Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = electrospun porous nanofibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7235 KB  
Article
Nanofiber Mats as Amine-Functionalized Heterogeneous Catalysts in Continuous Microfluidic Reactor Systems
by Katja Rumpke, Naresh Killi, Barbara Dittrich, Andreas Herrmann and Dirk Kuckling
Gels 2026, 12(1), 55; https://doi.org/10.3390/gels12010055 - 6 Jan 2026
Viewed by 258
Abstract
The development of sustainable catalysts is the main objective in green chemistry approaches. In this study, a catalytically active polymer based on a tertiary amine was synthesized, functionalized with a photo-crosslinker, and structured into nanofibers via electrospinning technique with polycaprolactone (PCL) as a [...] Read more.
The development of sustainable catalysts is the main objective in green chemistry approaches. In this study, a catalytically active polymer based on a tertiary amine was synthesized, functionalized with a photo-crosslinker, and structured into nanofibers via electrospinning technique with polycaprolactone (PCL) as a stabilizing additive. Subsequent photo-crosslinking yielded hierarchically porous polymers with high swelling properties and increased surface areas, thereby improving the accessibility of the immobilized catalytically active sites. The nanofiber mats were incorporated into a microfluidic reactor (MFR) setup and utilized as heterogeneous catalysts for the Knoevenagel reaction of malononitrile with different aldehydes. It was observed that the system demonstrated a substantial improvement in NMR yields (40–60%) and turnover frequencies (50–80 h−1) in comparison to catalytical systems that had been previously published. Reusability studies showed reproducibility of NMR yields over up to three cycles. The obtained results demonstrate the potential of electrospun, photo-crosslinked nanofibers as efficient heterogeneous catalysts in microfluidic synthesis, thus contributing to more sustainable production of valuable malononitrile derivatives. Full article
(This article belongs to the Special Issue Designing Gels as Adsorbents and Catalysts)
Show Figures

Figure 1

32 pages, 16609 KB  
Article
NMR, FT-IR, XRD, SEM, and ANN Complex Characterization of Some Nonwoven Materials Produced by Electrospinning
by Ramona Crainic, Petru Pășcuță, Florin Popa and Radu Fechete
Materials 2025, 18(21), 4893; https://doi.org/10.3390/ma18214893 - 25 Oct 2025
Viewed by 1039
Abstract
Electrospinning is a versatile technique used to manufacture nanofibers by applying an electric field to a polymer solution. This method has gained significant interest in the biomedical, pharmaceutical, and materials engineering fields due to its ability to produce porous structures with a high [...] Read more.
Electrospinning is a versatile technique used to manufacture nanofibers by applying an electric field to a polymer solution. This method has gained significant interest in the biomedical, pharmaceutical, and materials engineering fields due to its ability to produce porous structures with a high specific surface area, making it ideal for applications such as wound dressings, controlled drug delivery systems, and tissue engineering. The materials used in electrospinning play a crucial role in determining the final properties of the obtained nonwoven nanofibers. Among the most studied substances are chitosan, collagen, and fish-derived gelatin, which are biopolymers with high biocompatibility. These materials are especially used in the medical and pharmaceutical fields due to their bioactive properties. In combination with synthetic polymers such as polyethylene glycol (PEG) and polyvinyl alcohol (PVA), these biopolymers can form electrospun fibers with improved mechanical characteristics and enhanced structural stability. The characterization of these materials was performed using modern characterization techniques, such as one-dimensional (1D) proton NMR spectroscopy (1H), for which the spin–spin relaxation time distributions T2 were characterized. Additionally, two-dimensional (2D) measurements were conducted, for which EXSY T2-T2 and COSY T1-T2 exchange maps were obtained. The characterization was complemented with FT-IR spectra measurements, and the nanofiber morphology was observed using SEM. As a novelty, machine learning methods, including artificial neural networks (ANNs), were applied to characterize the local structural order of the produced nanofibers. In this study, it was shown that the nanofiber nonwoven materials made from PVA are characterized by a degree of order in the range of 0.27 to 0.61, which are more ordered than the nanofibers made from chitosan and fish gelatin, characterized by an order degree ranging from 0.051 to 0.312, where 0 represents the completely unordered network and 1 a fully ordered fabric. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

