. Leave for 15 min before rinsing off. May add a few drops of essential oil to the mixture. | - | - | Highly absorbent, particularly suitable for deep cleansing of oily skin. |
C15 | Cold application | Not quantified (“Make a paste with a little flower water”) | Applied to the hair and to the hair scalp. Leave for 15 min before rinsing with a mild shampoo. May add a few drops of essential oil to the mixture. | - | - | Hair care restores shine and volume. Ghassoul allows the absorption of excess sebum and the elimination of impurities [35]. |
C16 | Hot application | - | Applied as a cataplasm for 12–15 min. | - | - | Musculoskeletal disorders—application on the upper back |
Qtz | Fsp | Pl | Opl | Tlc | Hmt | M-M | Cal | Dol | Gyp | Arg | Sd | Ant | Crs | Pyrt | Hlt | Zlt | Phy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 21 | 3 | 3 | - | - | - | - | 4 | - | - | - | - | - | - | - | - | - | 69 |
C2 | 7 | 1.5 | 1 | - | - | - | - | trace | - | - | - | - | - | - | - | 2.5 | - | 88 |
C3 | 11 | 6 | 23 | - | - | - | - | 6 | - | - | - | - | - | - | - | 7 | - | 47 |
C4 | 26 | 2 | 4 | - | - | - | - | 50 | 8 | - | - | - | - | - | - | 3 | - | 7 |
C5 | 49 | 2 | 6 | - | - | - | - | - | 1 | - | - | - | 2 | - | - | - | - | 40 |
C6 | 13 | 2 | 4 | - | - | - | - | 37 | 6 | - | - | - | 3 | - | - | - | - | 35 |
C7 | 6 | 5 | 3 | 11 | 5 | - | - | 1 | 9 * | - | - | - | - | - | - | - | 32 | 28 |
C8 | 19 | - | - | 4 | - | - | 3 | - | - | - | - | - | - | - | 10 ** | - | - | 64 |
C9 | 14 | - | - | - | - | - | - | 35 | - | - | - | 8 | 7 | - | - | 2 | - | 35 |
C10 | 26 | 15 | 1 | - | - | - | - | 22 | - | - | - | - | - | - | 1 | - | - | 35 |
C11 | 6 | - | - | - | - | - | - | 5 | - | - | 3 | - | - | - | - | - | - | 86 |
C12 | 27 | 5 | 2 | - | - | - | - | - | - | 1 | - | 9 | - | 5 | - | - | - | 51 |
C13 | 4 | trace | trace | - | - | - | - | - | trace | - | - | trace | - | - | - | - | - | 96 |
C14 | 25 | 5 | 1 | - | - | 1 | - | 6 | - | - | - | 5 | 4 | - | - | 2 | - | 51 |
C15 | 9 | 1 | 1 | - | - | 2 | - | - | 33 | 5 | - | trace | - | - | - | - | - | 49 |
C16 | 15 | 6 | 4 | - | - | - | - | 4 | - | - | - | - | - | 4 | - | - | - | 77 |
Phyllosilicates | |||
---|---|---|---|
Mca/Ill | Kln | Sme | |
C1 | 44 | 4 | 52 |
C2 | - | - | 100 |
C3 | 49 | - | 51 |
C4 | - | 100 | trace |
C5 | 62 | 36 | 2 |
C6 | 48 | 39 | 13 |
C7 | 100 | - | trace |
C8 | 21 | 39 | 40 |
C9 | 46 | 54 | - |
C10 | 59 | 30 | 11 |
