Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = electrospun medical devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8152 KB  
Article
Novel Electrospun PVA-PVP-PAAm/TiO2 Nanofibers with Enhanced Optoelectrical, Antioxidant and Antibacterial Performances
by Maher Hassan Rasheed, Mohanad H. Mousa, Qasim Shakir Kadhim, Najmeddine Abdelmoula, Ali Khalfallah and Zohra Benzarti
Polymers 2025, 17(18), 2487; https://doi.org/10.3390/polym17182487 - 15 Sep 2025
Cited by 1 | Viewed by 1348
Abstract
Electrospun nanofibers have emerged as a versatile platform for developing advanced materials with diverse applications, owing to their high surface-area-to-volume ratio and tunable properties. The incorporation of metal oxide nanoparticles, such as titanium dioxide (TiO2), has proven effective in further enhancing [...] Read more.
Electrospun nanofibers have emerged as a versatile platform for developing advanced materials with diverse applications, owing to their high surface-area-to-volume ratio and tunable properties. The incorporation of metal oxide nanoparticles, such as titanium dioxide (TiO2), has proven effective in further enhancing the functional performance of these materials, particularly in optoelectrical, antibacterial, and antioxidant domains. This study presents the first report of electrospun multifunctional nanofibers from a ternary blend of polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and polyacrylamide (PAAm) blended with TiO2 nanoparticles at 0, 1, 3, and 5 wt.%. The objective was to develop nanocomposites with enhanced structural, optical, electrical, antibacterial, and antioxidant properties for applications in environmental, biomedical, and industrial fields. The nanofibers were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), UV–visible spectrophotometry, and DC electrical conductivity tests. Antibacterial efficacy was assessed against Escherichia coli and Staphylococcus aureus via the Kirby–Bauer disk diffusion method, while antioxidant activity was evaluated using the DPPH radical scavenging assay. Results demonstrated that TiO2 incorporation increased nanofiber diameters (21.5–35.1 nm), enhanced crystallinity, and introduced Ti–O bonding, confirming successful nanoparticle integration. Optically, the nanocomposites exhibited reduced band gaps (from 3.575 eV to 3.320 eV) and increased refractive indices with higher TiO2 nanoparticle content, highlighting their potential for advanced optoelectronic devices such as UV sensors and transparent electrodes. Electrically, conductivity improved due to increased charge carrier mobility and conductive pathways, making them suitable for flexible electronics and sensing applications. The 5 wt.% TiO2-doped nanofibers demonstrated superior antibacterial activity, particularly against E. coli (18.2 mm inhibition zone), and antioxidant performance comparable to ascorbic acid (95.32% DPPH inhibition), showcasing their relevance for biomedical applications like wound dressings and food packaging. These findings highlight the potential of PVA-PVP-PAAm/TiO2 nanofibers as useful materials for moisture sensors, antibacterial agents, and antioxidants, advancing applications in medical devices and environmental technologies. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Figure 1

42 pages, 1721 KB  
Review
Electrospinning Enables Opportunity for Green and Effective Antibacterial Coatings of Medical Devices
by Saverio Caporalini, Bahareh Azimi, Samir Zergat, Mahdi Ansari Chaharsoughi, Homa Maleki, Giovanna Batoni and Serena Danti
J. Funct. Biomater. 2025, 16(7), 249; https://doi.org/10.3390/jfb16070249 - 6 Jul 2025
Cited by 6 | Viewed by 3439
Abstract
The growing antimicrobial resistance and the increasing environmental concerns associated with conventional antibacterial agents have prompted a search for more effective and sustainable alternatives. Biopolymer-based nanofibers are promising candidates to produce environment-friendly antibacterial coatings, owing to their high surface-to-volume ratio, structural adaptability, and [...] Read more.
The growing antimicrobial resistance and the increasing environmental concerns associated with conventional antibacterial agents have prompted a search for more effective and sustainable alternatives. Biopolymer-based nanofibers are promising candidates to produce environment-friendly antibacterial coatings, owing to their high surface-to-volume ratio, structural adaptability, and tunable porosity. These features make them particularly well-suited for delivering antimicrobial agents in a controlled manner and for physically modifying the surface of medical devices. This review critically explores recent advances in the use of electrospun fibers enhanced with natural antimicrobial agents as eco-friendly surface coatings. The mechanisms of antibacterial action, key factors affecting their efficacy, and comparisons with conventional antibacterial agents are discussed herein. Emphasis is placed on the role of a “green electrospinning” process, which utilizes bio-based materials and nontoxic solvents, to enable coatings able to better combat antibiotic-resistant pathogens. Applications in various clinical settings, including implants, wound dressings, surgical textiles, and urinary devices, are explored. Finally, the environmental benefits and prospects for the scalability and sustainability of green coatings are discussed to underscore their relevance to next-generation, sustainable solutions in healthcare. Full article
(This article belongs to the Special Issue Advanced Technologies for Processing Functional Biomaterials)
Show Figures