43 pages, 20891 KB  
Review
Recent Advances in Biomimetic Porous Materials for Real-World Applications
by Qunren Qiu, Yi Yang, Fanghua Liang, Gang Wang, Xuelong Han, Chuanfeng Zang and Mingzheng Ge
Biomimetics 2025, 10(8), 521; https://doi.org/10.3390/biomimetics10080521 - 8 Aug 2025
Cited by 2 | Viewed by 3018
Abstract
Bionic synthesis technology has made significant breakthroughs in porous functional materials by replicating and optimizing biological structures. For instance, biomimetic titanium dioxide-coated carbon multilayer materials, prepared via biological templating, exhibit a hierarchical structure, abundant nanopores, and synergistic effects. Bionic mineralization further enhances microcapsules [...] Read more.
Bionic synthesis technology has made significant breakthroughs in porous functional materials by replicating and optimizing biological structures. For instance, biomimetic titanium dioxide-coated carbon multilayer materials, prepared via biological templating, exhibit a hierarchical structure, abundant nanopores, and synergistic effects. Bionic mineralization further enhances microcapsules by forming a secondary inorganic wall, granting them superior impermeability, high elastic modulus, and hardness. Through techniques like molecular self-assembly, electrospinning, and pressure-driven fusion, researchers have successfully fabricated centimeter-scale artificial lamellar bones without synthetic polymers. In environmental applications, electrospun membranes inspired by lotus leaves and bird bones achieve 99.94% separation efficiency for n-hexane–water mixtures, retaining nearly 99% efficiency after 20 cycles. For energy applications, an all-ceramic silica nanofiber aerogel with a bionic blind bristle structure demonstrates ultralow thermal conductivity (0.0232–0.0643 W·m−1·K−1) across a broad temperature range (−50 to 800 °C). This review highlights the preparation methods and recent advances in biomimetic porous materials for practical applications. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

31 pages, 5529 KB  
Review
Advancement in Functionalized Electrospun Nanofiber-Based Gas Sensors: A Review
by Yanjie Wang, Zhiqiang Lan, Jie Wang, Kun Zhu, Jian He, Xiujian Chou and Yong Zhou
Sensors 2025, 25(16), 4896; https://doi.org/10.3390/s25164896 - 8 Aug 2025
Cited by 1 | Viewed by 1718
Abstract
In recent years, electrospinning technology has sparked a revolution in the nanoengineering of gas-sensing materials. Nanofibers based on metal oxide semiconductors, carbon materials, or conductive polymers prepared by the electrospinning process have exhibited inspiring properties, including a large specific surface area, porous structure, [...] Read more.
In recent years, electrospinning technology has sparked a revolution in the nanoengineering of gas-sensing materials. Nanofibers based on metal oxide semiconductors, carbon materials, or conductive polymers prepared by the electrospinning process have exhibited inspiring properties, including a large specific surface area, porous structure, and nice stability, with bright application prospects in advanced gas sensors. Meanwhile, the increasingly expanding applications of gas sensors, such as the Internet of Things (IoT), the food industry, disease diagnosis, etc., have raised higher sensor performance requirements. To further enhance the gas-sensing performance of nanofibers, the scheme of functionalized nanofiber strategies, either in electrospinning or post-treatment, has been proposed and verified. This review systematically summarized the nanostructures, gas-sensing properties, and functional mechanisms of modified nanofibers. Additionally, the perspectives and challenges regarding electrospun nanofibers for gas sensing were discussed. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers: Sensing and Biosensing Applications)
Show Figures

