Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = electron relaxation time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 288 KB  
Article
A Comprehensive Solution and Solid-State NMR Study of Proton Spin Lattice Relaxation in Paramagnetic Metallocenes
by Gabrielle E. Harmon-Welch, Douglas W. Elliott, Nattamai Bhuvanesh, Vladimir I. Bakhmutov and Janet Blümel
Physchem 2025, 5(3), 36; https://doi.org/10.3390/physchem5030036 - 5 Sep 2025
Abstract
Solid solutions of the metallocenes ferrocene (Cp2Fe), nickelocene (Cp2Ni), and cobaltocene (Cp2Co) have been prepared by manually grinding the components together, or by co-crystallizing them from solution. In the solid solutions Cp2Fe/Cp2Ni and [...] Read more.
Solid solutions of the metallocenes ferrocene (Cp2Fe), nickelocene (Cp2Ni), and cobaltocene (Cp2Co) have been prepared by manually grinding the components together, or by co-crystallizing them from solution. In the solid solutions Cp2Fe/Cp2Ni and Cp2Co/Cp2Ni, the cyclopentadienyl (Cp) protons relax via dipolar electron–proton interactions, which represent the dominant relaxation mechanism. The 1H T1 relaxation times of the molecules Cp2Ni and Cp2Co, dissolved in CDCl3, and in the solid solutions, show that the relaxation takes place intramolecularly. The relaxation of the protons is propagated exclusively via the unpaired electrons of the metal centers to which their Cp rings are coordinated, due to the large intermolecular distances that are greater than 3.91 Å. In contrast, the intramolecular distances between the electrons of the metal atoms and the protons of their coordinated Cp rings are merely 2.70 Å. Using these intramolecular distances and the 1H T1 relaxation times, the electron relaxation times T1e have been determined as 17 × 1013 s in CDCl3 solutions and 45 × 1013 s in the solid state for Cp2Ni. The corresponding T1e times for Cp2Co are calculated as ca. 5 × 1013 s and 20 × 1013 s. Grinding Cp2Fe and Cp2Ni together leads to two different 1H T1 relaxation times for the protons of Cp2Fe. The longer T1 relaxation time indicates domains that consist mostly of Cp2Fe molecules. The short T1 times show a close contact of Cp2Fe and Cp2Ni molecules. An analysis of the short 1H T1 times reveals the presence of at least two to three short distances of 3.91 Å between Cp2Fe and Cp2Ni molecules. These results support the hypothesis that dry grinding of the metallocenes Cp2Fe and Cp2Ni in ratios that were changed in 10% increments from 90%/10% to 30%/70% leads to domains that mostly consist of Cp2Fe molecules, and additionally to domains that contain a mixture of the components on the molecular level. Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
Show Figures