Graphical abstract

14 pages, 9305 KB  
Article
Nitrogen-Doped Diamond-like Coatings for Long-Term Enhanced Cell Adhesion on Electrospun Poly(ε-caprolactone) Scaffold Surfaces
by Semen Goreninskii, Yuri Yuriev, Artem Runts, Elisaveta Prosetskaya, Evgeniy Melnik, Tuan-Hoang Tran, Elizaveta Sviridova, Alexey Golovkin, Alexander Mishanin and Evgeny Bolbasov
Polymers 2024, 16(24), 3524; https://doi.org/10.3390/polym16243524 - 18 Dec 2024
Cited by 2 | Viewed by 1354
Abstract
Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their [...] Read more.
Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their biocompatibility and functional properties. Herein, we report the utilization of the pulsed vacuum arc deposition (PVAD) technique for the fabrication of thin N-DLC coatings on the surface of electrospun PCL scaffolds. The effect of N-DLC coating deposition under various nitrogen pressures on the morphological, mechanical, physico-chemical, and biological properties of PCL scaffolds was investigated. It was established that an increase in nitrogen pressure in the range from 5 × 10−3 to 5 × 10−1 Pa results in up to a 10-fold increase in the nitrogen content and a 2-fold increase in the roughness of the PCL fiber surface. These factors provided the conditions for the enhanced adhesion and proliferation of human mesenchymal stem cells (MMSCs) on the surface of the modified PCL scaffolds. Importantly, the preservation of N-DLC coating properties determines the shelf life of a coated medical device. The elemental composition, tensile strength, and surface human MMSC adhesion were studied immediately after fabrication and after 6 months of storage under normal conditions. The enhanced MMSC adhesion was preserved after 6 months of storage of the modified PCL-based scaffolds under normal conditions. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Graphical abstract

15 pages, 3341 KB  
Article
Investigating How the Properties of Electrospun Poly(lactic acid) Fibres Loaded with the Essential Oil Limonene Evolve over Time under Different Storage Conditions
by Leah Williams, Fiona L. Hatton, Maria Cristina Righetti and Elisa Mele
Polymers 2024, 16(7), 1005; https://doi.org/10.3390/polym16071005 - 7 Apr 2024
Cited by 5 | Viewed by 3094
Abstract
Essential oils have been identified as effective natural compounds to prevent bacterial infections and thus are widely proposed as bioactive agents for biomedical applications. Across the literature, various essential oils have been incorporated into electrospun fibres to produce materials with, among others, antibacterial, [...] Read more.
Essential oils have been identified as effective natural compounds to prevent bacterial infections and thus are widely proposed as bioactive agents for biomedical applications. Across the literature, various essential oils have been incorporated into electrospun fibres to produce materials with, among others, antibacterial, anti-inflammatory and antioxidant activity. However, limited research has been conducted so far on the effect of these chemical products on the physical characteristics of the resulting composite fibres for extended periods of time. Within this work, electrospun fibres of poly(lactic acid) (PLA) were loaded with the essential oil limonene, and the impact of storage conditions and duration (up to 12 weeks) on the thermal degradation, glass transition temperature and mechanical response of the fibrous mats were investigated. It was found that the concentration of the encapsulated limonene changed over time and thus the properties of the PLA–limonene fibres evolved, particularly in the first two weeks of storage (independently from storage conditions). The amount of limonene retained within the fibres, even 4 weeks after fibre generation, was effective to successfully inhibit the growth of model microorganisms Escherichia coli, Staphylococcus aureus and Bacillus subtilis. The results of this work demonstrate the importance of evaluating physical properties during the ageing of electrospun fibres encapsulating essential oils, in order to predict performance modification when the composite fibres are used as constituents of medical devices. Full article
(This article belongs to the Special Issue Medical Applications of Polymer Fibers)
Show Figures

