Analysis of Chemical Heterogeneity in Electrospun Fibers Through Hyperspectral Raman Imaging Using Open-Source Software
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Electrospinning
2.3. Raman Imaging
2.4. Raman Spectra
2.5. Data Processing
2.6. Spectral Segmentation with the N-FINDER Algorithm
2.7. Abundance Maps
2.8. Average Spectra
2.9. Statistical Analysis
2.10. Signal-to-Noise Ratio
2.11. Computational Resources
3. Results and Discussion
3.1. PLA/HA Electrospun Fiber
3.2. PCL/Collagen Electrospun Fiber
3.3. PLA/PVA Electrospun Fiber
3.4. Overall Intensity and Signal-to-Noise Ratio (SNR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: Processes, Structures, and Materials. Macromol 2024, 4, 58–103. [Google Scholar] [CrossRef]
- Mao, Y.; Shen, W.; Wu, S.; Ge, X.; Ao, F.; Ning, Y.; Luo, Y.; Liu, Z. Electrospun Polymers: Using Devices to Enhance Their Potential for Biomedical Applications. React. Funct. Polym. 2023, 186, 105568. [Google Scholar] [CrossRef]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef] [PubMed]
- Laramée, A.W.; Lanthier, C.; Pellerin, C. Raman Investigation of the Processing Structure Relations in Individual Poly(Ethylene Terephthalate) Electrospun Fibers. Appl. Spectrosc. 2021, 76, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Puppulin, L.; Kotaki, M.; Nakamura, M.; Iba, D.; Moriwaki, I.; Pezzotti, G. Raman Tensor Analysis of Hexagonal Polyoxymethylene and Its Application to Study the Molecular Arrangement in Highly Crystalline Electrospun Nanofibers. J. Raman Spectrosc. 2012, 43, 1957–1963. [Google Scholar] [CrossRef]
- Kim, C.; Park, S.H.; Cho, J.I.; Lee, D.Y.; Park, T.J.; Lee, W.J.; Yang, K.S. Raman Spectroscopic Evaluation of Polyacrylonitrile-Based Carbon Nanofibers Prepared by Electrospinning. J. Raman Spectrosc. 2004, 35, 928–933. [Google Scholar] [CrossRef]
- Grinberg, O.; Deng, S.; Zussman, E.; Livneh, T.; Zak, A. Raman Scattering from Single WS2 Nanotubes in Stretched PVDF Electrospun Fibers. Phys. Chem. Chem. Phys. 2017, 19, 18443–18451. [Google Scholar] [CrossRef]
- Espíndola-González, A.; Martínez-Hernández, A.L.; Fernández-Escobar, F.; Castaño, V.M.; Brostow, W.; Datashvili, T.; Velasco-Santos, C. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System. Int. J. Mol. Sci. 2011, 12, 1908–1920. [Google Scholar] [CrossRef]
- Arrigoni, A.; Brambilla, L.; Castiglioni, C.; Bertarelli, C. Conducting Electrospun Nanofibres: Monitoring of Iodine Doping of P3HT through Infrared (IRAV) and Raman (RaAV) Polaron Spectroscopic Features. Nanomaterials 2022, 12, 4308. [Google Scholar] [CrossRef]
- Auger, S.; Mishra, V.; Singh, A.; Miao, Y.; Agrawal, N.; Izumchenko, E. Fabrication and Raman Analysis of Aligned Electrospun PVDF Nanofibers. Biosens. Bioelectron. Open Access 2018, 2. [Google Scholar] [CrossRef]
- Richard-Lacroix, M.; Pellerin, C. Orientation and Structure of Single Electrospun Nanofibers of Poly(Ethylene Terephthalate) by Confocal Raman Spectroscopy. Macromolecules 2012, 45, 1946–1953. [Google Scholar] [CrossRef]
- Nirmala, R.; Il, B.W.; Navamathavan, R.; El-Newehy, M.H.; Kim, H.Y. Preparation and Characterizations of Anisotropic Chitosan Nanofibers via Electrospinning. Macromol. Res. 2011, 19, 345–350. [Google Scholar] [CrossRef]
- Laramée, A.W.; Pellerin, C. Raman Analysis of Orientation and Crystallinity in High Tg, Low Crystallinity Electrospun Fibers. Appl. Spectrosc. 2023, 77, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Sharikova, A.; Foraida, Z.I.; Sfakis, L.; Peerzada, L.; Larsen, M.; Castracane, J.; Khmaladze, A. Characterization of Nanofibers for Tissue Engineering: Chemical Mapping by Confocal Raman Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117670. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.P.S.; McLaughlin, A.W.; Clarkson, A.N.; Gordon, K.C.; Walker, G.F. Raman Microscopic Imaging of Electrospun Fibers Made from a Polycaprolactone and Polyethylene Oxide Blend. Vib. Spectrosc. 2017, 92, 27–34. [Google Scholar] [CrossRef]