Graphical abstract

23 pages, 9967 KB  
Article
Analysis of Chemical Heterogeneity in Electrospun Fibers Through Hyperspectral Raman Imaging Using Open-Source Software
by Omar E. Uribe-Juárez, Luis A. Silva Valdéz, Flor Ivon Vivar Velázquez, Fidel Montoya-Molina, José A. Moreno-Razo, María G. Flores-Sánchez, Juan Morales-Corona and Roberto Olayo-González
Polymers 2025, 17(13), 1883; https://doi.org/10.3390/polym17131883 - 6 Jul 2025
Viewed by 1076
Abstract
Electrospinning is a versatile technique for producing porous nanofibers with a high specific surface area, making them ideal for several tissue engineering applications. Although Raman spectroscopy has been widely employed to characterize electrospun materials, but most studies report bulk-averaged properties without addressing the [...] Read more.
Electrospinning is a versatile technique for producing porous nanofibers with a high specific surface area, making them ideal for several tissue engineering applications. Although Raman spectroscopy has been widely employed to characterize electrospun materials, but most studies report bulk-averaged properties without addressing the spatial heterogeneity of their chemical composition. Raman imaging has emerged as a promising tool to overcome this limitation; however, challenges remain, including limited sensitivity for detecting minor components, reliance on distinctive high-intensity bands, and the frequent use of commercial software. In this study, we present a methodology based on Raman hyperspectral image processing using open-source software (Python), capable of identifying components present at concentrations as low as 2% and 5%, even in the absence of exclusive bands of high or medium intensity, respectively. The proposed approach integrates spectral segmentation, end member extraction via the N-FINDR algorithm, and analysis of average spectra to map and characterize the chemical heterogeneity within electrospun fibers. Finally, its performance is compared with the traditional approach based on band intensities, highlighting improvements in sensitivity and the detection of weak signals. Full article
(This article belongs to the Special Issue Recent Advances in Electrospun Polymer Nanofibers)
Show Figures

Figure 1

13 pages, 5872 KB  
Article
In Vivo Cell Migration and Growth Within Electrospun Porous Nanofibrous Scaffolds with Different Pore Sizes in a Mouse Pouch Model
by David C. Markel, Therese Bou-Akl, Bin Wu, Pawla Pawlitz, Xiaowei Yu, Liang Chen, Tong Shi and Weiping Ren
J. Funct. Biomater. 2025, 16(5), 181; https://doi.org/10.3390/jfb16050181 - 14 May 2025
Cited by 2 | Viewed by 1406
Abstract
Cellular infiltration into traditional electrospun nanofibers (NFs) is limited due to their dense structures. We were able to obtain polycaprolactone (PCL) NFs with variable and defined pore sizes and thicknesses by using a customized programmed NF collector that controls the moving speed during [...] Read more.
Cellular infiltration into traditional electrospun nanofibers (NFs) is limited due to their dense structures. We were able to obtain polycaprolactone (PCL) NFs with variable and defined pore sizes and thicknesses by using a customized programmed NF collector that controls the moving speed during electrospinning. NFs obtained by this method were tested in vitro and have shown better cell proliferation within the NFs with larger pore sizes. This study investigated in vivo host cell migration and neovascularization within implanted porous PCL NF discs using a mouse pouch model. Four types of PCL NFs were prepared and classified based on the electrospinning speed: NF-zero (static control), NF-low (0.085 mm/min), NF-mid (0.158 mm/min) and NF-high (0.232 mm/min) groups. With the increase in the speed, we observed an increase in the pore area; NF-zero (11.6 ± 6.2 μm2), NF-low (37.4 ± 28.6 μm2), NF-mid (67.6 ± 54.8 μm2), and NF-high (292.3 ± 286.5 μm2) groups. The NFs were implanted into air pouches of BALB/cJ mice. Mice without NFs served as control. Animals were sacrificed at 7 and 28 days after the implantation. Pouch tissues with implanted NFs were collected for histology (n = three per group and time point). The efficiency of the tissue penetration into PCL NF sheets was closely linked to the pore size and area. NFs with the highest pore area had more efficient tissue migration and new blood vessel formation compared to those with a smaller pore area. No newly formed blood vessels were observed in NF-zero sheets up to 28 days. We believe that a porous NF scaffold with a controllable pore size and thickness has great potential for tissue repair/regeneration and for other healthcare applications. Full article
Show Figures