C11 | 76 | - | 24 |
C12 | 64 | 36 | - |
C13 | - | 96 | 4 |
C14 | 85 | 14 | trace |
C15 | - | - | 100 |
C16 | 18 | 2 | 80 |
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | Na2O | K2O | SO3 | MnO | MgO | TiO2 | P2O5 | LOI * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 50.73 | 9.45 | 4.23 | 1.55 | 2.15 | 2.39 | 0.08 | 0.09 | 19.25 | 0.49 | 0.19 | 8.93 |
C2 | 49.17 | 5.14 | 1.43 | 1.01 | 4.17 | 1.07 | 1.04 | 0.03 | 22.16 | 0.25 | 0.08 | 12.47 |
C3 | 49.20 | 7.99 | 3.39 | 1.31 | 3.36 | 1.85 | 1.11 | 0.04 | 19.43 | 0.44 | 0.05 | 10.25 |
C4 | 17.90 | 5.34 | 3.00 | 20.95 | 0.85 | 2.25 | 0.91 | 0.05 | 7.24 | 0.51 | 0.22 | 31.71 |
C5 | 61.75 | 19.14 | 7.11 | 0.81 | 0.60 | 2.75 | 0.10 | 0.07 | 1.25 | 1.04 | 0.29 | 4.86 |
C6 | 35.47 | 11.11 | 4.94 | 19.48 | 0.86 | 2.51 | 0.62 | 0.08 | 4.53 | 0.51 | 0.13 | 19.37 |
C7 | 70.83 | 12.02 | 1.29 | 1.76 | 0.16 | 3.86 | 0.01 | 0.02 | 0.70 | 0.08 | 0.02 | 9.11 |
C8 | 28.65 | 13.10 | 3.02 | 0.30 | 1.70 | 0.71 | 8.19 | 0.03 | 0.70 | 0.59 | 0.13 | 42.64 |
C9 | 46.21 | 25.20 | 4.94 | 2,71 | 0.13 | 5.21 | 0.13 | 0.05 | 2.14 | 0.47 | 0.16 | 12.37 |
C10 | 42.77 | 12.12 | 4.99 | 13.41 | 0.29 | 1.73 | 1.25 | 0.10 | 1.90 | 0.74 | 0.15 | 20.39 |
C11 | 50.53 | 16.73 | 6.64 | 5.10 | 1.20 | 3.94 | 0.50 | 0.13 | 3.78 | 0.59 | 0.34 | 10.17 |
C12 | 59.14 | 22.38 | 6.93 | 0.16 | 0.48 | 3.86 | 0.05 | 0.03 | 0.57 | 1.11 | 0.16 | 4.90 |
C13 | 50.04 | 31.01 | 2.05 | 0.79 | 0.09 | 1.34 | 0.04 | <d.l. | 1.46 | 0.33 | 0.13 | 12.46 |
C14 | 52.4 | 20.24 | 7.19 | 4.16 | 0.33 | 4.13 | 0.04 | 0.1 | 2.37 | 0.87 | 0.16 | 7.83 |
C15 | 39.05 | 3.45 | 1.17 | 9.89 | 0.47 | 0.77 | 5.14 | 0.01 | 20.20 | 0.17 | 0.04 | 16.82 |
C16 | 63.89 | 14.72 | 3.51 | 2.67 | 2.94 | 1.26 | 0.63 | 0.05 | 5.73 | 0.28 | 0.05 | 3.84 |
Mean | 47.98 | 14.32 | 4.11 | 5.38 | 1.24 | 2.48 | 1.24 | 0.05 | 7.09 | 0.53 | 0.14 | 14.26 |
Median | 49.62 | 12.81 | 3.87 | 2.21 | 0.73 | 2.32 | 0.56 | 0.05 | 3.07 | 0.50 | 0.14 | 11.31 |
Min. | 17.90 | 3.45 | 1.17 | 0.16 | 0.09 | 0.71 | 0.01 | 0.00 | 0.57 | 0.08 | 0.02 | 3.84 |
Max. | 70.83 | 31.01 | 7.19 | 20.95 | 4.17 | 5.21 | 8.19 | 0.13 | 22.16 | 1.11 | 0.34 | 42.64 |
St. Dev. | 13.35 | 7.72 | 2.10 | 6.83 | 1.27 | 1.37 | 2.23 | 0.04 | 8.09 | 0.29 | 0.09 | 10.34 |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eigenvalue | 4.59 | 2.71 | 1.71 | 1.15 | 0.46 | 0.44 | 0.38 | 0.30 | 0.19 | 0.07 | 0.00 | 0.00 |
Mean | 2.74 | 2.19 | 1.77 | 1.43 | 1.13 | 0.89 | 0.68 | 0.48 | 0.32 | 0.20 | 0.01 | 0.03 |