- Adya, A.K.; Canetta, E. Nanotechnology and Its Applications to Animal Biotechnology. In Animal Biotechnology: Models in Discovery and Translation; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Colaruotolo, L.A.; Singh, S.S.; Dobson, S.; Lim, L.T.; Joye, I.J.; Rogers, M.A.; Corradini, M.G. Mapping Deterioration in Electrospun Zein Nonwoven Nanostructures Encapsulating Corn Oil. Curr. Res. Food Sci. 2024, 9, 100801. [Google Scholar] [CrossRef]
- Mu’min, M.S.; Böhm, T.; Moroni, R.; Zengerle, R.; Thiele, S.; Vierrath, S.; Breitwieser, M. Local Hydration in Ionomer Composite Membranes Determined with Confocal Raman Microscopy. J. Membr. Sci. 2019, 585, 126–135. [Google Scholar] [CrossRef]
- Gernhardt, M.; Peng, L.; Burgard, M.; Jiang, S.; Förster, B.; Schmalz, H.; Agarwal, S. Tailoring the Morphology of Responsive Bioinspired Bicomponent Fibers. Macromol. Mater. Eng. 2017, 303, 1700248. [Google Scholar] [CrossRef]
- Georgiev, D.; Pedersen, S.V.; Xie, R.; Fernández-Galiana, Á.; Stevens, M.M.; Barahona, M. RamanSPy: An Open-Source Python Package for Integrative Raman Spectroscopy Data Analysis. Anal. Chem. 2024, 96, 8492–8500. [Google Scholar] [CrossRef]
- Winter, M.E. N-FINDR: An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data. SPIE 1999, 3753, 266–275. [Google Scholar] [CrossRef]
- Flores-Sánchez, M.G.; Islas-Arteaga, N.C.; Raya-Rivera, A.M.; Esquiliano-Rendon, D.R.; Morales-Corona, J.; Uribe-Juarez, O.E.; Vivar-Velázquez, F.I.; Ortiz-Vázquez, G.P.; Olayo, R. Effect of a Plasma Synthesized Polypyrrole Coverage on Polylactic Acid/Hydroxyapatite Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. A 2021, 109, 2199–2211. [Google Scholar] [CrossRef] [PubMed]
- Cruz, Y.; Muñoz, E.; Gomez-Pachón, E.Y.; Morales-Corona, J.; Olayo-Lortia, J.; Olayo, R.; Olayo-Valles, R. Electrospun PCL-Protein Scaffolds Coated by Pyrrole Plasma Polymerization. J. Biomater. Sci. Polym. Ed. 2019, 30, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Rudko, G.Y.; Kovalchuk, A.O.; Fediv, V.I.; Chen, W.M.; Buyanova, I.A. Interfacial Bonding in a CdS/PVA Nanocomposite: A Raman Scattering Study. J. Colloid Interface Sci. 2015, 452, 33–37. [Google Scholar] [CrossRef]
- Rubio-Aguinaga, A.; Reglero-Ruiz, J.A.; Muñoz, A.; García, F.C.; García, J.M.; Trigo-López, M. Preparation of Low-Density High-Performance Porous Aramid Films Using Porosity Promoter Polymers. J. Appl. Polym. Sci. 2022, 139, e53192. [Google Scholar] [CrossRef]
- Kerim, R.A.; Deliani, L.; Volker, A.; Philipp, S. Lothar Kador Confocal Raman Microscopy: Non-Destructive Materials Analysis with Micrometer Resolution. Rev. Adv. Mater. Sci. 2009, 20, 77–84. [Google Scholar]
- Grewal, R.; Kasana, S.S.; Kasana, G. Hyperspectral Image Segmentation: A Comprehensive Survey. Multimed. Tools Appl. 2023, 82, 20819–20872. [Google Scholar] [CrossRef]
- Bataineh, B.; Tounsi, M.; Zamzami, N.; Janbi, J.; Abu-ain, W.A.K.; AbuAin, T.; Elnazer, S. A Comprehensive Review on Document Image Binarization. J. Imaging 2025, 11, 133. [Google Scholar] [CrossRef]
- Said, K.A.M.; Jambek, A.B. Analysis of Image Processing Using Morphological Erosion and Dilation. J. Phys. Conf. Ser. 2021, 2071, 012033. [Google Scholar] [CrossRef]