Figure 1

16 pages, 3612 KB  
Article
Innovative Multilayer Electrospun Patches for the Slow Release of Natural Oily Extracts as Dressings to Boost Wound Healing
by Noemi Fiaschini, Fiorella Carnevali, Stephen Andrew Van der Esch, Roberta Vitali, Mariateresa Mancuso, Maria Sulli, Gianfranco Diretto, Anna Negroni and Antonio Rinaldi
Pharmaceutics 2024, 16(2), 159; https://doi.org/10.3390/pharmaceutics16020159 - 24 Jan 2024
Cited by 8 | Viewed by 3553
Abstract
Electrospinning is an advanced manufacturing strategy used to create innovative medical devices from continuous nanoscale fibers that is endowed with tunable biological, chemical, and physical properties. Innovative medical patches manufactured entirely by electrospinning are discussed in this paper, using a specific plant-derived formulation [...] Read more.
Electrospinning is an advanced manufacturing strategy used to create innovative medical devices from continuous nanoscale fibers that is endowed with tunable biological, chemical, and physical properties. Innovative medical patches manufactured entirely by electrospinning are discussed in this paper, using a specific plant-derived formulation “1 Primary Wound Dressing©” (1-PWD) as an active pharmaceutical ingredient (API). 1-PWD is composed of neem oil (Azadirachta indica A. Juss.) and the oily extracts of Hypericum perforatum (L.) flowers, according to the formulation patented by the ENEA of proven therapeutic efficacy as wound dressings. The goal of this work is to encapsulate this API and demonstrate that its slow release from an engineered electrospun patch can increase the therapeutic efficacy for wound healing. The prototyped patch is a three-layer core–shell membrane, with a core made of fibers from a 1-PWD-PEO blend, enveloped within two external layers made of medical-grade polycaprolactone (PCL), ensuring mechanical strength and integrity during manipulation. The system was characterized via electron microscopy (SEM) and chemical and contact angle tests. The encapsulation, release, and efficacy of the API were confirmed by FTIR and LC-HRMS and were validated via in vitro toxicology and scratch assays. Full article
(This article belongs to the Special Issue Nanofibrous Scaffolds Application in Biomedicine)
Show Figures

Figure 1

13 pages, 4059 KB  
Article
Quorum Quenching Nanofibers for Anti-Biofouling Applications
by Amos Taiswa, Jessica M. Andriolo, M. Katie Hailer and Jack L. Skinner
Coatings 2024, 14(1), 70; https://doi.org/10.3390/coatings14010070 - 4 Jan 2024
Cited by 2 | Viewed by 4309
Abstract
Biofilms, complex microbial communities, adept at forming on diverse surfaces within environments, such as membrane technologies, ship hulls, medical devices, and clinical infections, pose persistent challenges. While various biofilm prevention methods, including antimicrobial coatings, physical barriers, and bacteriophage utilization, have been devised for [...] Read more.
Biofilms, complex microbial communities, adept at forming on diverse surfaces within environments, such as membrane technologies, ship hulls, medical devices, and clinical infections, pose persistent challenges. While various biofilm prevention methods, including antimicrobial coatings, physical barriers, and bacteriophage utilization, have been devised for engineered systems, their efficacy fluctuates based on application type and microbial species. Consequently, there remains a pressing need for the development of highly targeted and efficient biofilm control strategies tailored to specific applications remains a pressing need. In our investigation, we disrupt microbial cell-to-cell communication in Pseudomonas aeruginosa through the application of anti-quorum sensing (anti-QS) furanone C-30 molecules. The incorporation of these molecules onto electrospun surfaces yielded substantial reductions of 69% in petri dish assays and 58% on mixed cellulose ester (MCE) membranes in a dead-end nanofiltration system, showcasing the potent anti-biofouling impact. Notably, the functionalization of MCE surfaces with anti-QS molecules resulted in a remarkable 16.7% improvement in filtration output. These findings underscore the potential of this targeted approach to mitigate biofilm formation, offering a technical foundation for advancing tailored strategies in the ongoing pursuit of effective and application-specific biofilm control measures. Full article
Show Figures