Upper limit | 3.29 | 2.51 | 2.04 | 1.66 | 1.35 | 1.08 | 0.84 | 0.64 | 0.47 | 0.31 | 0.18 | 0.08 |
Lower limit | 2.35 | 1.89 | 1.54 | 1.21 | 0.94 | 0.70 | 0.50 | 0.34 | 0.21 | 0.11 | 0.04 | 0.00 |
Variance explained % | 38.24 | 22.56 | 14.24 | 9.58 | 3.80 | 3.70 | 3.18 | 2.50 | 1.57 | 0.61 | 0.02 | 0.02 |
Cumulative Variance % | 38.24 | 60.79 | 75.03 | 84.61 | 88.41 | 92.10 | 95.28 | 97.78 | 99.36 | 99.96 | 99.98 | 100 |
F1 | F2 | F3 | F4 | Samples | F1 | F2 | F3 | F4 | |
---|---|---|---|---|---|---|---|---|---|
SiO2 | −0.42 | 0.84 | −0.01 | 0.03 | C1 | 0.12 | 0.67 | 1.98 | 0.25 |
Al2O3 | −0.70 | 0.20 | −0.54 | 0.14 | C2 | 2.97 | 1.71 | 1.60 | 0.54 |
Fe2O3 | −0.88 | −0.23 | 0.25 | 0.23 | C3 | 1.79 | 1.45 | 1.32 | 0.53 |
CaO | 0.16 | −0.71 | 0.18 | −0.61 | C4 | 1.34 | −3.22 | 0.37 | −1.38 |
Na2O | 0.50 | 0.33 | 0.59 | 0.37 | C5 | −2.99 | 0.12 | 0.31 | 1.14 |
K2O | −0.78 | 0.08 | −0.03 | −0.31 | C6 | 0.06 | −1.83 | 0.50 | −1.41 |
SO3 | 0.60 | −0.41 | −0.30 | 0.49 | C7 | 0.40 | 2.31 | −1.59 | −1.71 |
MnO | −0.56 | −0.37 | 0.61 | −0.03 | C8 | 2.47 | −2.38 | −1.91 | 2.61 |
MgO | 0.64 | 0.25 | 0.60 | 0.02 | C9 | −1.87 | 0.27 | −1.16 | −0.72 |
TiO2 | −0.72 | −0.33 | 0.09 | 0.42 | C10 | −0.53 | −1.79 | 0.25 | −0.40 |
P2O5 | −0.66 | −0.47 | 0.27 | 0.19 | C11 | −2.62 | −0.90 | 1.45 | 0.20 |
LOI | 0.49 | −0.77 | −0.27 | 0.15 | C12 | −2.76 | 0.75 | −0.78 | 0.81 |
C13 | −0.02 | 1.16 | −2.50 | −0.16 | |||||
C14 | −2.77 | −0.18 | 0.26 | 0.03 | |||||
C15 | 3.65 | −0.22 | −0.44 | −0.50 | |||||
C16 | 0.77 | 2.07 | 0.34 | 0.15 |
Sample | As 2 | Ba 1 | Cd 2 | Ce 4 | Co 2 | Cr 2 | Cu 3 | Ga 4 | Mo 4 | Ni 2 | Pb 2 | Rb 4 | Sc 4 | Sn 4 | Th 2 | U 4 | V 4 | Zn 5 | Zr 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc. L. | 3 | 1300 | 3 | 5 | 1100 | 130 | 18 | 60 | 10 | ||||||||||
C1 | 16.4 | 150 | <d.l. | 27.9 | 7.6 | 31.6 | 20.0 | 13.1 | 1.2 | 8.3 | 20.1 | 140 | 5.5 | 8.9 | 9.1 | 7.8 | 58.8 | 59.7 | 83.4 |
C2 | 18.5 | 620 | <d.l. | 23.9 | <d.l. | 20.6 | 15.9 | 6.1 | <d.l. | 4.3 | 16.2 | 53.9 | <d.l. | 6.3 | 7.7 | 3.9 | 27.4 | 23.3 | <d.l. |
C3 | 18.8 | 190 | <d.l. | 37.3 | 5.5 | 28.2 | 18.9 | 11.5 | 1.1 | 8.2 | 10.5 | 95.1 | 3.9 | 8.5 | 9.0 | 6.2 | 41.4 | 56.2 | 84.9 |
C4 | <d.l. | 170 | <d.l. | 4.4 | 8.8 | 90.5 | 18.7 | 7.2 | 3.4 | 26.3 | <d.l. | 32.0 | 14.9 | <d.l. | 7.5 | 4.4 | <d.l. | 50.8 | 260 |