- Looney, S.W.; Hagan, J.L. Statistical Methods for Assessing Biomarkers and Analyzing Biomarker Data. Essent. Stat. Methods Med. Stat. 2011, 27, 27–65. [Google Scholar] [CrossRef]
- Gastwirth, J.L.; Gel, Y.R.; Miao, W. The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Stat. Sci. 2009, 24, 343–360. [Google Scholar] [CrossRef]
- McIntosh, A.M.; Sharpe, M.; Lawrie, S.M. Research Methods, Statistics and Evidence-Based Practice. In Companion to Psychiatric Studies; Springer: Berlin/Heidelberg, Germany, 2010; pp. 157–198. [Google Scholar] [CrossRef]
- McCreery, R.L. Signal-to-Noise in Raman Spectroscopy. In Raman Spectroscopy for Chemical Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 49–71. [Google Scholar] [CrossRef]
- Vulchi, R.T.; Morgunov, V.; Junjuri, R.; Bocklitz, T. Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures. Molecules 2024, 29, 4748. [Google Scholar] [CrossRef] [PubMed]
- Bolskis, E.; Adomavičiūtė, E.; Griškonis, E. Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(Lactic Acid) Yarns with Added Rosins. Polymers 2022, 14, 379. [Google Scholar] [CrossRef]
- Liubimovskii, S.O.; Novikov, V.S.; Shlyakhtin, A.V.; Kuzmin, V.V.; Godyaeva, M.M.; Gudkov, S.V.; Sagitova, E.A.; Ustynyuk, L.Y.; Nikolaeva, G.Y. Raman Study of Block Copolymers of Methyl Ethylene Phosphate with Caprolactone and L-Lactide. Polymers 2022, 14, 5367. [Google Scholar] [CrossRef]
- Vano-Herrera, K.; Misiun, A.; Vogt, C. Preparation and Characterization of Poly(Lactic Acid)/Poly(Methyl Methacrylate) Blend Tablets for Application in Quantitative Analysis by Micro Raman Spectroscopy. J. Raman Spectrosc. 2015, 46, 273–279. [Google Scholar] [CrossRef]
- Cuiffo, M.A.; Snyder, J.; Elliott, A.M.; Romero, N.; Kannan, S.; Halada, G.P. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Appl. Sci. 2017, 7, 579. [Google Scholar] [CrossRef]
- Liubimovskii, S.O.; Novikov, V.S.; Sagitova, E.A.; Kuznetsov, S.M.; Bakirov, A.V.; Dmitryakov, P.V.; Sedush, N.G.; Chvalun, S.N.; Ustynyuk, L.Y.; Kuzmin, V.V.; et al. Raman Evaluation of the Crystallinity Degree and Composition of Poly(L-Lactide-Co-ε-Caprolactone). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 310, 123876. [Google Scholar] [CrossRef] [PubMed]
- Liesenfeld, J.; Jablonski, J.J.; da Silva, J.R.F.; Buenos, A.A.; Scheuer, C.J. Exploring the Influence of Graphene Incorporation on the Characteristics of 3D-Printed PLA. Int. J. Adv. Manuf. Technol. 2024, 130, 5813–5835. [Google Scholar] [CrossRef]
- Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. Alkanes; Academic Press: Cambridge, MA, USA, 1991; ISBN 978-0-12-451160-6. [Google Scholar]
- Timchenko, P.E.; Timchenko, E.V.; Pisareva, E.V.; Vlasov, M.Y.; Volova, L.T.; Frolov, O.O.; Kalimullina, A.R. Experimental Studies of Hydroxyapatite by Raman Spectroscopy. J. Opt. Technol. 2018, 85, 130. [Google Scholar] [CrossRef]
- Gupta, A.; Prasad, A.; Mulchandani, N.; Shah, M.; Ravi Sankar, M.; Kumar, S.; Katiyar, V. Multifunctional Nanohydroxyapatite-Promoted Toughened High-Molecular-Weight Stereocomplex Poly(Lactic Acid)-Based Bionanocomposite for Both 3D-Printed Orthopedic Implants and High-Temperature Engineering Applications. ACS Omega 2017, 2, 4039–4052. [Google Scholar] [CrossRef]
- Kotula, A.P.; Snyder, C.R.; Migler, K.B. Determining Conformational Order and Crystallinity in Polycaprolactone via Raman Spectroscopy. Polymer 2017, 117, 1–10. [Google Scholar] [CrossRef]
- Baranowska-Korczyc, A.; Warowicka, A.; Jasiurkowska-Delaporte, M.; Grześkowiak, B.; Jarek, M.; Maciejewska, B.M.; Jurga-Stopa, J.; Jurga, S. Antimicrobial Electrospun Poly(ε-Caprolactone) Scaffolds for Gingival Fibroblast Growth. RSC Adv. 2016, 6, 19647–19656. [Google Scholar] [CrossRef]