Graphical abstract

45 pages, 5788 KB  
Review
Recent Advances in Electrospun Fibers for Biological Applications
by Bénédicte Fromager, Emilie Marhuenda, Benjamin Louis, Norbert Bakalara, Julien Cambedouzou and David Cornu
Macromol 2023, 3(3), 569-613; https://doi.org/10.3390/macromol3030033 - 16 Aug 2023
Cited by 17 | Viewed by 4364
Abstract
Electrospinning is a simple and versatile method to generate nanofibers. Remarkable progress has been made in the development of the electrospinning process. The production of nanofibers is affected by many parameters, which influence the final material properties. Electrospun fibers have a wide range [...] Read more.
Electrospinning is a simple and versatile method to generate nanofibers. Remarkable progress has been made in the development of the electrospinning process. The production of nanofibers is affected by many parameters, which influence the final material properties. Electrospun fibers have a wide range of applications, such as energy storage devices and biomedical scaffolds. Among polymers chosen for biological scaffolds, such as PLA or collagen, polyacrylonitrile (PAN) has received increasing interest in recent years due to its excellent characteristics, such as spinnability, biocompatibility, and commercial viability, opening the way to new applications in the biotechnological field. This paper provides an overview of the electrospinning process of a large range of polymers of interest for biomedical applications, including PLA and PEO. It covers the main parameters and operation modes that affect nanofiber fabrication. Their biological applications are reviewed. A focus is placed on PAN fiber formation, functionalization, and application as scaffolds to allow cell growth. Overall, nanofiber scaffolds appear to be powerful tools in medical applications that need controlled cell culture. Full article
(This article belongs to the Special Issue Functional Polymer-Based Materials)
Show Figures

Figure 1

16 pages, 3422 KB  
Article
Influence of Single-Wall Carbon Nanotube Suspension on the Mechanical Properties of Polymeric Films and Electrospun Scaffolds
by Anna A. Dokuchaeva, Sergey V. Vladimirov, Vsevolod P. Borodin, Elena V. Karpova, Andrey A. Vaver, Gleb E. Shiliaev, Dmitry S. Chebochakov, Vasily A. Kuznetsov, Nikolay V. Surovtsev, Sergey V. Adichtchev, Alexander G. Malikov, Mikhail A. Gulov and Irina Y. Zhuravleva
Int. J. Mol. Sci. 2023, 24(13), 11092; https://doi.org/10.3390/ijms241311092 - 4 Jul 2023
Cited by 5 | Viewed by 2186
Abstract
Carbon nanotubes (CNTs) are used in applications ranging from electrical engineering to medical device manufacturing. It is well known that the addition of nanotubes can influence the mechanical properties of various industrial materials, including plastics. Electrospinning is a popular method for fabricating nanomaterials, [...] Read more.
Carbon nanotubes (CNTs) are used in applications ranging from electrical engineering to medical device manufacturing. It is well known that the addition of nanotubes can influence the mechanical properties of various industrial materials, including plastics. Electrospinning is a popular method for fabricating nanomaterials, widely suggested for polymer scaffold manufacturing. In this study, we aimed to describe the influence of single-walled carbon nanotube (SWCNT) suspensions on polymeric poured films and electrospun scaffolds and to investigate their structural and mechanical properties obtained from various compositions. To obtain films and electrospun scaffolds of 8 mm diameter, we used poly-ε-caprolactone (PCL) and poly(cyclohexene carbonate) (PCHC) solutions containing several mass fractions of SWCNT. The samples were characterized using tensile tests, atomic force and scanning electronic microscopy (AFM and SEM). All the studied SWCNT concentrations were shown to decrease the extensibility and strength of electrospun scaffolds, so SWCNT use was considered unsuitable for this technique. The 0.01% mass fraction of SWCNT in PCL films increased the polymer strength, while fractions of 0.03% and more significantly decreased the polymer strength and extensibility compared to the undoped polymer. The PHCH polymeric films showed a similar behavior with an extremum at 0.02% concentration for strength at break. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials 4.0)
Show Figures