C5 | 23.5 | 380 | <d.l. | 97.2 | 16.6 | 99.0 | 21.5 | 20.6 | 1.3 | 38.7 | 33.4 | 150 | 12.3 | 6 | 15.9 | 4.7 | 150 | 130 | <d.l. |
C6 | 5.0 | 330 | <d.l. | 56.1 | 14.6 | 170 | 29.1 | 11.8 | 2.5 | 83.1 | 21.6 | 530 | 17.7 | <d.l. | 10.4 | 5.0 | 93.7 | 70.0 | 71.2 |
C7 | <d.l. | 77.1 | <d.l. | 4.8 | <d.l. | <d.l. | 4.0 | 15.2 | <d.l. | <d.l. | 21.0 | 230 | 4.9 | 7.4 | 21.7 | 4.8 | <d.l. | 37.8 | 130 |
C8 | <d.l. | 260 | <d.l. | 60.0 | 5.3 | 42.1 | <d.l. | 10.7 | 4.9 | 15.5 | 19.4 | 9.1 | 8.8 | 4 | 10.6 | 2.3 | 64.0 | 28.3 | <d.l. |
C9 | 17.7 | 260 | <d.l. | 43.9 | 7.5 | 46.5 | 28.6 | 31.5 | 1.1 | 21.8 | 26.7 | 400 | 6.4 | 18 | 10.6 | 4.4 | 55.70 | 82.8 | 47.4 |
C10 | 10.7 | 500 | <d.l. | 66.4 | 13.2 | 78.5 | 49.1 | 13.3 | 0.9 | 31.9 | 37.7 | 87.2 | 12.9 | <d.l. | 8.9 | 2.8 | 71.30 | 100 | 180 |
C11 | 44.7 | 340 | 4.1 | 75.8 | 9.2 | 180 | 27.9 | 21.7 | 1.8 | 26.7 | 44.5 | 220 | 11.3 | 8.9 | 20.1 | 7.9 | 85.4 | 94.2 | 51.3 |
C12 | 9.6 | 350 | <d.l. | 120 | 14.0 | 230 | 39.6 | 21.9 | 1.3 | 61.4 | 41.9 | 170 | 14.7 | 6.4 | 16.3 | 4.2 | 130 | 99.6 | 310 |
C13 | <d.l. | 340 | <d.l. | 110 | <d.l. | 23.6 | <d.l. | 32.8 | 0.9 | 2.3 | 61.3 | 83.1 | <d.l. | 14.9 | 14.6 | 5.4 | 27.1 | 9.5 | 72.2 |
C14 | 21.6 | 690 | <d.l. | 85.2 | 14.8 | 84.0 | 30.6 | 19.9 | 1.7 | 32.3 | 28.9 | 180 | 13.4 | 7.3 | 15.5 | 3.2 | 120 | 92.3 | 250 |
C15 | 9.3 | 130 | <d.l. | 16.2 | <d.l. | 25.7 | 15.4 | 5.7 | 2.5 | 7.1 | <d.l. | 35.6 | 5.7 | <d.l. | 48.3 | 32.0 | 260 | 17.5 | <d.l. |
C16 | 5.1 | 260 | <d.l. | <d.l. | <d.l. | 36.7 | 12.8 | 13.8 | 1.6 | 16.0 | 23.6 | 60.6 | 5.8 | 4.5 | 13.7 | 3.5 | 23.8 | 46.3 | 190 |
Mean | 16.7 | 315 | - | 55.3 | 10.7 | 79.1 | 23.7 | 16.1 | 1.9 | 25.6 | 29.1 | 154.8 | 9.9 | 8.4 | 15.0 | 6.4 | 86.3 | 62.4 | 115.4 |
Min. | 5.0 | 77.1 | - | 4.4 | 5.3 | 20.6 | 4.0 | 5.7 | 0.9 | 2.3 | 10.5 | 9.1 | 3.9 | 3.9 | 7.5 | 2.3 | 23.8 | 9.5 | 0.0 |
Max. | 44.7 | 690 | 4.1 | 120 | 16.6 | 230 | 49.1 | 32.8 | 4.9 | 83.1 | 61.3 | 530 | 17.7 | 18.1 | 48.3 | 32.0 | 260 | 130 | 310 |
St. Dev. | 10.8 | 171 | - | 37.1 | 4.1 | 65.6 | 11.5 | 8.1 | 1.1 | 22.4 | 13.5 | 140.2 | 4.5 | 4.1 | 9.9 | 7.0 | 63.6 | 34.9 | 100.5 |
Sample | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | 379 | 591 | 561 | 362 | 17 | 62 | 18 | 163 | 4 | 17 | 350 | 3 | 15 | 10 | 179 | 1536 |
Mg2+ | 83 | 124 | 117 | 357 | 7 | 38 | 20 | 9 | 12 | 77 | 104 | 9 | 104 | 51 | 595 | 58 |
K+ | 29 | 12 | 12 | 133 | 2 | 9 | 271 | 5 | 25 | 37 | 127 | 6 | 23 | 18 | 56 | 80 |