Graphical abstract

29 pages, 9939 KB  
Article
Theoretical Insights and Experimental Studies of the New Layered Tellurides EuRECuTe3 with RE = Nd, Sm, Tb and Dy
by Anna V. Ruseikina, Evgenii M. Roginskii, Maxim V. Grigoriev, Vladimir A. Chernyshev, Alexander A. Garmonov, Ralf J. C. Locke and Thomas Schleid
Crystals 2025, 15(9), 787; https://doi.org/10.3390/cryst15090787 - 31 Aug 2025
Viewed by 235
Abstract
Single crystals of the layered EuRECuTe3 series with RE = Nd, Sm, Tb and Dy are obtained for the first time, completing the series of studies on quaternary tellurides synthesized using the halide flux method. These compounds crystallize in the [...] Read more.
Single crystals of the layered EuRECuTe3 series with RE = Nd, Sm, Tb and Dy are obtained for the first time, completing the series of studies on quaternary tellurides synthesized using the halide flux method. These compounds crystallize in the orthorhombic space group Pnma (no. 62) with unit cell parameters ranging from a = 11.5634(7) Å, b = 4.3792(3) Å and c = 14.3781(9) Å for EuNdCuTe3 to a = 11.2695(7) Å, b = 4.3178(3) Å and c = 14.3304(9) Å for EuDyCuTe3. The influence of prismatic polyhedra [EuTe6+1]7− structural units on the stabilization of 3d framework composed by 2d layered fragments [RECuTe3]2−, which have a key role in the interlayer interaction, is established. A comparative analysis of structural and magnetic properties dependence on the rare-earth element radius ri(RE3+) in the EuRECuTe3 series (RE = Sc, Y, Nd–Lu) is carried out. The structural contraction, including decrease in degree of tetrahedral polyhedra distortion, bond lengths shortening and unit cell volume shrinking with increasing ri(RE3+), is established. It is shown that the structural alternation leads to transition from ferromagnetic to ferrimagnetic ordering. It was established that changes in the cationic sublattice have a more significant impact on structural transitions in the series of quaternary tellurides than changes in the anionic sublattice. The electronic structure and elastic and dynamic properties were estimated using ab initio calculations. The exfoliation energy for each compound is obtained by estimation of monolayer ground state energy as a result of structure relaxation. The symmetry and structural properties of monolayer EuRECuTe3 (RE = Nd, Sm, Tb, Dy) compound are established and the orthorhombic symmetry is obtained with layer group pm2_1b. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
17 pages, 5897 KB  
Article
Testing the Potential of Magnetic Resonance Dosimetry: The Case of Lithium Carbonate
by Alexander Shames, Alexander Panich, Lonia Friedlander, Olga Iliashevsky, Haim Cohen and Raymond Moreh
Materials 2025, 18(17), 3986; https://doi.org/10.3390/ma18173986 - 26 Aug 2025
Viewed by 595
Abstract
Magnetic resonance techniques are powerful, nondestructive, non-invasive tools with broad applications in radiation dosimetry. Electron paramagnetic resonance (EPR) enables direct quantification of dose-dependent radiation-induced paramagnetic defects, while nuclear magnetic resonance (NMR) reflects the influence of such defects through changes in line width and [...] Read more.
Magnetic resonance techniques are powerful, nondestructive, non-invasive tools with broad applications in radiation dosimetry. Electron paramagnetic resonance (EPR) enables direct quantification of dose-dependent radiation-induced paramagnetic defects, while nuclear magnetic resonance (NMR) reflects the influence of such defects through changes in line width and nuclear spin relaxation. To date, these methods have typically been applied independently. Their combined use to probe radiation damage in the same material offers new opportunities for comprehensive characterization and preferred dosimetry techniques. In this work, we apply both EPR and NMR to investigate radiation damage in lithium carbonate (Li2CO3). A detailed EPR analysis of γ-irradiated samples shows that the concentration of paramagnetic defects increases with dose, following two distinct linear regimes: 10–100 Gy and 100–1000 Gy. A gradual decay of the EPR signal was observed over 40 days, even under cold storage. In contrast, 7Li NMR spectra and spin–lattice relaxation times in Li2CO3 exhibit negligible sensitivity to radiation doses up to 1000 Gy, while 1H NMR results remain inconclusive. Possible mechanisms underlying these contrasting behaviors are discussed. Full article
(This article belongs to the Special Issue Radiation Damage and Radiation Defects of Materials)
Show Figures

Graphical abstract

15 pages, 259 KB  
Article
Mind–Body Practices for Mental Health in Higher Education: Breathing, Grounding, and Consistency Are Essential for Stress and Anxiety Management
by Kristian Park Frausing, Manja Harsted Flammild and Jesper Dahlgaard
Healthcare 2025, 13(16), 2049; https://doi.org/10.3390/healthcare13162049 - 19 Aug 2025
Viewed by 638
Abstract
Background and objectives: Mental health issues such as anxiety and stress are prevalent in educational settings, highlighting the need for individualized, scalable interventions. Mind–body approaches are promising for distress management, and this study explored which body-based strategies students found effective. Methods: [...] Read more.
Background and objectives: Mental health issues such as anxiety and stress are prevalent in educational settings, highlighting the need for individualized, scalable interventions. Mind–body approaches are promising for distress management, and this study explored which body-based strategies students found effective. Methods: A cross-sectional study assessed mental health and the use of body-based coping strategies among 152 primarily female students, age 21–52, in the Educational Program for Psychomotor Therapy, a group familiar with such strategies. An electronic survey assessed well-being (WHO-5), stress (PSS-10), anxiety (HADS-A), and use of 13 mind–body practices (e.g., breathing, grounding, muscle relaxation). Participants were grouped by mental health risk and a logistic regression explored associations with coping strategy use. Results: High-frequency use of more body-based strategies predicted lower odds of being in the high-risk group (p = 0.039), while sporadic use of more strategies predicted high mental health risk (p = 0.022). Breathing and grounding were the most frequently used and helpful practices, with minimal barriers. High-risk students cited capability concerns and time as barriers, while all participants mentioned forgetting to use the practices. Conclusions: High-risk students use a broader range of practices sporadically, whereas low-risk students adopt selected strategies more consistently. Proper integration of practices through education and training may be crucial for enhancing their efficacy. Full article
Show Figures