Figure 1

20 pages, 5147 KB  
Article
Design of a Janus Composite Patch with Anti-Adhesive and Growth-Promoting Functions for Abdominal Wall Defect Repair
by Qingxi Hu, Xiaoyang Hou, Hekai Shi, Yongteng Song, Bing Zhou, Xinli Hu, Haiguang Zhang and Yan Gu
Bioengineering 2025, 12(5), 522; https://doi.org/10.3390/bioengineering12050522 - 14 May 2025
Viewed by 1318
Abstract
Tension-free hernioplasty has effectively reduced postoperative recurrence and mitigated complications by employing polymer patches. However, clinically used polymer patches often fall short in terms of the anti-deformation, anti-adhesion, and tissue integration functions, which can result in visceral adhesions and foreign body reactions after [...] Read more.
Tension-free hernioplasty has effectively reduced postoperative recurrence and mitigated complications by employing polymer patches. However, clinically used polymer patches often fall short in terms of the anti-deformation, anti-adhesion, and tissue integration functions, which can result in visceral adhesions and foreign body reactions after implantation. In this study, a Janus three-layer composite patch was developed for abdominal wall defect repair using a combination of 3D printing, electrospraying, and electrospinning technologies. On the visceral side, a dense electrospun polyvinyl alcohol/sodium hyaluronate (PVA/HA) scaffold was fabricated to inhibit cell adhesion. The middle layer, composed of polycaprolactone (PCL), provided mechanical support. On the muscle-facing side, a loose and porous electrospun nanofiber scaffold was created through electrospraying and electrospinning, promoting cell adhesion and migration to facilitate tissue regeneration. Mechanical testing demonstrated that the composite patch possessed excellent tensile strength (23.58 N/cm), surpassing the clinical standard (16 N/cm). Both in vitro and in vivo evaluations confirmed the patch’s outstanding biocompatibility. Compared with the control PCL patch, the Janus composite patch significantly reduced the visceral adhesion and enhanced the tissue repair in animal models. Collectively, this Janus composite patch integrated anti-deformation, anti-adhesion, and tissue-regenerative properties, providing a promising solution for effective abdominal wall defect repair. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

28 pages, 38029 KB  
Review
Potential of Chitosan/Gelatin-Based Nanofibers in Delivering Drugs for the Management of Varied Complications: A Review
by Popat Mohite, Abhijeet Puri, Shubham Munde, Roshan Dave, Showkhiya Khan, Riteshkumar Patil, Anil Kumar Singh, Pratchaya Tipduangta, Sudarshan Singh and Chuda Chittasupho
Polymers 2025, 17(4), 435; https://doi.org/10.3390/polym17040435 - 7 Feb 2025
Cited by 15 | Viewed by 2980
Abstract
Drug delivery systems have revolutionized traditional drug administration methods by addressing various challenges, such as enhancing drug solubility, prolonging effectiveness, minimizing adverse effects, and preserving potency. Nanotechnology-based drug delivery systems, particularly nanoparticles (NPs) and nanofibers (NFs), have emerged as promising solutions for biomedicine [...] Read more.
Drug delivery systems have revolutionized traditional drug administration methods by addressing various challenges, such as enhancing drug solubility, prolonging effectiveness, minimizing adverse effects, and preserving potency. Nanotechnology-based drug delivery systems, particularly nanoparticles (NPs) and nanofibers (NFs), have emerged as promising solutions for biomedicine delivery. NFs, with their ability to mimic the porous and fibrous structures of biological tissues, have garnered significant interest in drug-delivering applications. Biopolymers such as gelatin (Ge) and chitosan (CH) have gained much more attention due to their biocompatibility, biodegradability, and versatility in biomedical applications. CH exhibits exceptional biocompatibility, anti-bacterial activity, and wound healing capabilities, whereas Ge provides good biocompatibility and cell adhesion properties. Ge/CH-based NFs stimulate cellular connections and facilitate tissue regeneration owing to their structural resemblance to the extracellular matrix. This review explores the additive methods of preparation, including electrospinning, force pinning, and template synthesis, focusing on electrospinning and the factors influencing the fiber structure. The properties of Ge and CH, their role in drug release, formulation strategies, and characterization techniques for electrospun fibers are discussed. Furthermore, this review addresses applications in delivering active moieties in the management of orthopedics and wound healing with regulatory considerations, along with challenges related to them. Thus, the review aims to provide a comprehensive overview of the potential of Ge/CH-based NFs for drug delivery and biomedical applications. Full article
(This article belongs to the Special Issue Multifunctional Application of Electrospun Fiber)
Show Figures