Ca2+ | 252 | 182 | 217 | 825 | 54 | 719 | 253 | 48 | 452 | 985 | 1121 | 67 | 495 | 850 | 1225 | 623 |
Σ Cat | 743 | 908 | 907 | 1676 | 79 | 828 | 562 | 226 | 492 | 1115 | 1702 | 85 | 637 | 928 | 2055 | 2297 |
C.E.C. | 34 | 45 | 27 | 1 | 11 | 5 | 33 | 1 | 4 | 31 | 14 | 3 | 13 | 7 | 14 | 43 |
E.C. | Na | Na | Na | Ca | Ca | Ca | K | Ca | Ca | Ca | Ca | Ca | Ca | Ca | Ca | Na |
Sample | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 10.30 | 9.55 | 8.64 | 8.00 | 7.60 | 6.75 | 7.00 | 3.96 | 6.21 | 7.45 | 7.69 | 7.70 | 8.18 | 8.34 | 8.36 | 8.83 |
Sample | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LL | 235 | 111 | - | 32 | 51 | 52 | 52 | 74 | 56 | 62 | 131 | 46 | 75 | 44 | 129 | - |
PL | 49 | 36 | - | 17 | 18 | 22 | 29 | 29 | 21 | 25 | 34 | 21 | 26 | 18 | 37 | - |
PI | 186 | 75 | - | 15 | 33 | 30 | 23 | 45 | 35 | 37 | 97 | 25 | 49 | 26 | 92 | - |
Sw | 93 | 81 | 91 | 13 | 7 | 10 | 4 | - | 9 | 32 | 40 | 6 | 24 | 11 | 86 | 84 |
SSA | 81 | 25 | 39 | 5 | 14 | 6 | 22 | 1 | 39 | 40 | 70 | 8 | 11 | 11 | 46 | 36 |
Density | 1.92 | 1.90 | 1.59 | 2.35 | 2.83 | 2.56 | 2.10 | 1.74 | 2.25 | 2.59 | 2.01 | 2.52 | 2.29 | 2.58 | 2.68 | 2.11 |
SpHeat | 638 | 558 | 539 | 888 | 104 | 165 | 343 | 90 | 166 | 739 | 448 | 60 | 399 | 216 | 740 | - |
Sample | Abrasion (mg) | Abrasivity Index (g/m2) | ||
---|---|---|---|---|
174,000 * | 87,000 * | 43,500 * | ||
C1 | 13 | - | - | 41 |
C2 | 29 | - | - | 95 |
C3 | 9 | - | - | 28 |
C4 | - | 102 | - | 335 |
C5 | - | - | 55 | 180 |
C6 | - | - | 22 | 72 |
C7 | 77 | - | - | 252 |
C8 | - | - | - | - |
C9 | 16 | - | - | 53 |
C10 | - | 89 | - | 292 |
C11 | 21 | - | - | 69 |
C12 | - | - | 75 | 247 |
C13 | 7 | - | - | 23 |
C14 | - | - | 71 | 231 |
C15 | 90 | - | - | 296 |
C16 | 3 | - | - | 9 |
Qualitative Requirement | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interaction between the Skin and Clay-Based Product | Safety Compliance | ||||||||||||||||||
Water Retention Capacity | Handling Consistency Adhesiveness | Pleasant Sensation | Heat Capacity | Therapeutic Action | Toxic or Allergenic Risk | Skin Balance Risk | |||||||||||||
Liquid Limit % | Expandability % | Clay Minerals | Clay Average Diameter d50 µm | Plasticity Index Wt% | Density ρs | Abrasivity Index g/m2 | Cooling Kinetics Minutes | Specific Heat j/kg.K | ExchangeabLe Cation | Specific Surface Area m2/g | Trace Elements | pH | |||||||
Samples | As | Ba | Cr | Ni | Pb | Zn | |||||||||||||