Figure 1

15 pages, 12294 KB  
Article
Physicochemical Properties of Supramolecular Complexes Formed Between Cyclodextrin and Rice Bran-Derived Komecosanol
by Mione Uchimura, Akiteru Ohtsu, Junki Tomita, Yoshiyuki Ishida, Daisuke Nakata, Keiji Terao and Yutaka Inoue
Physchem 2025, 5(3), 34; https://doi.org/10.3390/physchem5030034 - 13 Aug 2025
Viewed by 309
Abstract
In this study, supramolecular inclusion complexes composed of komecosanol (Ko), a lipophilic compound derived from rice bran, and α-cyclodextrin (αCD) were prepared using a solvent-free three-dimensional (3D) ball milling method. Their physicochemical properties were examined using various techniques. Powder X-ray diffraction analysis of [...] Read more.
In this study, supramolecular inclusion complexes composed of komecosanol (Ko), a lipophilic compound derived from rice bran, and α-cyclodextrin (αCD) were prepared using a solvent-free three-dimensional (3D) ball milling method. Their physicochemical properties were examined using various techniques. Powder X-ray diffraction analysis of the ground mixture at a Ko/αCD ratio of 1/8 revealed the disappearance of diffraction peaks characteristic of Ko and the emergence of new peaks, indicating the formation of a distinct crystalline phase. Moreover, differential scanning calorimetry analysis showed the disappearance of the endothermic peaks corresponding to Ko, indicating molecular-level interactions with αCD. Near-infrared spectroscopy results suggested the formation of hydrogen bonds between the C–H groups of Ko and the O–H groups of αCD. Solid-state 13C CP/MAS NMR and T1 relaxation time measurements indicated the formation of a pseudopolyrotaxane structure, while scanning electron microscopy images confirmed distinct morphological changes consistent with complex formation. These findings demonstrate that 3D ball milling facilitates the formation of Ko/αCD inclusion complexes with a supramolecular architecture, providing a novel approach to improve the formulation and bioavailability of poorly water-soluble lipophilic compounds. Full article
(This article belongs to the Section Biophysical Chemistry)
Show Figures

Graphical abstract

18 pages, 564 KB  
Article
Electrons in Quantum Dots on Helium: From Charge Qubits to Synthetic Color Centers
by Mark I. Dykman and Johannes Pollanen
Entropy 2025, 27(8), 787; https://doi.org/10.3390/e27080787 - 25 Jul 2025
Viewed by 393
Abstract
Electrons trapped above the surface of helium provide a means to study many-body physics free from the randomness that comes from defects in other condensed-matter systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum discrete, with controlled level spacing. [...] Read more.
Electrons trapped above the surface of helium provide a means to study many-body physics free from the randomness that comes from defects in other condensed-matter systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum discrete, with controlled level spacing. The lowest two states can act as charge qubit states. In this paper, we study how the coupling to the quantum field of capillary waves on helium—known as ripplons—affects electron dynamics. As we show, the coupling can be strong. This bounds the parameter range where electron-based charge qubits can be implemented. The constraint is different from the conventional relaxation time constraint. The electron–ripplon system in a dot is similar to a color center formed by an electron defect coupled to phonons in a solid. In contrast to solids, the coupling in the electron on helium system can be varied from strong to weak. This enables a qualitatively new approach to studying color center physics. We analyze the spectroscopy of the pertinent synthetic color centers in a broad range of the coupling strength. Full article
Show Figures

