Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,911)

Search Parameters:
Keywords = electronic system applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2080 KB  
Review
Introduction and Extension of the Unified Theory of Multicenter Bonding: The Role of the Charge-Shift Bonding
by Francisco Javier Manjón, Hussien H. Osman, Álvaro Lobato, Fernando Izquierdo-Ruiz, Enrico Bandiello, Samuel Gallego-Parra, Ángel Vegas, Matteo Savastano and Alfonso Muñoz
Molecules 2026, 31(1), 82; https://doi.org/10.3390/molecules31010082 - 24 Dec 2025
Abstract
Classical chemical bonding is typically categorized into primary, strong interactions, such as covalent, ionic, and metallic bonds, and secondary, weak interactions, such as van der Waals forces, the hydrogen bond, and their likes (halogen bond, chalcogen bond, etc.). However, other not-so-known bonding mechanisms [...] Read more.
Classical chemical bonding is typically categorized into primary, strong interactions, such as covalent, ionic, and metallic bonds, and secondary, weak interactions, such as van der Waals forces, the hydrogen bond, and their likes (halogen bond, chalcogen bond, etc.). However, other not-so-known bonding mechanisms also play a crucial role in chemical systems. Particularly important are the charge-shift bond (CSB) and the multicenter bonds, i.e., the electron-rich multicenter bond (ERMB), also known as hypervalent or three-center-four-electron (3c-4e) bond, and the electron-deficient multicenter bond (EDMB), also known as the three-center-two-electron (3c-2e) bond in molecules and, more recently, as the two-center-one-electron (2c-1e) bond in extended solids. We consider that these latter interactions have not yet received the proper attention of the scientific community, even though multicenter interactions were proposed in the early days of Quantum Mechanics. In this work, we aim at providing: (i) a concise historical overview of the two types of multicenter bonds; (ii) a short introduction to the recently proposed unified theory of multicenter bonding (UTMB), which elucidates the origin and mechanisms of formation of both ERMBs and EDMBs; and (iii) an extension of the UTMB to include CSBs, due to the strong relationship between ERMBs and CSBs. We hope that the integrated perspective of chemical bonding, the heartland of chemistry, offered by the UTMB (beyond traditional and historical assumptions) will help researchers to understand materials properties and will provide a framework allowing the development of advanced materials for enhanced technological applications. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Figure 1

