A Comprehensive Solution and Solid-State NMR Study of Proton Spin Lattice Relaxation in Paramagnetic Metallocenes
Abstract
1. Introduction
2. Results and Discussion
2.1. Proton Spin Diffusion
2.2. Fermi-Contact Electron-Nucleus Coupling
2.3. Dipolar Proton-Electron Interactions
3. Conclusions
4. Experimental Section
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pell, A.J.; Pintacuda, G.; Grey, C.P. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–271. [Google Scholar] [CrossRef]
- Bakhmutov, V.I. Strategies for solid-state NMR studies of materials: From diamagnetic to paramagnetic porous solids. Chem. Rev. 2011, 111, 530–562. [Google Scholar] [CrossRef] [PubMed]
- Blümel, J.; Hiller, W.; Herker, M.; Köhler, F.H. Solid-State Paramagnetic NMR Spectroscopy of Chromocenes. Organometallics 1996, 15, 3474–3476. [Google Scholar] [CrossRef]
- Blümel, J.; Hofmann, P.; Köhler, F.H. NMR Spectroscopy of Paramagnetic Complexes. Magn. Reson. Chem. 1993, 31, 2–6. [Google Scholar] [CrossRef]
- Heise, H.; Köhler, F.H.; Xie, X. Solid-state NMR spectroscopy of paramagnetic metallocenes. J. Magn. Reson. 2001, 150, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Köhler, F.H.; Xie, X. Vanadocene as a Temperature Standard for 13C and 1H MAS NMR and for Solution-State NMR Spectroscopy. Magn. Reson. Chem. 1997, 35, 487–492. [Google Scholar] [CrossRef]
- Cluff, K.J.; Schnellbach, M.; Hilliard, C.R.; Blümel, J. The adsorption of chromocene and ferrocene on silica: A solid-state NMR study. J. Organomet. Chem. 2013, 744, 119–124. [Google Scholar] [CrossRef]
- Cluff, K.J.; Blümel, J. Adsorption of Metallocenes on Silica. Chem. Eur. J. 2016, 22, 16562–16575. [Google Scholar] [CrossRef]
- Benzie, J.W.; Harmon-Welch, G.E.; Hoefler, J.C.; Bakhmutov, V.I.; Blümel, J. Molecular Dynamics and Surface Interactions of Nickelocene Adsorbed on Silica: A Paramagnetic Solid-State NMR Study. Langmuir 2022, 38, 7422–7432. [Google Scholar] [CrossRef]
- Schnellbach, M.; Blümel, J.; Köhler, F.H. The Union Carbide catalyst (Cp2Cr + SiO2), studied by solid-state NMR. J. Organomet. Chem. 1996, 520, 227–230. [Google Scholar] [CrossRef]
- Callister, W.D., Jr. Materials Science and Engineering: An Introduction, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 0-471-35446-5. [Google Scholar]
- Ter Horst, J.H.; Deij, M.A.; Cains, P.W. Discovering New Co-Crystal. Cryst. Growth Des. 2009, 9, 1531–1537. [Google Scholar] [CrossRef]
- Tilborg, A.; Norberg, B.; Wouters, J. Pharmaceutical salts and cocrystals involving amino acids: A brief structural overview of the state-of-art. Eur. J. Med. Chem. 2014, 74, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Blagden, N.; Berry, D.J.; Parkin, A.; Javed, H.; Ibrahim, A.; Gavan, P.T.; De Matos, L.L.; Seaton, C.C. Current directions in co-crystal growth. New J. Chem. 2008, 32, 1659–1672. [Google Scholar] [CrossRef]