Figure 1

17 pages, 3809 KB  
Article
Innovative In Situ Interfacial Co-Assembled Lignin/Chitosan Nanoparticles—Green Synthesis, Physicochemical Characterization, In Vitro Release, and Intermolecular Interactions
by Zhani Yanev, Denitsa Georgieva, Silviya Hristova, Milena Tzanova, Denitsa Nicheva, Boika Andonova-Lilova, Tzvetelina Zagorcheva, Diyana Vladova, Neli Grozeva and Zvezdelina Yaneva
Int. J. Mol. Sci. 2025, 26(14), 6883; https://doi.org/10.3390/ijms26146883 - 17 Jul 2025
Cited by 1 | Viewed by 507
Abstract
In the present study, novel conjugated lignin/chitosan nanoparticles (LCNPs) were synthesized by a first-time simple green methodology using interfacial co-assembly between both biopolymers. The physicochemical (ζ-potential, size, concentration of surface acidic/basic groups), structural (surface functional groups), and morphological characteristics of the blank and [...] Read more.
In the present study, novel conjugated lignin/chitosan nanoparticles (LCNPs) were synthesized by a first-time simple green methodology using interfacial co-assembly between both biopolymers. The physicochemical (ζ-potential, size, concentration of surface acidic/basic groups), structural (surface functional groups), and morphological characteristics of the blank and quercetin-encapsulated (Q-LCNPs) nanoparticles were analyzed by the Boehm method, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The experimentally determined encapsulation capacity was satisfactory—95.75%. The in vitro quercetin release efficiency in acidic solution that simulated the gastric microenvironment was 21.9%, followed by 68.5% and 99.8% cumulative release efficiency in simulated intestinal media at pH 7.4 and 6.8, respectively. The satisfactory applicability of the Weibull and sigmoidal mathematical models towards the experimental in vitro release data was indicative of the remarkable roles of diffusion and relaxation mechanisms. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

11 pages, 3627 KB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Viewed by 378
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

12 pages, 3178 KB  
Article
Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping
by Ali Farooq, Wen Xu, Jie Zhang, Hua Wen, Qiujin Wang, Xingjia Cheng, Yiming Xiao, Lan Ding, Altayeb Alshiply Abdalfrag Hamdalnile, Haowen Li and Francois M. Peeters
Physics 2025, 7(3), 27; https://doi.org/10.3390/physics7030027 - 14 Jul 2025
Cited by 1 | Viewed by 2518
Abstract
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of [...] Read more.
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of ML MoS2 placed on a sapphire substrate, where the pump photon energy is larger than the bandgap of ML MoS2. The pump laser source is provided by a compact semiconductor laser with a 445 nm wavelength. Through the measurement of THz time-domain spectroscopy, we obtain the complex optical conductivity for ML MoS2, which are found to be fitted exceptionally well with the Drude–Smith formula. Therefore, we expect that the reduction in conductivity in ML MoS2 is mainly due to the effect of electronic backscattering or localization in the presence of the substrate. Meanwhile, one can optically determine the key electronic parameters of ML MoS2, such as the electron density ne, the intra-band electronic relaxation time τ, and the photon-induced electronic localization factor c. The dependence of these parameters upon CW laser pump intensity is examined here at room temperature. We find that 445 nm CW laser pumping results in the larger ne, shorter τ, and stronger c in ML MoS2 indicating that laser excitation has a significant impact on the optoelectronic properties of ML MoS2. The origin of the effects obtained is analyzed on the basis of solid-state optics. This study provides a unique and tractable technique for investigating photo-excited carriers in ML MoS2. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