33 pages, 1542 KB  
Review
Volume Electron Microscopy: Imaging Principles, Computational Advances and Applications in Multi-Scale Biological System
by Bowen Shi and Yanan Zhu
Crystals 2026, 16(1), 14; https://doi.org/10.3390/cryst16010014 - 24 Dec 2025
Abstract
Volume electron microscopy (Volume-EM) has transformed structural cell biology by enabling nanometre-resolution imaging across cellular and tissue scales. Serial-section TEM, Serial Block-Face Scanning Electron Microscopy (SBF-SEM), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and multi-beam SEM now routinely generate terabyte-scale volumes that capture [...] Read more.
Volume electron microscopy (Volume-EM) has transformed structural cell biology by enabling nanometre-resolution imaging across cellular and tissue scales. Serial-section TEM, Serial Block-Face Scanning Electron Microscopy (SBF-SEM), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and multi-beam SEM now routinely generate terabyte-scale volumes that capture organelles, synapses and neural circuits in three dimensions, while cryogenic Volume-EM extends this landscape by preserving vitrified, fully hydrated specimens in a near-native state. Together, these room-temperature and cryogenic modalities define a continuum of approaches that trade off volume, resolution, throughput and structural fidelity, and increasingly interface with correlative light microscopy and cryo-electron tomography. In parallel, advances in computation have turned Volume-EM into a data-intensive discipline. Multistage preprocessing pipelines for alignment, denoising, stitching and intensity normalisation feed into automated segmentation frameworks that combine convolutional neural networks, affinity-based supervoxel agglomeration, flood-filling networks and, more recently, diffusion-based generative restoration. Weakly supervised and self-supervised learning, multi-task objectives and human–AI co-training mitigate the scarcity of dense ground truth, while distributed storage and streaming inference architectures support segmentation and proofreading at the terascale and beyond. Open resources such as COSEM, MICRONS, OpenOrganelle and EMPIAR provide benchmark datasets, interoperable file formats and reference workflows that anchor method development and cross-laboratory comparison. In this review, we first outline the physical principles and imaging modes of conventional and cryogenic Volume-EM, then describe current best practices in data acquisition and preprocessing, and finally survey the emerging ecosystem of AI-driven segmentation and analysis. We highlight how cryo–Volume-EM expands the field towards native-state structural biology, and how multimodal integration with light microscopy, cryo-electron tomography (cryo-ET) and spatial omics is pushing Volume-EM from descriptive imaging towards predictive, mechanistic, cross-scale models of cell physiology, disease ultrastructure and neural circuit function. Full article
(This article belongs to the Special Issue Electron Microscopy Characterization of Soft Matter Materials)
17 pages, 9104 KB  
Article
A Theoretical Study of the Reactive Mechanisms of Alkali Metal Doped Ni-Based Oxygen Carrier During Chemical Looping Combustion
by Minjun Wang, Xingyao Nie and Ming Xia
Catalysts 2026, 16(1), 14; https://doi.org/10.3390/catal16010014 - 24 Dec 2025
Abstract
Chemical looping combustion (CLC) is a promising technology for CO2 capture, with the performance of the system largely dependent on the oxygen carrier. Although Ni-based carriers have been extensively investigated, their practical application is still constrained by inadequate reactivity. This study investigated [...] Read more.
Chemical looping combustion (CLC) is a promising technology for CO2 capture, with the performance of the system largely dependent on the oxygen carrier. Although Ni-based carriers have been extensively investigated, their practical application is still constrained by inadequate reactivity. This study investigated the doping of alkali metals (Li, Na, K) into NiO to improve its performance in CLC. Through density functional theory calculations, the structural, electronic, and reactivity of doped NiO surfaces were systematically analyzed. Results reveal that doping induces lattice expansion and enhances CO adsorption, with adsorption energies strengthening to −0.53 eV for Li, −0.46 eV for Na, and −0.36 eV for K. Furthermore, alkali metal doping significantly reduces the energy barrier for CO2 formation from 2.12 eV on pure NiO to 0.73 eV, 0.80 eV, and 0.99 eV on Li-, Na-, and K-doped surfaces, respectively. Oxygen vacancy formation energy also decreases from 3.60 eV to as low as 2.90 eV for K-doping, indicating markedly improved oxygen activity. Electronic structure analysis confirms that doping facilitates electron transfer and stabilizes key reaction intermediates. In conclusion, alkali metal doping substantially enhances the redox activity of NiO, providing an effective strategy for developing high-performance oxygen carriers in CLC. Full article
(This article belongs to the Special Issue Catalysis and Technology for CO2 Capture, Conversion and Utilization)
21 pages, 3446 KB  
Article
Integrating Proximal Sensing Data for Assessing Wood Distillate Effects in Strawberry Growth and Fruit Development
by Valeria Palchetti, Sara Beltrami, Francesca Alderotti, Maddalena Grieco, Giovanni Marino, Giovanni Agati, Ermes Lo Piccolo, Mauro Centritto, Francesco Ferrini, Antonella Gori, Vincenzo Montesano and Cecilia Brunetti
Horticulturae 2026, 12(1), 17; https://doi.org/10.3390/horticulturae12010017 - 24 Dec 2025
Abstract
Strawberry (Fragaria × ananassa (Weston) Rozier) is a high-value crop whose market success depends on fruit quality traits such as sweetness, firmness, and pigmentation. In sustainable agriculture, wood distillates are gaining interest as natural biostimulants. This study evaluated the effects of foliar [...] Read more.
Strawberry (Fragaria × ananassa (Weston) Rozier) is a high-value crop whose market success depends on fruit quality traits such as sweetness, firmness, and pigmentation. In sustainable agriculture, wood distillates are gaining interest as natural biostimulants. This study evaluated the effects of foliar application of two commercial wood distillates (WD1 and WD2) and one produced in a pilot plant at the Institute for Bioeconomy of the National Research Council of Italy (IBE-CNR) on strawberry physiology, fruit yield, and fruit quality under greenhouse conditions. Non-destructive ecophysiological measurements were integrated using optical sensors for proximal phenotyping, enabling continuous monitoring of plant physiology and fruit ripening. Leaf gas exchange and chlorophyll fluorescence were measured with a portable photosynthesis system, while vegetation indices and pigment-related parameters were obtained using spectroradiometric sensors and fluorescence devices. To assess the functional relevance of vegetation indices, a linear regression analysis was performed between net photosynthetic rate (A) and the Photochemical Reflectance Index (PRI), confirming a significant positive correlation and supporting PRI as a proxy for photosynthetic efficiency. All treatments improved photosynthetic efficiency during fruiting, with significant increases in net photosynthetic rate, quantum yield of photosystem II, and electron transport rate compared to control plants. IBE-CNR and WD2 enhanced fruit yield, while all treatments increased fruit soluble solids content. Non-invasive monitoring enabled real-time assessment of physiological responses and pigment accumulation, confirming the potential of wood distillates as biostimulants and the value of advanced sensing technologies for sustainable, data-driven crop management. Full article
Show Figures