- Cárcamo, J.J.; Aliaga, A.E.; Clavijo, R.E.; Brañes, M.R.; Campos-Vallette, M.M. Raman Study of the Shockwave Effect on Collagens. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 86, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.G.; Bullock, A.J.; MacNeil, S.; Rehman, I.U. Characterisation of Structural Changes in Collagen with Raman Spectroscopy. Appl. Spectrosc. Rev. 2019, 54, 509–542. [Google Scholar] [CrossRef]
- Hamdalla, T.A.; Hanafy, T.A.; Bekheet, A.E. Influence of Erbium Ions on the Optical and Structural Properties of Polyvinyl Alcohol. J. Spectrosc. 2015, 2015, 204867. [Google Scholar] [CrossRef]
- Van Gheluwe, L.; Munnier, E.; Kichou, H.; Kemel, K.; Mahut, F.; Vayer, M.; Sinturel, C.; Byrne, H.J.; Yvergnaux, F.; Chourpa, I.; et al. Confocal Raman Spectroscopic Imaging for Evaluation of Distribution of Nano-Formulated Hydrophobic Active Cosmetic Ingredients in Hydrophilic Films. Molecules 2021, 26, 7440. [Google Scholar] [CrossRef]
- Yang, C.C.; Lee, Y.J.; Chiu, S.J.; Lee, K.T.; Chien, W.C.; Lin, C.T.; Huang, C.A. Preparation of a PVA/HAP Composite Polymer Membrane for a Direct Ethanol Fuel Cell (DEFC). J. Appl. Electrochem. 2008, 38, 1329–1337. [Google Scholar] [CrossRef]
- Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. Alcohols and Phenols; Academic Press: Cambridge, MA, USA, 1991; ISBN 978-0-12-451160-6. [Google Scholar]
- Fernández-Galiana, Á.; Bibikova, O.; Vilms Pedersen, S.; Stevens, M.M. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. Adv. Mater. 2024, 36, e2210807. [Google Scholar] [CrossRef]
- Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 2019, 7, 259. [Google Scholar] [CrossRef]
- Marshall, S.; Cooper, J.B. Quantitative Raman Spectroscopy When the Signal-to-Noise Is Below the Limit of Quantitation Due to Fluorescence Interference: Advantages of a Moving Window Sequentially Shifted Excitation Approach. Appl. Spectrosc. 2016, 70, 1489–1501. [Google Scholar] [CrossRef]
- Horgan, C.C.; Jensen, M.; Nagelkerke, A.; St-Pierre, J.P.; Vercauteren, T.; Stevens, M.M.; Bergholt, M.S. High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy. Anal. Chem. 2021, 93, 15850–15860. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uribe-Juárez, O.E.; Silva Valdéz, L.A.; Vivar Velázquez, F.I.; Montoya-Molina, F.; Moreno-Razo, J.A.; Flores-Sánchez, M.G.; Morales-Corona, J.; Olayo-González, R. Analysis of Chemical Heterogeneity in Electrospun Fibers Through Hyperspectral Raman Imaging Using Open-Source Software. Polymers 2025, 17, 1883. https://doi.org/10.3390/polym17131883
Uribe-Juárez OE, Silva Valdéz LA, Vivar Velázquez FI, Montoya-Molina F, Moreno-Razo JA, Flores-Sánchez MG, Morales-Corona J, Olayo-González R. Analysis of Chemical Heterogeneity in Electrospun Fibers Through Hyperspectral Raman Imaging Using Open-Source Software. Polymers. 2025; 17(13):1883. https://doi.org/10.3390/polym17131883
Chicago/Turabian StyleUribe-Juárez, Omar E., Luis A. Silva Valdéz, Flor Ivon Vivar Velázquez, Fidel Montoya-Molina, José A. Moreno-Razo, María G. Flores-Sánchez, Juan Morales-Corona, and Roberto Olayo-González. 2025. "Analysis of Chemical Heterogeneity in Electrospun Fibers Through Hyperspectral Raman Imaging Using Open-Source Software" Polymers 17, no. 13: 1883. https://doi.org/10.3390/polym17131883
APA StyleUribe-Juárez, O. E., Silva Valdéz, L. A., Vivar Velázquez, F. I., Montoya-Molina, F., Moreno-Razo, J. A., Flores-Sánchez, M. G., Morales-Corona, J., & Olayo-González, R. (2025). Analysis of Chemical Heterogeneity in Electrospun Fibers Through Hyperspectral Raman Imaging Using Open-Source Software. Polymers, 17(13), 1883. https://doi.org/10.3390/polym17131883