26 pages, 2441 KB  
Article
Structure–Property Relationship in Isotactic Polypropylene Under Contrasting Processing Conditions
by Edin Suljovrujic, Dejan Milicevic, Katarina Djordjevic, Zorana Rogic Miladinovic, Georgi Stamboliev and Slobodanka Galovic
Polymers 2025, 17(14), 1889; https://doi.org/10.3390/polym17141889 - 8 Jul 2025
Viewed by 1151
Abstract
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by [...] Read more.
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by the crystallization behavior of the polymer under specific conditions. The most important industrial PP remains the isotactic one, and it has been studied extensively for its polymorphic characteristics and crystallization behavior for over half a century. Due to its regular chain structure, isotactic polypropylene (iPP) belongs to the group of polymers with a high tendency for crystallization. The rapid quenching of molten iPP fails to produce a completely amorphous polymer but leads to an intermediate crystalline order. On the other hand, slow cooling yields a material with high crystalline content. The processing conditions that occur in practice and industry are between these two extremes and, in some cases, are even very close. Therefore, the study of limits in processability and the impact of extreme preparation conditions on morphology, structure, thermal, and mechanical properties fills a gap in the current understanding of how the processing conditions of iPP can be used to design the desired properties for specific applications and is in the focus of this research. The first set of samples (Q samples) was obtained by rapid quenching, while the second was prepared by very slow cooling from the melt to room temperature (SC samples). Testing of samples was performed by optical microscopy (OM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic dielectric spectroscopy (DDS), and mechanical measurements. Characterization revealed that slowly cooled samples exhibited a significantly higher degree of crystallinity and larger crystallites (χ ≥ 55% and L(110) ≈ 20 nm), compared to quenched samples (χ < 30%, L(110) ≤ 3 nm). Mechanical testing showed a drastic contrast: quenched samples exhibited elongation at break > 500%, while slowly cooled samples broke below 15%, reflecting their brittle behavior. For the first time, DDS is applied to investigate molecular mobility differences between processing-dependent structural forms, specifically the mesomorphic (smectic) and α-monoclinic forms. In slowly cooled samples, α relaxation exhibited both enhanced intensity and an upward temperature shift, indicating stronger structural constraints due to a much higher crystalline phase content and significantly larger crystallite size, respectively. These findings provide novel insights into the structure–property–processing relationship, which is crucial for industrial applications. Full article
(This article belongs to the Special Issue Thermal and Elastic Properties of Polymer Materials)
Show Figures

Figure 1

24 pages, 2997 KB  
Article
Selective Air Oxidation of Bis- and Trisphosphines Adsorbed on Activated Carbon Surfaces
by Ehsan Shakeri, John C. Hoefler and Janet Blümel
Molecules 2025, 30(13), 2737; https://doi.org/10.3390/molecules30132737 - 25 Jun 2025
Viewed by 364
Abstract
Bis- and trisphosphines incorporating methylene and aryl spacers readily adsorb on the surface of porous activated carbon (AC). The adsorption can be performed in the absence of solvents, even when the phosphines have high melting points, or from solutions. The diverse phosphines Ph [...] Read more.
Bis- and trisphosphines incorporating methylene and aryl spacers readily adsorb on the surface of porous activated carbon (AC). The adsorption can be performed in the absence of solvents, even when the phosphines have high melting points, or from solutions. The diverse phosphines Ph2PCH2PPh2 (dppm), Ph2P(CH2)2PPh2 (dppe), Ph2P(CH2)3PPh2 (dppp), Ph2P(p-C6H4)PPh2 (dppbz), and (Ph2PCH2)3CCH3 (tdme) were adsorbed in submonolayers on AC. The adsorbed phosphines were studied by 31P MAS (magic angle spinning) NMR spectroscopy, and their mobilities on the surface were confirmed by determining the 31P T1 relaxation times. All phosphine groups of each bis- and trisphosphine molecule are in contact with the surface, and the molecules exhibit translational mobility as one unit. All phosphines used here are air-stable. Once a submonolayer is created on the AC surface, oxygen from the air is co-adsorbed and transforms all phosphines quantitatively into phosphine oxides at room temperature. The oxidation proceeds in a consecutive manner with the oxidation of one phosphine group after another until the fully oxidized species are formed. Studies of the kinetics are based on integrating the signals in the solution 31P NMR spectra. High temperatures and low surface coverages increase the speed of the oxidation, while light and acid have no impact. The oxidation is fast and complete within one hour for 10% surface coverage at room temperature. In order to study the mechanism and slow down the oxidation, a higher surface coverage of 40% was applied. No unwanted P(V) side products or water adducts were observed. The clean phosphine oxides could be recovered in high yields by washing them off of the AC surface. The oxidation is based on radical activation of O2 on the AC surface due to delocalized electrons on the AC surface. This is corroborated by the result that AIBN-derived radicals enable the air oxidation of PPh3 in solution at 65 °C. When the air-stable complex (CO)2Ni(PPh3)2 is applied to the AC surface and exposed to the air, OPPh3 forms quantitatively. The new surface-assisted air oxidation of phosphines adsorbed on AC renders expensive and hazardous oxidizers obsolete and opens a synthetic pathway to the selective mono-oxidation of bis- and trisphosphines. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