Figure 1

32 pages, 1578 KB  
Review
Research Progress on Transparent Conductive Properties of SnO2 Thin Films
by Xuezhi Li, Fuyueyang Tan, Chi Zhang, Jinhui Zhou, Zhengjie Guo, Yikun Yang, Yixian Xie, Xi Cao, Yuying Feng, Chenyao Huang, Zaijin Li, Yi Qu and Lin Li
Coatings 2026, 16(1), 23; https://doi.org/10.3390/coatings16010023 - 24 Dec 2025
Abstract
As a core candidate material for indium-free transparent conductive oxides, tin dioxide (SnO2) thin films are gradually replacing indium tin oxide (ITO) and becoming a research focus in the field of optoelectronic devices, thanks to their excellent physicochemical stability, wide bandgap [...] Read more.
As a core candidate material for indium-free transparent conductive oxides, tin dioxide (SnO2) thin films are gradually replacing indium tin oxide (ITO) and becoming a research focus in the field of optoelectronic devices, thanks to their excellent physicochemical stability, wide bandgap characteristics, and abundant tin resource reserves. This review focuses on SnO2 thin films. Firstly, it elaborates on the tetragonal rutile crystal structure characteristics of SnO2 and the transparent conductive mechanism based on oxygen vacancies and doping elements to regulate free electron concentration, while clarifying the key parameters for evaluating their transparent conductive properties. Subsequently, it systematically summarizes the research progress in preparing SnO2 transparent conductive thin films via physical methods and chemical methods in recent years. It compares the microstructure and transparent conductive properties of thin films prepared by different methods, and analyzes the regulatory laws of preparation processes, doping types, and film thickness on their optoelectronic properties. Furthermore, this work supplements the current application status of SnO2 thin films in devices. Meanwhile, the core performance differences between indium-free tin-based thin film devices and ITO-based devices are compared. Finally, we have summarized the advantages and challenges of physical and chemical methods in the preparation of SnO2 thin films. It also forecasts the application potential of interdisciplinary integration of physical–chemical methods and the development of new doping systems in the preparation of high-performance SnO2 transparent conductive thin films. This review aims to provide theoretical guidance and technical references for the selection and process optimization of SnO2 transparent conductive thin films in fields such as photovoltaic devices and flexible optoelectronic equipment. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