Graphical abstract

11 pages, 2651 KB  
Communication
Synthesis of Needle-like CoO Nanowires Decorated with Electrospun Carbon Nanofibers for High-Performance Flexible Supercapacitors
by Xiang Zhang
Nanomaterials 2024, 14(21), 1770; https://doi.org/10.3390/nano14211770 - 4 Nov 2024
Cited by 1 | Viewed by 1585
Abstract
Needle-like CoO nanowires have been successfully synthesized by a facile hydrothermal process on an electrospun carbon nanofibers substrate. The as-prepared sample mesoporous CoO nanowires aligned vertically on the surface of carbon nanofibers and cross-linked with each other, producing loosely porous nanostructures. These hybrid [...] Read more.
Needle-like CoO nanowires have been successfully synthesized by a facile hydrothermal process on an electrospun carbon nanofibers substrate. The as-prepared sample mesoporous CoO nanowires aligned vertically on the surface of carbon nanofibers and cross-linked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit a high specific capacitance of 1068.3 F g−1 at a scan rate of 5 mV s−1 and a good rate capability of 613.7 F g−1 at a scan rate of 60 mV s−1 in a three-electrode cell. The CoO NWs@CNF//CNT@CNF asymmetric device exhibits remarkable cycling stability and delivers a capacitance of 79.3 F/g with a capacitance retention of 92.1 % after 10,000 cycles. The asymmetric device delivers a high energy density of 37 Wh kg−1 with a power density of 0.8 kW kg−1 and a high power density of 16 kW kg−1 with an energy density of 23 Wh kg−1. This study demonstrated a promising strategy to enhance the electrochemical performance of flexible supercapacitors. Full article
(This article belongs to the Special Issue Advanced Nanocomposites for Batteries and Supercapacitors)
Show Figures