Figure 1

16 pages, 4926 KB  
Article
Pilot-Scale Melt Electrospinning of Polybutylene Succinate Fiber Mats for a Biobased and Biodegradable Face Mask
by Maike-Elisa Ostheller, Naveen Kumar Balakrishnan, Konrad Beukenberg, Robert Groten and Gunnar Seide
Polymers 2023, 15(13), 2936; https://doi.org/10.3390/polym15132936 - 3 Jul 2023
Cited by 12 | Viewed by 2668
Abstract
The COVID-19 pandemic led to a huge demand for disposable facemasks. Billions were manufactured from nonbiodegradable petroleum-derived polymers, and many were discarded in the environment where they contributed to plastic pollution. There is an urgent need for biobased and biodegradable facemasks to avoid [...] Read more.
The COVID-19 pandemic led to a huge demand for disposable facemasks. Billions were manufactured from nonbiodegradable petroleum-derived polymers, and many were discarded in the environment where they contributed to plastic pollution. There is an urgent need for biobased and biodegradable facemasks to avoid environmental harm during future disease outbreaks. Melt electrospinning is a promising alternative technique for the manufacturing of filter layers using sub-microfibers prepared from biobased raw materials such as polybutylene succinate (PBS). However, it is not yet possible to produce sub-micrometer PBS fibers or uniform nonwoven-like samples at the pilot scale, which hinders their investigation as filter layers. Further optimization of pilot-scale PBS melt electrospinning is therefore required. Here, we tested the effect of different parameters such as electric field strength, nozzle-to-collector distance and throughput on the final fiber diameter and sample uniformity during PBS melt electrospinning on a pilot-scale device. We also studied the effect of a climate chamber and an additional infrared heater on the solidification of PBS fibers and their final diameter and uniformity. In addition, a post-processing step, including a hot air stream of 90 °C for 30 s has been studied and successfully lead to a nonwoven-like structure including filaments that weld together without changing their structure. The finest fibers (1.7 µm in diameter) were produced at an applied electric field strength of −40 kV, a nozzle-to-collector distance of 5.5 cm, and a spin pump speed of 2 rpm. Three uniform nonwoven-like samples were tested as filter layers in a medical face mask by measuring their ability to prevent the transfer of bacteria, but the pore size was too large for effective retention. Our results provide insight into the process parameters influencing the suitability of melt-electrospun nonwoven-like samples as biobased and biodegradable filter materials and offer guidance for further process optimization. Full article
(This article belongs to the Special Issue Fabrication and Application of Electrospun Nanofibers II)
Show Figures

Graphical abstract

11 pages, 3092 KB  
Article
Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors
by Zhenpeng Cao, Xiuru Xu, Chubin He and Zhengchun Peng
Nanomaterials 2023, 13(7), 1181; https://doi.org/10.3390/nano13071181 - 26 Mar 2023
Cited by 7 | Viewed by 2622
Abstract
Conformable, sensitive, long-lasting, external power supplies-free multifunctional electronics are highly desired for personal healthcare monitoring and artificial intelligence. Herein, we report a series of stretchable, skin-like, self-powered tactile and motion sensors based on single-electrode mode triboelectric nanogenerators. The triboelectric sensors were composed of [...] Read more.
Conformable, sensitive, long-lasting, external power supplies-free multifunctional electronics are highly desired for personal healthcare monitoring and artificial intelligence. Herein, we report a series of stretchable, skin-like, self-powered tactile and motion sensors based on single-electrode mode triboelectric nanogenerators. The triboelectric sensors were composed of ultraelastic polyacrylamide (PAAm)/(polyvinyl pyrrolidone) PVP/(calcium chloride) CaCl2 conductive hydrogels and surface-modified silicon rubber thin films. The significant enhancement of electrospun polyvinylidene fluoride (PVDF) nanofiber-modified hierarchically wrinkled micropyramidal architectures for the friction layer was studied. The mechanism of the enhanced output performance of the electrospun PVDF nanofibers and the single-side/double-side wrinkled micropyramidal architectures-based sensors has been discussed in detail. The as-prepared devices exhibited excellent sensitivity of a maximum of 20.1 V/N (or 8.03 V/kPa) as tactile sensors to recognize a wide range of forces from 0.1 N to 30 N at low frequencies. In addition, multiple human motion monitoring was demonstrated, such as knee, finger, wrist, and neck movement and voice recognition. This work shows great potential for skin-like epidermal electronics in long-term medical monitoring and intelligent robot applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Flexible and Stretchable Devices)
Show Figures