24 pages, 2672 KB  
Review
Graphene-, Transition Metal Dichalcogenide-, and MXenes Material-Based Flexible Optoelectronic Devices
by Yingying Wang, Geyi Zhou, Zhisheng Zhang and Zhihong Zhu
Nanomaterials 2026, 16(1), 25; https://doi.org/10.3390/nano16010025 - 24 Dec 2025
Abstract
Characterized by their atomic thickness and exceptional mechanical properties, two-dimensional (2D) materials offer a compelling platform for developing flexible optoelectronic devices that maintain performance stability under mechanical deformation such as bending and stretching. This review systematically summarizes and critically discusses the recent advancements [...] Read more.
Characterized by their atomic thickness and exceptional mechanical properties, two-dimensional (2D) materials offer a compelling platform for developing flexible optoelectronic devices that maintain performance stability under mechanical deformation such as bending and stretching. This review systematically summarizes and critically discusses the recent advancements in applying three prominent 2D material categories—graphene, transition metal dichalcogenides (TMDs, e.g., MoS2 and WS2), and MXenes—in flexible optoelectronics. We focus on their specific applications in flexible photodetectors, light-emitting devices, optical modulators, solar cells, and gas sensors. A particular emphasis is placed on analyzing the unique physicochemical properties of these materials and elucidating the underlying mechanisms that enable bandgap stability and efficient optoelectronic conversion under mechanical strain. The potential of these devices demonstrated here underscores their broad application prospects in wearable systems and self-powered electronic platforms. Finally, we conclude by discussing the challenges and future prospects in the field of flexible optoelectronic devices based on two-dimensional materials. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

27 pages, 2139 KB  
Review
Contemporary Micro-Battery Technologies: Advances in Microfabrication, Nanostructuring, and Material Optimisation for Lithium-Ion Batteries
by Nadiia Piiter, Iván Fernández Valencia, Eirik Odinsen and Jacob Joseph Lamb
Appl. Sci. 2026, 16(1), 173; https://doi.org/10.3390/app16010173 - 23 Dec 2025
Abstract
The miniaturisation of electronic devices has intensified the demand for compact, high-performance lithium-ion batteries. This review synthesises recent progress in microscale battery development, focusing on microfabrication techniques, nanostructured materials, porosity-engineered architectures, and strategies for reducing non-active components. It explores both top–down and bottom–up [...] Read more.
The miniaturisation of electronic devices has intensified the demand for compact, high-performance lithium-ion batteries. This review synthesises recent progress in microscale battery development, focusing on microfabrication techniques, nanostructured materials, porosity-engineered architectures, and strategies for reducing non-active components. It explores both top–down and bottom–up fabrication methods, the integration of nanomaterials, the role of gradient electrode architectures in enhancing ion transport and energy density, along with strategies to reduce non-active components, such as separators and current collectors, to maximise volumetric efficiency. Advances in top–down and bottom–up fabrication methods, including photolithography, laser structuring, screen printing, spray coating, mechanical structuring, and 3D printing, enable precise control over electrode geometry and enhance ion transport and material utilisation. Nanostructured anodes, cathodes, electrolytes, and separators further improve conductivity, mechanical stability, and cycling performance. Gradient porosity designs optimise ion distribution in thick electrodes, while innovations in ultra-thin separators and lightweight current collectors support higher energy density. Remaining challenges relate to scalability, mechanical robustness, and long-term stability, especially in fully integrated micro-battery architectures. Future development will rely on hybrid fabrication methods, advanced material compatibility, and data-driven optimisation to bridge laboratory innovations with practical applications. By integrating microfabrication and nanoscale engineering, next-generation LIBs can deliver high energy density and long operational lifetimes for miniaturised and flexible electronic systems. Full article
16 pages, 14909 KB  
Article
Electronic and Optical Properties of Transition-Metal-Modified BiFeO3: A First Principles Study
by A. P. Aslla Quispe, L. C. Huamani Aslla, B. Barzola Moscoso, M. D. Clemente Arenas, P. H. Rivera and J. D. S. Guerra
Materials 2026, 19(1), 66; https://doi.org/10.3390/ma19010066 - 23 Dec 2025
Abstract
The structural, electronic, magnetic, and optical properties are explored in the G-type antiferromagnetic BiFeO3 system by replacing the Fe cation with transition metals to form the BiFe0.834X0.166O3 compound (where X = Mn, Co, [...] Read more.
The structural, electronic, magnetic, and optical properties are explored in the G-type antiferromagnetic BiFeO3 system by replacing the Fe cation with transition metals to form the BiFe0.834X0.166O3 compound (where X = Mn, Co, or Ni) by using first-principles DFT+U and TDDFT calculations. All the optimized structures preserve the rhombohedral (R3c) space group, showing moderate changes in the FeO6 octahedral distortions, lattice parameters, and Fe–O–Fe bond angles. Pristine G-type antiferromagnetic (AFM-G) BiFeO3 is a typical semiconductor material with a calculated bandgap energy Eg=1.99 eV. However, the inclusion of Ni, Co, and Mn at the Fe site introduces additional 3d states near the Fermi level, causing metallic behavior in every case. The local density of states (LDOS), density of states (DOS), and total magnetization results show that the inclusion of Ni, Co, and Mn promotes a transition from antiferromagnetic (AFM) to ferrimagnetic behavior in the modified BiFe0.834X0.166O3 compositions. On the other hand, in the visible spectral region, the time-dependent density functional theory (TDDFT) revealed that the pristine material has refractive index n(ω) values between 2.8 and 3.6, showing that the presence of Co and Ni enhances the extinction and absorption coefficients in both visible and ultraviolet regions, whereas the inclusion of Mn produces less significant effects. These results demonstrate that controlled substitution at the Fe site with transition metals simultaneously modifies the structural, electronic, magnetic, and optical properties of the BiFeO3 system, offering promising potential for applications in electronic devices with multifunctional properties. Full article
(This article belongs to the Section Materials Simulation and Design)
19 pages, 836 KB  
Article
A Hybrid Walrus Optimization-Based Fourth-Order Method for Solving Non-Linear Problems
by Aanchal Chandel, Eulalia Martínez, Sonia Bhalla, Sattam Alharbi and Ramandeep Behl
Axioms 2026, 15(1), 6; https://doi.org/10.3390/axioms15010006 - 23 Dec 2025
Abstract
Non-linear systems of equations play a fundamental role in various engineering and data science models, where accurate solutions are essential for both theoretical research and practical applications. However, solving such systems is highly challenging due to their inherent non-linearity and computational complexity. This [...] Read more.
Non-linear systems of equations play a fundamental role in various engineering and data science models, where accurate solutions are essential for both theoretical research and practical applications. However, solving such systems is highly challenging due to their inherent non-linearity and computational complexity. This study proposes a novel hybrid iterative method with fourth-order convergence. The foundation of the proposed scheme combines the Walrus Optimization Algorithm and a fourth-order iterative technique. The objective of this hybrid approach is to enhance global search capability, reduce the likelihood of convergence to local optima, accelerate convergence, and improve solution accuracy in solving non-linear problems. The effectiveness of the proposed method is checked on standard benchmark problems and two real-world case studies, hydrocarbon combustion and electronic circuit design, and one non-linear boundary value problem. In addition, a comparative analysis is conducted with several well-established optimization algorithms, based on the optimal solution, average fitness value, and convergence rate. Furthermore, the proposed scheme effectively addresses key limitations of traditional iterative techniques, such as sensitivity to initial point selection, divergence issues, and premature convergence. These findings demonstrate that the proposed hybrid method is a robust and efficient approach for solving non-linear problems. Full article
(This article belongs to the Special Issue Advances in Classical and Applied Mathematics, 2nd Edition)
Show Figures