Figure 1

14 pages, 6379 KB  
Article
PBAT/PLA-Based Electrospun Nanofibrous Protective Clothes with Superhydrophobicity, Permeability, and Thermal Insulation Characteristics for Individuals with Disabilities
by Muhammad Omer Aijaz, Ubair Abdus Samad, Ibrahim A. Alnaser, Md Irfanul Haque Siddiqui, Abdulaziz K. Assaifan and Mohammad Rezaul Karim
Polymers 2024, 16(17), 2469; https://doi.org/10.3390/polym16172469 - 30 Aug 2024
Cited by 7 | Viewed by 2389
Abstract
This study presents the development of multifunctional protective clothing for disabled individuals using PBAT/PLA biopolymeric-based electrospun nanofibrous membranes. The fabric consists of a superhydrophobic electrospun nanofibrous cloth reinforced with silica nanoparticles. The resulting nanofiber membranes were characterized using FE-SEM, a CA goniometer, breathability [...] Read more.
This study presents the development of multifunctional protective clothing for disabled individuals using PBAT/PLA biopolymeric-based electrospun nanofibrous membranes. The fabric consists of a superhydrophobic electrospun nanofibrous cloth reinforced with silica nanoparticles. The resulting nanofiber membranes were characterized using FE-SEM, a CA goniometer, breathability and hydrostatic pressure resistance tests, UV–vis spectroscopy, thermal infrared photography, tensile tests, and nanoindentation. The results demonstrated the integration of superhydrophobicity, breathability, and mechanical improvements in the protective clothing. The nanofibrous porous structure of the fabric allowed breathability, while the silica nanoparticles acted as an effective infrared reflector to keep the wearer cool on hot days. The fabric’s multifunctional properties make it suitable for various products, such as outdoor clothing and accessories for individuals with disabilities. This study highlights the importance of selecting appropriate textiles for protective clothing and the challenges faced by disabled individuals in terms of mobility, eating, and dressing. The innovative and purposeful design of this multifunctional protective clothing aimed to enrich the lives of individuals with disabilities. Full article
(This article belongs to the Special Issue Advanced Electrospinning Fibers II)
Show Figures

Graphical abstract

11 pages, 3581 KB  
Article
All-Fiber Flexible Electrochemical Sensor for Wearable Glucose Monitoring
by Zeyi Tang, Jinming Jian, Mingxin Guo, Shangjian Liu, Shourui Ji, Yilong Li, Houfang Liu, Tianqi Shao, Jian Gao, Yi Yang and Tianling Ren
Sensors 2024, 24(14), 4580; https://doi.org/10.3390/s24144580 - 15 Jul 2024
Cited by 6 | Viewed by 4965
Abstract
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on [...] Read more.
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on sensitive skin areas. The sensors, primarily based on polyethylene terephthalate (PET) or polyimide (PI) substrates, might also cause pressure or unease during insertion due to the skin’s irregular deformation. To address these constraints, we developed an innovative, wearable, all-fiber-structured electrochemical sensor. Our composite sensor incorporates polyurethane (PU) fibers prepared via electrospinning as electrode substrates to achieve excellent adaptability. Electrospun PU nanofiber films with gold layers shaped via thermal evaporation are used as base electrodes with exemplary conductivity and electrochemical catalytic attributes. To achieve glucose monitoring, gold nanofibers functionalized by gold nanoflakes (AuNFs) and glucose oxidase (GOx) serve as the working electrode, while Pt nanofibers and Ag/AgCl nanofibers serve as the counter and reference electrode. The acrylamide-sodium alginate double-network hydrogel synthesized on electrospun PU fibers serves as the adhesive and substance-transferring layer between the electrodes. The all-fiber electrochemical sensor is assembled layer-by-layer to form a robust structure. Given the stretchability of PU nanofibers coupled with a high specific surface area, the manufactured porous microneedle glucose sensor exhibits enhanced stretchability, superior sensitivity at 31.94 μA (lg(mM))−1 cm−2, a broad detection range (1–30 mM), and a significantly low detection limit (1 mM, S/N = 3), as well as satisfactory biocompatibility. Therefore, the novel electrochemical microneedle design is well-suited for wearable or even implantable continuous monitoring applications, thereby showing promising significant potential within the global arena of wearable medical technology. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