Figure 1

13 pages, 8881 KB  
Article
Effect of Sterilization Methods on Electrospun Scaffolds Produced from Blend of Polyurethane with Gelatin
by Vera S. Chernonosova, Ilya E. Kuzmin, Inna K. Shundrina, Mikhail V. Korobeynikov, Victor M. Golyshev, Boris P. Chelobanov and Pavel P. Laktionov
J. Funct. Biomater. 2023, 14(2), 70; https://doi.org/10.3390/jfb14020070 - 28 Jan 2023
Cited by 16 | Viewed by 3635
Abstract
Fibrous polyurethane-based scaffolds have proven to be promising materials for the tissue engineering of implanted medical devices. Sterilization of such materials and medical devices is an absolutely essential step toward their medical application. In the presented work, we studied the effects of two [...] Read more.
Fibrous polyurethane-based scaffolds have proven to be promising materials for the tissue engineering of implanted medical devices. Sterilization of such materials and medical devices is an absolutely essential step toward their medical application. In the presented work, we studied the effects of two sterilization methods (ethylene oxide treatment and electron beam irradiation) on the fibrous scaffolds produced from a polyurethane-gelatin blend. Scaffold structure and properties were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared spectroscopy (FTIR), a stress-loading test, and a cell viability test with human fibroblasts. Treatment of fibrous polyurethane-based materials with ethylene oxide caused significant changes in their structure (formation of glued-like structures, increase in fiber diameter, and decrease in pore size) and mechanical properties (20% growth of the tensile strength, 30% decline of the maximal elongation). All sterilization procedures did not induce any cytotoxic effects or impede the biocompatibility of scaffolds. The obtained data determined electron beam irradiation to be a recommended sterilization method for electrospun medical devices made from polyurethane-gelatin blends. Full article
Show Figures

Figure 1

27 pages, 1894 KB  
Review
Electrospinning of Potential Medical Devices (Wound Dressings, Tissue Engineering Scaffolds, Face Masks) and Their Regulatory Approach
by Luca Éva Uhljar and Rita Ambrus
Pharmaceutics 2023, 15(2), 417; https://doi.org/10.3390/pharmaceutics15020417 - 26 Jan 2023
Cited by 87 | Viewed by 7200
Abstract
Electrospinning is the simplest and most widely used technology for producing ultra-thin fibers. During electrospinning, the high voltage causes a thin jet to be launched from the liquid polymer and then deposited onto the grounded collector. Depending on the type of the fluid, [...] Read more.
Electrospinning is the simplest and most widely used technology for producing ultra-thin fibers. During electrospinning, the high voltage causes a thin jet to be launched from the liquid polymer and then deposited onto the grounded collector. Depending on the type of the fluid, solution and melt electrospinning are distinguished. The morphology and physicochemical properties of the produced fibers depend on many factors, which can be categorized into three groups: process parameters, material properties, and ambient parameters. In the biomedical field, electrospun nanofibers have a wide variety of applications ranging from medication delivery systems to tissue engineering scaffolds and soft electronics. Many of these showed promising results for potential use as medical devices in the future. Medical devices are used to cure, prevent, or diagnose diseases without the presence of any active pharmaceutical ingredients. The regulation of conventional medical devices is strict and carefully controlled; however, it is not yet properly defined in the case of nanotechnology-made devices. This review is divided into two parts. The first part provides an overview on electrospinning through several examples, while the second part focuses on developments in the field of electrospun medical devices. Additionally, the relevant regulatory framework is summarized at the end of this paper. Full article
(This article belongs to the Special Issue Recent Development of Electrospinning for Drug Delivery, 3rd Edition)
Show Figures

Figure 1

20 pages, 2540 KB  
Review
Hybrid Systems of Nanofibers and Polymeric Nanoparticles for Biological Application and Delivery Systems
by Hever Yuritzy Vargas-Molinero, Aracely Serrano-Medina, Kenia Palomino-Vizcaino, Eduardo Alberto López-Maldonado, Luis Jesús Villarreal-Gómez, Graciela Lizeth Pérez-González and José Manuel Cornejo-Bravo
Micromachines 2023, 14(1), 208; https://doi.org/10.3390/mi14010208 - 14 Jan 2023
Cited by 33 | Viewed by 4528
Abstract
Nanomedicine is a new discipline resulting from the combination of nanotechnology and biomedicine. Nanomedicine has contributed to the development of new and improved treatments, diagnoses, and therapies. In this field, nanoparticles have notable importance due to their unique properties and characteristics, which are [...] Read more.
Nanomedicine is a new discipline resulting from the combination of nanotechnology and biomedicine. Nanomedicine has contributed to the development of new and improved treatments, diagnoses, and therapies. In this field, nanoparticles have notable importance due to their unique properties and characteristics, which are useful in different applications, including tissue engineering, biomarkers, and drug delivery systems. Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. The combination of nanoparticles with nanofibers creates hybrid systems that acquire properties that differ from their components’ characteristics. By utilizing nanoparticles and nanofibers composed of dissimilar polymers, the two synergize to improve the overall performance of electrospinning mats and nanoparticles. This review summarizes the hybrid systems of polymeric nanoparticles and polymeric nanofibers, critically analyzing how the combination improves the properties of the materials and contributes to the reduction of some disadvantages found in nanometric devices and systems. Full article
(This article belongs to the Section B5: Drug Delivery System)
Show Figures