Figure 1

10 pages, 3832 KB  
Article
Intertwined Electron–Electron Interactions and Disorder in the Metal–Insulator Phase Transition
by Martha Y. Suárez-Villagrán and Nikolaos Mitsakos
Appl. Sci. 2026, 16(1), 146; https://doi.org/10.3390/app16010146 - 23 Dec 2025
Abstract
Quantum materials exhibit a rich dynamic of physical parameters, which, when combined, can lead to entirely different behaviors. These parameters constantly compete with each other, with the most influential parameters determining the state of the system. For example, in the case of metal–insulator [...] Read more.
Quantum materials exhibit a rich dynamic of physical parameters, which, when combined, can lead to entirely different behaviors. These parameters constantly compete with each other, with the most influential parameters determining the state of the system. For example, in the case of metal–insulator transitions, electron–electron interactions compete with the kinetic energy of the electrons and disorder. Understanding these complex dynamics is crucial for both fundamental physics and the development of novel technological applications, particularly given the role of disorder in tuning critical temperatures, a property with significant potential benefit in the fabrication of new devices where temperature requirements are still the bottleneck. In this article, properties of the Mott metal–insulator transition within disordered electron systems are explored using the disordered Hubbard model, the simplest Hamiltonian for capturing the metal–insulator transition. The model solutions are obtained using the self-consistent statistical dynamical mean-field theory (statDMFT). statDMFT incorporates local electronic correlation effects while allowing for Anderson localization due to disorder. Full article
(This article belongs to the Special Issue Quantum Phases and Metal–Insulator Transitions in Electron Systems)
Show Figures