- Harmon-Welch, G.E.; Hoefler, J.C.; Trujillo, M.R.; Bhuvanesh, N.; Bakhmutov, V.I.; Blümel, J. Creating Solid Solutions of Metallocenes: Migration of Nickelocene into the Ferrocene Crystal Lattice in the Absence of a Solvent. J. Phys. Chem. C 2023, 127, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Welch, G.E.; Bakhmutov, V.I.; Blümel, J. Paramagnetic Solid-State NMR Study of Solid Solutions of Cobaltocene with Ferrocene and Nickelocene. Magnetochemistry 2024, 10, 58. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Limbach, H.-H. Solid State NMR for Nonexperts: An Overview of Simple but General Practical Methods. Solids 2021, 2, 139–154. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Spiess, H.W. Multidimensional Solid-State NMR and Polymers; Academic Press: London, UK, 1994. [Google Scholar]
- Duncan, T.M. A Compilation of Chemical Shift Anisotropies; Farragut Press: Chicago, IL, USA, 1990. [Google Scholar]
- Fyfe, C.A. Solid-State NMR for Chemists; C.F.C. Press: Guelph, ON, Canada, 1983. [Google Scholar]
- Stejskal, E.O.; Memory, J.D. High-Resolution NMR in the Solid State; Oxord University Press: New York, NY, USA, 1994. [Google Scholar]
- Hartley, F.R. Supported Metal Complexes; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1985. [Google Scholar]
- DeVos, D.E.; Vankelecom, I.F.J.; Jacobs, P.A. (Eds.) Chiral Catalyst Immobilization and Recycling; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Reynes, J.F.; Leon, F.; Garcia, F. Mechanochemistry for Organic and Inorganic Synthesis. ACS Org. Inorg. Au 2024, 4, 432–470. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Takamizawa, S. Deformation twinning of ferrocene crystals assisted by the rotational mobility of cyclopentadienyl rings. Dalton Trans. 2015, 44, 5688–5691. [Google Scholar] [CrossRef]
- Hayashi, S. Effects of magic-angle spinning on spin-lattice relaxations in talc. Solid State Nucl. Magn. Reson. 1994, 3, 323–330. [Google Scholar] [CrossRef]
- Guan, X.; Stark, R.E. A general protocol for temperature calibration of MAS NMR probes at arbitrary spinning speeds. Solid State NMR 2010, 38, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef]
- Bloembergen, N. Proton relaxation times in paramagnetic solutions. J. Chem. Phys. 1957, 27, 572–573. [Google Scholar] [CrossRef]
- Swamy, S.K.K. Solid State Nuclear Magnetic Resonance of Paramagnetic Metal-Organic and -Inorganic Systems. Ph.D. Thesis, Le Mans University, Le Mans, France, 2013. [Google Scholar]
- Rettig, M.F.; Drago, R.S. Electron delocalization in paramagnetic metallocences. I. Nuclear magnetic resonance contact shifts. J. Am. Chem. Soc. 1969, 91, 1361–1370. [Google Scholar] [CrossRef]
- Braga, D.; Grepioni, F. Crystal construction and molecular interplay in solid ferrocene, nickelocene, and ruthenocene. Organometallics 1992, 11, 711–718. [Google Scholar] [CrossRef]
- Antipin, M.Y.; Boese, R.; Auga, N.; Schmid, G. Redetermination of the cobaltocene crystal structure at 100 K and 297 K: Comparison with ferrocene and nickelocene. Struct. Chem. 1993, 4, 91–101. [Google Scholar] [CrossRef]