11 pages, 3030 KB  
Article
Vapor-Driven Crosslinked Hydroxypropyl-β-Cyclodextrin Electrospun Nanofibrous Membranes for Ultrafast Dye Removal
by Xinmiao Xu, Yi Zhang, Yong Chen and Yu Liu
Chemistry 2024, 6(4), 506-516; https://doi.org/10.3390/chemistry6040029 - 25 Jun 2024
Viewed by 1726
Abstract
Traditional separation membranes used for dye removal often suffer from a trade-off between separation efficiency and water permeability. Herein, we propose a facile approach to prepare cyclodextrin-based high-flux nanofiber membranes by electrospinning and vapor-driven crosslinking processes. The application of glutaraldehyde vapor for crosslinking [...] Read more.
Traditional separation membranes used for dye removal often suffer from a trade-off between separation efficiency and water permeability. Herein, we propose a facile approach to prepare cyclodextrin-based high-flux nanofiber membranes by electrospinning and vapor-driven crosslinking processes. The application of glutaraldehyde vapor for crosslinking hydroxypropyl-β-cyclodextrin (HP-β-CD)/polyvinyl alcohol (PVA)/laponite electrospun membranes can build interconnected structures and lead to the formation of a porous hierarchical layer. In addition, the incorporation of inorganic salt, laponite, can alter the crosslinking process, resulting in membranes with improved hydrophilicity and highly maintained electrospun nanofibrous morphology, which contributes to an ultrafast water flux of 1.0 × 105 Lh−1m−2bar−1. Due to the synergetic effect of strong host–guest interaction and electrostatic interaction, the membranes exhibit suitable rejection toward anionic dyes with a high removal efficiency of >99% within a short time and achieve accurate separation for cationic against anionic dyes, accompanied by suitable recyclability with >97% separation efficiency after at least four separation–regenerations. The prepared membranes with remarkable separation efficiency and ultrafast permeation properties might be a promising candidate for high-performance membranes in water treatment. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Figure 1

18 pages, 6495 KB  
Article
Antibacterial Potential and Biocompatibility of Chitosan/Polycaprolactone Nanofibrous Membranes Incorporated with Silver Nanoparticles
by Viktoriia Korniienko, Yevgeniia Husak, Kateryna Diedkova, Yuliia Varava, Vladlens Grebnevs, Oksana Pogorielova, Māris Bērtiņš, Valeriia Korniienko, Baiba Zandersone, Almira Ramanaviciene, Arunas Ramanavicius and Maksym Pogorielov
Polymers 2024, 16(12), 1729; https://doi.org/10.3390/polym16121729 - 18 Jun 2024
Cited by 26 | Viewed by 3576
Abstract
This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan—a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties—emerges as [...] Read more.
This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan—a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties—emerges as an excellent candidate for tissue regeneration. However, fabricating chitosan nanofibers via electrospinning often challenges the preservation of their structural integrity. This research innovatively develops a chitosan/polycaprolactone (CH/PCL) composite nanofibrous membrane by employing a layer-by-layer electrospinning technique, enhanced with silver nanoparticles (AgNPs) synthesized through a wet chemical process. The antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes were evaluated, while also analyzing their hydrophilicity and nanofibrous structure using SEM. The resulting CH/PCL-AgNPs composite membranes retain a porous framework, achieve balanced hydrophilicity, display commendable biocompatibility, and exert broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with their efficacy correlating to the AgNP concentration. Furthermore, our data suggest that the antimicrobial efficiency of these membranes is influenced by the timed release of silver ions during the incubation period. Membranes incorporated starting with AgNPs at a concentration of 50 µg/mL effectively suppressed the growth of both microorganisms during the early stages up to 8 h of incubation. These insights underscore the potential of the developed electrospun composite membranes, with their superior antibacterial qualities, to serve as innovative solutions in the field of tissue engineering. Full article
(This article belongs to the Special Issue Bio-Inspired Polymers: Synthesis, Properties and Applications)
Show Figures