Figure 1

18 pages, 1970 KB  
Article
Development and Evaluation of Platanus orientalis L. Extract-Loaded Liposomes for Enhanced Wound Healing
by Firdevs Demirel, Ali Asram Sağıroğlu, Gülbahar Özge Alim Toraman, Aysenur Gunaydin-Akyildiz, Zehra Keskin, Beyza Sümeyye Aydın and Gülaçtı Topçu
Pharmaceuticals 2026, 19(1), 32; https://doi.org/10.3390/ph19010032 - 23 Dec 2025
Abstract
Background/Objectives: Wound healing is a complex biological process influenced by inflammation, oxidative stress, and cellular regeneration. Plant-derived bioactive compounds have shown potential to accelerate tissue repair through antioxidant and anti-inflammatory mechanisms. This study aimed to develop and evaluate a Platanus orientalis extract-loaded [...] Read more.
Background/Objectives: Wound healing is a complex biological process influenced by inflammation, oxidative stress, and cellular regeneration. Plant-derived bioactive compounds have shown potential to accelerate tissue repair through antioxidant and anti-inflammatory mechanisms. This study aimed to develop and evaluate a Platanus orientalis extract-loaded liposomal formulation for potential wound-healing applications. Methods: Four polar extracts (P1–P4) were prepared using different solvent systems and extraction techniques and were characterized by LC-HRMS to determine their phytochemical profiles. Among the identified constituents, quercetin was consistently detected across all extracts and selected as the reference compound due to its well-known wound-healing activity. Liposomes were prepared via thin-film hydration followed by probe sonication and characterized for particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency, and total drug content. In vitro release, cytotoxicity, and wound-healing assays were subsequently conducted to assess performance. Results: The optimized liposome formulation had a mean particle size of 106.6 ± 5.4 nm, a PDI of 0.11 ± 0.04, and a zeta potential of −14.1 ± 0.5 mV. Environmental scanning electron microscopy (ESEM) confirmed the nanosized spherical morphology and homogeneous vesicle distribution, supporting the successful development of the liposomal delivery system. Encapsulation efficiency and total drug content were determined as 72.25 ± 1.05% and 96.15 ± 0.14%, respectively. In vitro release studies demonstrated a biphasic pattern with an initial burst followed by a sustained release, reaching approximately 75% cumulative quercetin release within 24 h. Physical stability testing confirmed that the optimized liposomal formulation remained physically stable at 5 ± 3 °C for at least 60 days. The optimized formulation showed no cytotoxic effects on CDD-1079Sk fibroblast cells and exhibited significantly enhanced wound closure in vitro. Conclusions: These findings indicate that the liposomal delivery of Platanus orientalis extract provides a biocompatible and sustained-release system that enhances wound-healing efficacy, supporting its potential use in advanced topical therapeutic applications. Full article
Show Figures