- Kathirvelu, V.; Eaton, G.R.; Eaton, S.S. Impact of chlorine substitution on spin–lattice relaxation of triarylmethyl and 1,4-benzosemiquinone radicals in glass-forming solvents between 25 and 295 K. Appl. Magn. Reson. 2010, 37, 649–656. [Google Scholar] [CrossRef]
- Elbendari, A.M.; Ibrahim, S.S. Optimizing key parameters for grinding energy efficiency and modeling of particle size distribution in a stirred ball mill. Sci. Rep. 2025, 15, 3374. [Google Scholar] [CrossRef] [PubMed]
- Herndon, R.M.; Abdelrahman, M.; Woelk, K. Assessing Asphalt Binder Aging with 1H Spin-lattice NMR Relaxometry: A Comparative Study of Temperature and UV Radiation Effects. J. Mod. Ind. Manuf. 2024, 3, 13. [Google Scholar] [CrossRef]
Cp2Co/Cp2Ni (%/%) | ∆ν (kHz)/T1 (ms)/T2 (ms) | |
---|---|---|
Cp2Co | Cp2Ni | |
70/30 | 1.39/2.3/0.72 | 2.46/0.38/0.40 |
30/70 | 1.40/2.4/0.71 | 2.69/0.38/0.37 |
20/80 | 1.39/2.8/0.72 | 2.54/0.46/0.39 |
Cp2Co/Cp2Ni (%/%) | 1H T1 (ms) (β) | |
---|---|---|
Cp2Co | Cp2Ni | |
90/10 | 2.0 (0.65) | 0.35 (0.65) |
80/20 | 1.7 (0.60) | 0.27 (0.45) |
70/30 | 2.3 (0.74) | 0.38 (0.65) |
60/40 | 2.8 (0.69) | 0.47 (0.77) |
50/50 | 2.2 (0.52) | 0.38 (0.62) |
40/60 | 2.8 (0.64) | 0.45 (0.60) |
30/70 | 2.4 (0.55) | 0.38 (0.52) |
20/80 | 2.8 (0.62) | 0.46 (0.59) |
10/90 | – | 0.27 (0.70) |
Cp2Fe/Cp2M (%/%) | Cp2Fe T1 (s) | Cp2Ni T1 (ms) | Cp2Fe T1 (s) | Cp2Co T1 (ms) |
---|---|---|---|---|
100/0 | 4.9 | - | 4.9 | - |
90/10 | 1.4 | 0.95 | 2.5 | 9.6 |
80/20 | 0.84 | 0.94 | 1.5 | 9.6 |
70/30 | 0.72 | 0.95 | 1.2 | 9.6 |
60/40 | 0.39 | 0.95 | 1.2 | 9.6 |
50/50 | 0.32 | 0.96 | 1.1 | 9.6 |
40/60 | 0.29 | 0.96 | 0.80 | 9.4 |
30/70 | 0.24 | 0.96 | 0.33 | 9.7 |
20/80 | 0.19 | 0.96 | 0.27 | 9.4 |
10/90 | 0.18 | 0.96 | 0.21 | 9.8 |
0/100 | - | 0.96 | - | 9.6 |
Molar Ratio Cp2Fe/Cp2Ni (%/%) | 1H T1 Time (Short) | Fraction |
---|---|---|
90/10 | 3.0 | 0.1 |
80/20 | 2.0 | 0.3 |
70/30 | 3.0 | 0.2 |
60/40 | 2.0 | 0.40 |
50/50 | 2.0 | 0.41 |
40/60 | 2.0 | 0.41 |
30/70 | 2.0 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmon-Welch, G.E.; Elliott, D.W.; Bhuvanesh, N.; Bakhmutov, V.I.; Blümel, J. A Comprehensive Solution and Solid-State NMR Study of Proton Spin Lattice Relaxation in Paramagnetic Metallocenes. Physchem 2025, 5, 36. https://doi.org/10.3390/physchem5030036
Harmon-Welch GE, Elliott DW, Bhuvanesh N, Bakhmutov VI, Blümel J. A Comprehensive Solution and Solid-State NMR Study of Proton Spin Lattice Relaxation in Paramagnetic Metallocenes. Physchem. 2025; 5(3):36. https://doi.org/10.3390/physchem5030036
Chicago/Turabian StyleHarmon-Welch, Gabrielle E., Douglas W. Elliott, Nattamai Bhuvanesh, Vladimir I. Bakhmutov, and Janet Blümel. 2025. "A Comprehensive Solution and Solid-State NMR Study of Proton Spin Lattice Relaxation in Paramagnetic Metallocenes" Physchem 5, no. 3: 36. https://doi.org/10.3390/physchem5030036
APA StyleHarmon-Welch, G. E., Elliott, D. W., Bhuvanesh, N., Bakhmutov, V. I., & Blümel, J. (2025). A Comprehensive Solution and Solid-State NMR Study of Proton Spin Lattice Relaxation in Paramagnetic Metallocenes. Physchem, 5(3), 36. https://doi.org/10.3390/physchem5030036