Figure 1

12 pages, 8208 KB  
Article
Novel Saccharomyces cerevisiae-Loaded Polyvinylpyrrolidone/SiO2 Nanofiber for Wound Dressing Prepared Using Electrospinning Method
by Yeon Seo Cho, Hongjun Yoon and Sung Giu Jin
Materials 2024, 17(12), 2903; https://doi.org/10.3390/ma17122903 - 13 Jun 2024
Cited by 4 | Viewed by 1681
Abstract
Electrospun nanofibers have been used as wound dressings to protect skin from infection and promote wound healing. In this study, we developed polyvinylpyrrolidone (PVP)/silicon dioxide (SD) composite nanofibers for the delivery of probiotic Saccharomyces cerevisiae (SC), which potentially aids in wound healing. PVP/SD [...] Read more.
Electrospun nanofibers have been used as wound dressings to protect skin from infection and promote wound healing. In this study, we developed polyvinylpyrrolidone (PVP)/silicon dioxide (SD) composite nanofibers for the delivery of probiotic Saccharomyces cerevisiae (SC), which potentially aids in wound healing. PVP/SD composite nanofibers were optimized through electrospinning, and bead-free nanofibers with an average diameter of 624.7 ± 99.6 nm were fabricated. Next, SC, a wound-healing material, was loaded onto the PVP/SD composite nanofibers. SC was encapsulated in nanofibers, and nanofibers were prepared using SC, PVP, SD, water, and ethanol in a ratio of 3:4:0.1:4.8:1.2. The formation of smooth nanofibers with protrusions around SC was confirmed using SEM. Nanofiber dressing properties were physicochemically and mechanically characterized by evaluating SEM, DSC, XRD, and FTIR images, tensile strength, and elongation at break. Additionally, a release test of active substances was performed. The absence of interactions between SC, PVP, and SD was confirmed through physicochemical evaluation, and SEM images showed that the nanofiber dressing contained SC and had a porous structure. It also showed a 100% release of SC within 30 min. Overall, our study showed that SC-loaded PVP/SD composite nanofibers prepared using the electrospinning method are promising wound dressings. Full article
(This article belongs to the Special Issue Advanced Polymer Matrix Nanocomposite Materials (2nd Edition))
Show Figures

Figure 1

20 pages, 11985 KB  
Article
Preparation of CuBTC@PET Hierarchically Porous Composite Membranes via In Situ Growth Method and Their Antibacterial Filtration Performance
by Kelimu Tulugan, Peng Tian, Wei Zhao, Xiang Li and Xin Zhang
Appl. Sci. 2024, 14(11), 4462; https://doi.org/10.3390/app14114462 - 23 May 2024
Cited by 3 | Viewed by 2091
Abstract
Processing polyethylene terephthalate (PET) into functional materials has both sustainable and economic significance. Therefore, this study aims to prepare functional nanofibers using PET, combining electrospun nanofibers with metal–organic frameworks (MOFs), which is an effective solution to increase the added value of functional nanofiltration [...] Read more.
Processing polyethylene terephthalate (PET) into functional materials has both sustainable and economic significance. Therefore, this study aims to prepare functional nanofibers using PET, combining electrospun nanofibers with metal–organic frameworks (MOFs), which is an effective solution to increase the added value of functional nanofiltration membranes (NFMs). The surface morphology of PET fibers is successfully controlled by electrospinning parameters and post-treatment. The formation of a uniform coating of CuBTC crystals on the PET surface is induced by a simple and low-cost in situ growth technique. CuBTC@PET was treated to prepare superhydrophobic CuBTC@PET (SCP), thus improving the stability of CuBTC in water and expanding its potential applications. Through a series of optical and thermal characterizations, the porous morphology formation mechanism and MOF in situ growth mechanism of SCP fibers were discussed. Then, the air filtration performance and bacteriostatic properties of SCP nanofiltration membranes were investigated. The as-prepared SCP showed a high water contact angle (146.4°), low-pressure drop (39.7 Pa), and high filtration efficiency (95.3%, 3 μm NaCl), as well as unique, broad-spectrum antibiosis potency against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This study shows that SCP nanofiltration membranes can be practically applied in high-performance antibacterial filtration membranes. Full article
Show Figures

Figure 1

Back to TopTop