Figure 1

20 pages, 1609 KB  
Article
Low-Cost Gas Sensing and Machine Learning for Intelligent Refrigeration in the Built Environment
by Mooyoung Yoo
Buildings 2026, 16(1), 41; https://doi.org/10.3390/buildings16010041 - 22 Dec 2025
Viewed by 21
Abstract
Accurate, real-time monitoring of meat freshness is essential for reducing food waste and safeguarding consumer health, yet conventional methods rely on costly, laboratory-grade spectroscopy or destructive analyses. This work presents a low-cost electronic-nose platform that integrates a compact array of metal-oxide gas sensors [...] Read more.
Accurate, real-time monitoring of meat freshness is essential for reducing food waste and safeguarding consumer health, yet conventional methods rely on costly, laboratory-grade spectroscopy or destructive analyses. This work presents a low-cost electronic-nose platform that integrates a compact array of metal-oxide gas sensors (Figaro TGS2602, TGS2603, and Sensirion SGP30) with a Gaussian Process Regression (GPR) model to estimate a continuous freshness index under refrigerated storage. The pipeline includes headspace sensing, baseline normalization and smoothing, history-window feature construction, and probabilistic prediction with uncertainty. Using factorial analysis and response-surface optimization, we identify history length and sampling interval as key design variables; longer temporal windows and faster sampling consistently improve accuracy and stability. The optimized configuration (≈143-min history, ≈3-min sampling) reduces mean absolute error from ~0.51 to ~0.05 on the normalized freshness scale and shifts the error distribution within specification limits, with marked gains in process capability and yield. Although it does not match the analytical precision or long-term robustness of spectrometric approaches, the proposed system offers an interpretable and energy-efficient option for short-term, laboratory-scale monitoring under controlled refrigeration conditions. By enabling probabilistic freshness estimation from low-cost sensors, this GPR-driven e-nose demonstrates a proof-of-concept pathway that could, after further validation under realistic cyclic loads and operational disturbances, support more sustainable meat management in future smart refrigeration and cold-chain applications. This study should be regarded as a methodological, laboratory-scale proof-of-concept that does not demonstrate real-world performance or operational deployment. The technical implications described herein are hypothetical and require extensive validation under realistic refrigeration conditions. Full article
(This article belongs to the Special Issue Built Environment and Building Energy for Decarbonization)
Show Figures

Figure 1

27 pages, 5433 KB  
Article
Comprehensive Structural, Electronic, and Biological Characterization of fac-[Re(CO)3(5,6-epoxy-5,6-dihydro-1,10-phenanthroline)Br]: X-Ray, Aromaticity, Electrochemistry, and HeLa Cell Viability
by Alexander Carreño, Vania Artigas, Evys Ancede-Gallardo, Rosaly Morales-Guevara, Roxana Arce, Luis Leyva-Parra, Angel A. Martí, Camila Videla, María Carolina Otero and Manuel Gacitúa
Inorganics 2026, 14(1), 3; https://doi.org/10.3390/inorganics14010003 - 22 Dec 2025
Viewed by 27
Abstract
The rhenium(I) tricarbonyl complex fac-[Re(CO)3(5,6-epoxy-5,6-dihydro-1,10-phenanthroline)Br] (ReL) has previously demonstrated promising luminescent properties, enabling its direct application as a probe for walled cells such as Candida albicans and Salmonella enterica. In this new study, we present a significantly expanded and [...] Read more.
The rhenium(I) tricarbonyl complex fac-[Re(CO)3(5,6-epoxy-5,6-dihydro-1,10-phenanthroline)Br] (ReL) has previously demonstrated promising luminescent properties, enabling its direct application as a probe for walled cells such as Candida albicans and Salmonella enterica. In this new study, we present a significantly expanded and comprehensive characterization of ReL, incorporating a wide range of experimental and computational techniques not previously reported. These include variable-temperature 1H and 13C NMR spectroscopy, CH-COSY, single-crystal X-ray diffraction, Hirshfeld surface analysis, DFT calculations, Fukui functions, non-covalent interaction (NCI) indices, and electrochemical profiling. Structural analysis confirmed a pseudo-octahedral geometry with the bromide ligand positioned cis to the epoxy group. NMR data revealed the coexistence of cis and trans isomers in solution, with the trans form being slightly more stable. DFT calculations and aromaticity descriptors indicated minimal electronic differences between isomers, supporting their unified treatment in subsequent analyses. Electrochemical studies revealed two oxidation and two reduction events, consistent with ECE and EEC mechanisms, including a Re(I) → Re(0) transition at −1.50 V vs. SCE. Theoretical redox potentials showed strong agreement with experimental data. Biological assays revealed a dose-dependent cytotoxic effect on HeLa cells, contrasting with previously reported low toxicity in microbial systems. These findings, combined with ReL’s luminescent and antimicrobial properties, underscore its multifunctional nature and highlight its potential as a bioactive and imaging agent for advanced therapeutic and microbiological applications. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Figure 1