14 pages, 9430 KB  
Article
Strain-Driven Dewetting and Interdiffusion in SiGe Thin Films on SOI for CMOS-Compatible Nanostructures
by Sonia Freddi, Michele Gherardi, Andrea Chiappini, Adam Arette-Hourquet, Isabelle Berbezier, Alexey Fedorov, Daniel Chrastina and Monica Bollani
Nanomaterials 2025, 15(13), 965; https://doi.org/10.3390/nano15130965 - 21 Jun 2025
Cited by 1 | Viewed by 538
Abstract
This study provides new insight into the mechanisms governing solid state dewetting (SSD) in SiGe alloys and underscores the potential of this bottom-up technique for fabricating self-organized defect-free nanostructures for CMOS-compatible photonic and nanoimprint applications. In particular, we investigate the SSD of Si [...] Read more.
This study provides new insight into the mechanisms governing solid state dewetting (SSD) in SiGe alloys and underscores the potential of this bottom-up technique for fabricating self-organized defect-free nanostructures for CMOS-compatible photonic and nanoimprint applications. In particular, we investigate the SSD of Si1−xGex thin films grown by molecular beam epitaxy on silicon-on-insulator (SOI) substrates, focusing on and clarifying the interplay of dewetting dynamics, strain elastic relaxation, and SiGe/SOI interdiffusion. Samples were annealed at 820 °C, and their morphological and compositional evolution was tracked using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy, considering different annealing time steps. A sequential process typical of the SiGe alloy has been identified, involving void nucleation, short finger formation, and ruptures of the fingers to form nanoislands. XRD and Raman data reveal strain relaxation and significant Si-Ge interdiffusion over time, with the Ge content decreasing from 29% to 20% due to mixing with the underlying SOI layer. EDX mapping confirms a Ge concentration gradient within the islands, with higher Ge content near the top. Full article
(This article belongs to the Special Issue Controlled Growth and Properties of Semiconductor Nanomaterials)
Show Figures

Figure 1

14 pages, 6836 KB  
Article
Enhanced Thermoelectric Properties of Phosphorene via Quantum Size Effects and Relaxation Time Tuning
by Zhiqian Sun, Chenkai Zhang, Guixian Ge, Gui Yang and Jueming Yang
Materials 2025, 18(11), 2506; https://doi.org/10.3390/ma18112506 - 26 May 2025
Viewed by 569
Abstract
Black phosphorus is a promising thermoelectric (TE) material because of its high Seebeck coefficient and high electrical conductivity. In this work, the TE performance of bulk black phosphorus and single-layer phosphorene under uniaxial strain is studied using first-principles calculations and Boltzmann transport theory. [...] Read more.
Black phosphorus is a promising thermoelectric (TE) material because of its high Seebeck coefficient and high electrical conductivity. In this work, the TE performance of bulk black phosphorus and single-layer phosphorene under uniaxial strain is studied using first-principles calculations and Boltzmann transport theory. The results show relatively excellent TE performance along the armchair direction for both black phosphorus and phosphorene in our study. However, high lattice thermal conductivity is the key adverse factor for further enhancing the TE performance of phosphorus. The ZT value can only reach up to 0.97 and 0.73 for n- and p-type black phosphorus at 700 K, respectively. Owing to quantum size effects, black phosphorene has lower lattice thermal conductivity than black phosphorus. At the same time, two-dimensional (2D) phosphorene exhibits increased electronic energy compared with bulk black phosphorus, resulting in a larger bandgap and reduced electrical conductivity due to the quantum confinement effect. Thus, the TE performance of n-type phosphorene can be partially improved, and the ZT value reaches up to 1.41 at 700 K. However, the ZT value decreases from 0.73 to 0.70 for p-type phosphorene compared with bulk phosphorus at 700 K. To further improve the TE performance of phosphorene, a tensile strain is applied along the armchair direction. Subsequent work indicates that uniaxial strain can further optimize phosphorene’s TE properties by tuning hole relaxation time to improve electrical conductivity. Strikingly, the ZT values exceed 1.7 for both n- and p-type phosphorene under 4.5% tensile strain along the armchair direction at 700 K because of increased electrical conductivity and decreased lattice thermal conductivity. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