Figure 1

12 pages, 3645 KB  
Article
The Effect of Electrospinning Parameters on Piezoelectric PVDF-TrFE Nanofibers: Experimental and Simulation Study
by Mehdi Pourbafrani, Sara Azimi, Narges Yaghoobi Nia, Mahmoud Zendehdel and Mohammad Mahdi Abolhasani
Energies 2023, 16(1), 37; https://doi.org/10.3390/en16010037 - 21 Dec 2022
Cited by 15 | Viewed by 4299
Abstract
Polyvinylidene fluoride and its copolymers can be used as active materials for energy harvesting and environmental sensing. Energy harvesting is one of the most recent research techniques for producing stable electrical energy from mechanical sources. Polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) is applicable for sensors and [...] Read more.
Polyvinylidene fluoride and its copolymers can be used as active materials for energy harvesting and environmental sensing. Energy harvesting is one of the most recent research techniques for producing stable electrical energy from mechanical sources. Polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) is applicable for sensors and self-powered devices such as medical implants and wearable electronic devices. The preparation of electrospun P(VDF-TrFE) nanofibers is of great interest for the fabrication of sensors and self-powered devices, nanogenerators, and sensors. In this regard, it is necessary to investigate the effects of various parameters on the morphology and piezoelectric output voltage of such nanofibers. In this study, we have examined the effect of concentration and feed rate on the nanofiber diameter. It has been found that by increasing the concentration and feed rate of the polymer solution, the diameter of the nanofibers increases. The experimental results and the finite element method (FEM) simulation have also shown consistency; when the nanofiber diameter increases, the output voltage of the nanofibers decreases. This behavior can be related to the strain reduction in the deformed nanofibers. Full article
Show Figures

Figure 1

18 pages, 5781 KB  
Article
Developing Antibiofilm Fibrillar Scaffold with Intrinsic Capacity to Produce Silver Nanoparticles
by Giovanna Pitarresi, Giuseppe Barberi, Fabio Salvatore Palumbo, Domenico Schillaci, Calogero Fiorica, Valentina Catania, Serena Indelicato, David Bongiorno, Giuseppina Biscari and Gaetano Giammona
Int. J. Mol. Sci. 2022, 23(23), 15378; https://doi.org/10.3390/ijms232315378 - 6 Dec 2022
Cited by 6 | Viewed by 2860
Abstract
The development of biomedical systems with antimicrobial and antibiofilm properties is a difficult medical task for preventing bacterial adhesion and growth on implanted devices. In this work, a fibrillar scaffold was produced by electrospinning a polymeric organic dispersion of polylactic acid (PLA) and [...] Read more.
The development of biomedical systems with antimicrobial and antibiofilm properties is a difficult medical task for preventing bacterial adhesion and growth on implanted devices. In this work, a fibrillar scaffold was produced by electrospinning a polymeric organic dispersion of polylactic acid (PLA) and poly(α,β-(N-(3,4-dihydroxyphenethyl)-L-aspartamide-co-α,β-N-(2-hydroxyethyl)-L-aspartamide) (PDAEA). The pendant catechol groups of PDAEA were used to reduce silver ions in situ and produce silver nanoparticles onto the surface of the electrospun fibers through a simple and reproducible procedure. The morphological and physicochemical characterization of the obtained scaffolds were studied and compared with virgin PLA electrospun sample. Antibiofilm properties against Pseudomonas aeruginosa, used as a biofilm-forming pathogen model, were also studied on planar and tubular scaffolds. These last were fabricated as a proof of concept to demonstrate the possibility to obtain antimicrobial devices with different shape and dimension potentially useful for different biomedical applications. The results suggest a promising approach for the development of antimicrobial and antibiofilm scaffolds. Full article
(This article belongs to the Special Issue Bioactive Materials with Antimicrobial Properties)
Show Figures

Graphical abstract

Back to TopTop