20 pages, 6334 KB  
Article
g-C3N4/CeO2/Bi2O3 Dual Type-II Heterojunction Photocatalysis Self-Cleaning Coatings: From Spectral Absorption Modulation to Engineering Application Characterization
by Shengchao Cui, Run Cheng, Feng Sun, Huishuang Zhao, Hang Yuan, Qing Si, Mengzhe Ai, Weiming Du, Kan Zhou, Yantao Duan and Wenke Zhou
Nanomaterials 2026, 16(1), 16; https://doi.org/10.3390/nano16010016 - 22 Dec 2025
Viewed by 60
Abstract
To enhance the purification of exhaust gas, a g-C3N4/CeO2/Bi2O3 dual type-II heterojunction photocatalysis was designed and prepared to suppress the recombination of electron–hole pairs and improve light energy utilization. The dual type-II heterojunction structure [...] Read more.
To enhance the purification of exhaust gas, a g-C3N4/CeO2/Bi2O3 dual type-II heterojunction photocatalysis was designed and prepared to suppress the recombination of electron–hole pairs and improve light energy utilization. The dual type-II heterojunction structure effectively reduced the bandgap (Eg) from 2.5 eV to 2.04 eV, thereby extending the light absorption of photocatalysis into the visible region. Following the design of the heterojunction, a self-cleaning process was developed and applied to asphalt pavement rut plates to evaluate its efficiency in degrading vehicle exhaust under real-road conditions. The coating was systematically characterized in terms of exhaust degradation efficiency, hardness, adhesion, water resistance, freeze–thaw durability, and skid resistance. Under 60 min of natural light irradiation, the purification efficiencies for HC, CO, CO2, and NOx reached 22.60%, 19.27%, 14.83%, and 50.01%, respectively. After three-repetition tests, the efficiencies remained high at 21.75%, 19.04%, 14.66%, and 49.83%, demonstrating excellent photocatalytic stability. All other road-performance indicators met the relevant China national standards. The application of this self-cleaning coating in road infrastructure presents a viable strategy for environmental remediation in transportation systems. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

19 pages, 3041 KB  
Article
Electrospun Polycaprolactone/Carbon Nanotube Membranes for Transdermal Drug Delivery Systems
by Elizabeth Ortiz-Maldonado, Eduardo San Martin-Martínez, Ningel Omar Gama-Castañeda, Marquidia Pacheco, Ulises Figueroa-López, Andrea Guevara-Morales, Esmeralda Juárez, Andy Ruiz and Horacio Vieyra
Polymers 2026, 18(1), 15; https://doi.org/10.3390/polym18010015 - 21 Dec 2025
Viewed by 78
Abstract
The development of membranes and patches for controlled drug release to enhance therapeutic efficacy is a promising approach to addressing the challenge posed by poor adherence to pharmacological therapies for chronic diseases. In this study, we designed an electrospun polycaprolactone (PCL) nanofibrous membrane [...] Read more.
The development of membranes and patches for controlled drug release to enhance therapeutic efficacy is a promising approach to addressing the challenge posed by poor adherence to pharmacological therapies for chronic diseases. In this study, we designed an electrospun polycaprolactone (PCL) nanofibrous membrane reinforced with different concentrations (0.04%, 0.05%, 0.075%, and 0.2%) of functionalized multi-walled carbon nanotubes (f-MWCNTs) intended for biomedical applications, such as transdermal devices. We characterized the resulting composites using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and dynamic mechanical analysis (DMA) to evaluate their morphology, chemical composition, and mechanical properties. We also measured their cytotoxicity upon contact with peripheral blood mononuclear cells. The nanofibers had diameters below 100 nm and inclusions of microspheres, which were attributed to the electrospinning expansion phenomenon. Spectroscopic and mechanical analyses confirmed molecular interactions between the PCL matrix and the f-MWCNTs. Finally, biological tests demonstrated that both the dispersion of f-MWCNTs and the nanofiber sizing render the membranes biocompatible, supporting their potential use as drug-delivery systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

Back to TopTop