Peloid | C5 | 51 | 7 | Ill | 1.5 | 33 | 3 | 180 | 39 | 104 | Ca | 14 | x | x | x | x | x | x | 7.60 |
C10 | 62 | 32 | Ill | 0.4 | 37 | 3 | 292 | 53 | 739 | Ca | 40 | x | x | x | x | x | x | 7.45 | |
C16 | - | 84 | Sme | 0.3 | - | 2 | 9 | 46 | - | Na | 36 | x | x | x | x | x | x | 8.83 | |
Clay-based product (paste) | C1 | 235 | 93 | Sme | 0.3 | 186 | 2 | 41 | 8 | 638 | Na | 81 | x | x | x | x | x | x | 10.30 |
C2 | 111 | 81 | Sme | 3.2 | 75 | 2 | 95 | 9 | 558 | Na | 25 | x | x | x | x | x | x | 9.55 | |
C3 | - | 91 | Sme | 0.1 | - | 2 | 28 | 8 | 539 | Na | 39 | x | x | x | x | x | x | 8.64 | |
C4 | 32 | 13 | Kln | 1.7 | 14 | 2 | 335 | 34 | 888 | Ca | 5 | x | x | x | x | 8.00 | |||
C6 | 52 | 10 | Ill | 2.1 | 30 | 3 | 72 | 25 | 165 | Ca | 6 | x | x | x | x | x | x | 6.75 | |
C8 | 74 | - | Sme | 0.2 | 45 | 2 | - | 32 | 90 | Ca | 1 | x | x | x | x | x | 3.96 | ||
Clay-based product (powder) | C9 | 56 | 9 | Kln | 0.6 | 35 | 2 | 53 | 44 | 166 | Ca | 39 | x | x | x | x | x | x | 6.21 |
C11 | 131 | 40 | Ill | 0.1 | 97 | 2 | 69 | 47 | 448 | Ca | 70 | x | x | x | x | x | x | 7.69 | |
C12 | 46 | 6 | Ill | 3.3 | 25 | 3 | 247 | 41 | 60 | Ca | 8 | x | x | x | x | x | x | 7.70 | |
C13 | 75 | 24 | Kln | 1.2 | 49 | 2 | 23 | 35 | 399 | Ca | 11 | x | x | x | x | x | 8.18 | ||
C14 | 44 | 11 | Ill | 3.0 | 26 | 3 | 231 | 35 | 216 | Ca | 11 | x | x | x | x | x | x | 8.34 | |
C15 | 129 | 86 | Sme | 0.1 | 92 | 3 | 296 | 56 | 740 | Ca | 46 | x | x | x | x | x | 8.36 | ||
Ingestion Intake | C7 | 52 | 4 | Ill | 3.5 | 23 | 2 | 252 | 19 | 343 | K | 22 | x | x | x | 7.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastos, C.M.; Rocha, F. Assessment of Some Clay-Based Products Available on Market and Designed for Topical Use. Geosciences 2022, 12, 453. https://doi.org/10.3390/geosciences12120453
Bastos CM, Rocha F. Assessment of Some Clay-Based Products Available on Market and Designed for Topical Use. Geosciences. 2022; 12(12):453. https://doi.org/10.3390/geosciences12120453
Chicago/Turabian StyleBastos, Carla Marina, and Fernando Rocha. 2022. "Assessment of Some Clay-Based Products Available on Market and Designed for Topical Use" Geosciences 12, no. 12: 453. https://doi.org/10.3390/geosciences12120453
APA StyleBastos, C. M., & Rocha, F. (2022). Assessment of Some Clay-Based Products Available on Market and Designed for Topical Use. Geosciences, 12(12), 453. https://doi.org/10.3390/geosciences12120453