16 pages, 3096 KB  
Article
Effect of Desulfurization Ash Content on the Low-Temperature Rheological Properties of Asphalt Mastic
by Yinghui Zhang, Kai Li, Yong Wu and Zhigang Zhou
Coatings 2025, 15(5), 604; https://doi.org/10.3390/coatings15050604 - 18 May 2025
Viewed by 488
Abstract
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% [...] Read more.
Circulating fluidized bed combustion flue gas desulfurization generates large volumes of dry desulfurization ash requiring sustainable management. This study evaluated the impacts of substituting desulfurization ash for mineral powder filler in asphalt mastic on low-temperature rheological properties. Asphalt mastics were produced with 0–100% ash replacing mineral powder at 0.8–1.2 powder-binder mass ratios. Ductility and bending beam rheometer testing assessed flexibility and crack resistance. Burgers’ model fitted bending creep compliance to derive relaxation time, m(t)/S(t) index, and low-temperature compliance parameter for analytical insight. Scanning electron microscopy and Fourier transform infrared spectroscopy probed microstructural development and interaction mechanisms. Results showed that the inclusion of desulfurization ash reduced the low-temperature performance of the asphalt mastic compared to the mineral powder asphalt mastic. Additionally, as the temperature decreased further, the effect of the powder-to-gum ratio on the slurry’s crack resistance became less pronounced. Desulfurization ash primarily interacted with the base bitumen through physical means, and the performance of desulfurization ash asphalt slurry mainly depended on the degree of swelling between the desulfurization ash and the base asphalt. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

16 pages, 2568 KB  
Article
Nonadiabatic Surface Hopping Dynamics of Photocatalytic Water Splitting Process with Heptazine–(H2O)4 Chromophore
by Xiaojuan Pang, Chenghao Yang, Ningbo Zhang and Chenwei Jiang
Int. J. Mol. Sci. 2025, 26(10), 4549; https://doi.org/10.3390/ijms26104549 - 9 May 2025
Viewed by 427
Abstract
Recent research on the use of heptazine-based polymeric carbon nitride materials as potential photocatalysts for hydrogen evolution has made significant progress. However, the impact of the water cluster’s size on the time-dependent photochemical mechanisms during the water splitting process of heptazine–water clusters remains [...] Read more.
Recent research on the use of heptazine-based polymeric carbon nitride materials as potential photocatalysts for hydrogen evolution has made significant progress. However, the impact of the water cluster’s size on the time-dependent photochemical mechanisms during the water splitting process of heptazine–water clusters remains largely unexplored. Here, we present a Landau–Zener trajectory surface hopping dynamics calculation for heptazine–(H2O)4 clusters at the ADC(2) level. The electron-driven proton transfer (EDPT) mechanism reaction from water to hydrogen-bonded heptazine–water clusters was confirmed using this method, yielding a heptazinyl radical and an OH biradical as products. The calculated quantum yield of the EDPT for the heptazine–(H2O)4 complex was 6.5%, which was slightly lower than that of the heptazine–H2O complex (9%), suggesting that increasing the water cluster size does not significantly enhance the efficiency of hydrogen transfer. Interestingly, our results show that the de-excitation of the heptazine–water complex from the excited state to the ground state via the EDPT process follows both fast and slow decay modes, which govern population relaxation and facilitate the photochemical water splitting reaction. This newly identified differential decay behavior offers valuable insights that could help deepen our understanding of the EDPT process, potentially improving the efficiency of water splitting under sunlight. Full article
Show Figures

Figure 1

Back to TopTop