Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (518)

Search Parameters:
Keywords = electromagnetic exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
4 pages, 242 KB  
Correction
Correction: Loughran et al. Radiofrequency Electromagnetic Field Exposure and the Resting EEG: Exploring the Thermal Mechanism Hypothesis. Int. J. Environ. Res. Public Health 2019, 16, 1505
by Sarah P. Loughran, Adam Verrender, Anna Dalecki, Catriona A. Burdon, Kyoko Tagami, Joonhee Park, Nigel A. S. Taylor and Rodney J. Croft
Int. J. Environ. Res. Public Health 2026, 23(2), 157; https://doi.org/10.3390/ijerph23020157 - 27 Jan 2026
Abstract
The authors have requested that the following changes be made to the original publication [...] Full article
Show Figures

Figure 2

26 pages, 6104 KB  
Article
Electromagnetic Exposure from RF Antennas on Subway Station Attendant: A Thermal Analysis
by Jin Li, Qianqian Zhang and Mai Lu
Sensors 2026, 26(2), 709; https://doi.org/10.3390/s26020709 - 21 Jan 2026
Viewed by 158
Abstract
With the rapid development of wireless communication systems, the electromagnetic environment in subway stations has become increasingly complex, raising concerns about the long-term safety of station attendants who are chronically exposed to radiofrequency (RF) fields. At present, multiphysics analyses specifically addressing RF antenna [...] Read more.
With the rapid development of wireless communication systems, the electromagnetic environment in subway stations has become increasingly complex, raising concerns about the long-term safety of station attendants who are chronically exposed to radiofrequency (RF) fields. At present, multiphysics analyses specifically addressing RF antenna exposure scenarios for subway attendants remain limited. To assess occupational electromagnetic exposure risks, this paper establishes a comprehensive electromagnetic–thermal coupling simulation model incorporating RF antennas, station-platform structures, and a realistic human model with organs including the brain, heart, and liver. Using the finite-element software COMSOL Multiphysics (v.6.3), numerical simulations are performed to calculate the specific absorption rate (SAR) in the trunk and major organs of the subway station attendant at RF antennas frequencies of 900 MHz, 2600 MHz, and 3500 MHz, as well as the temperature rise distribution of the human trunk and important tissues and organs under different initial temperatures of the environment. The results show that among the three frequencies, the maximum SAR of 5.55 × 104 W/kg occurs in the trunk at 3500 MHz. Tissue temperatures reach thermal steady state after 30 min of exposure, with the maximum temperature rises occurring in the brain at an ambient temperature of 18 °C and an operating frequency of 900 MHz, reaching 0.2123 °C. Across all simulated scenarios, both SAR values and temperature rises remain significantly below the occupational exposure limits established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These findings indicate that RF radiation generated by antennas in the subway station environment poses low health risks to female station attendants of similar physical characteristics to the Ella model. This study provides a scientific reference for the occupational RF protection of subway personnel and contributes data for the development of electromagnetic exposure standards in rail transit systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 5147 KB  
Article
5G RF-EMFs Mitigate UV-Induced Genotoxic Stress Through Redox Balance and p38 Pathway Regulation in Skin Cells
by Ju Hwan Kim, Hee Jin, Kyu Min Jang, Ji Eun Lee, Sanga Na, Sangbong Jeon, Hyung-Do Choi, Jung Ick Moon, Nam Kim, Kyung-Min Lim, Hak Rim Kim and Yun-Sil Lee
Antioxidants 2026, 15(1), 127; https://doi.org/10.3390/antiox15010127 - 19 Jan 2026
Viewed by 184
Abstract
The biological effects of radiofrequency electromagnetic fields (RF-EMFs) remain an unresolved scientific issue with important societal relevance, particularly in the context of the global deployment of fifth-generation (5G) wireless technologies. The skin is continuously exposed to both RF-EMFs and ultraviolet (UV) radiation, a [...] Read more.
The biological effects of radiofrequency electromagnetic fields (RF-EMFs) remain an unresolved scientific issue with important societal relevance, particularly in the context of the global deployment of fifth-generation (5G) wireless technologies. The skin is continuously exposed to both RF-EMFs and ultraviolet (UV) radiation, a well-established inducer of oxidative stress and DNA damage, making it a relevant model for assessing combined environmental exposures. In this study, we investigated whether post-exposure to 5G RF-EMFs (3.5 and 28 GHz) modulates ultraviolet A (UVA)-induced genotoxic stress in human keratinocytes (HaCaT) and murine melanoma (B16) cells. Post-UV RF-EMF exposure significantly reduced DNA damage markers, including phosphorylated histone H2AX (γH2AX) foci formation (by approximately 30–50%) and comet tail moments (by 60–80%), and suppressed intracellular reactive oxygen species (ROS) accumulation (by 56–93%). These effects were accompanied by selective attenuation of p38 mitogen-activated protein kinase (MAPK) phosphorylation (reduced by 55–85%). The magnitude of molecular protection was comparable to that observed with N-acetylcysteine treatment or pharmacological inhibition of p38 MAPK. In contrast, RF-EMF exposure did not reverse UV-induced reductions in cell viability or alterations in cell cycle distribution, indicating that its protective effects are confined to early molecular stress-response pathways rather than downstream survival outcomes. Together, these findings demonstrate that 5G RF-EMFs can facilitate recovery from UVA-induced molecular damage via redox-sensitive and p38-dependent mechanisms, providing mechanistic insight into the interaction between modern telecommunication frequencies and UV-induced skin stress. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

24 pages, 6689 KB  
Article
Reversible Joining Technology for Polyolefins Using Electromagnetic Energy and Homologous Hot-Melt Adhesives Containing Metallic and Ferrite Additives
by Romeo Cristian Ciobanu, Mihaela Aradoaei, George Andrei Ursan, Alina Ruxandra Caramitu, Virgil Marinescu and Rolland Luigi Eva
Polymers 2026, 18(2), 228; https://doi.org/10.3390/polym18020228 - 15 Jan 2026
Viewed by 180
Abstract
This research examined the development and testing of hot-melt adhesives incorporating metallic (Al and Fe powders averaging 800 nm) and ferrite additives, designed for reversible bonding technology of polyolefins through electromagnetic energy. The experimental models with Al displayed smooth particles that were fairly [...] Read more.
This research examined the development and testing of hot-melt adhesives incorporating metallic (Al and Fe powders averaging 800 nm) and ferrite additives, designed for reversible bonding technology of polyolefins through electromagnetic energy. The experimental models with Al displayed smooth particles that were fairly evenly distributed within the polymer matrix. Experimental models with Fe suggested that Fe nanopowders are more difficult to disperse within the polymer matrix, frequently resulting in agglomeration. For ferrite powder, there were fewer agglomerations noticed, and the dispersion was more uniform compared to similar composites containing Fe particles. Regarding water absorption, the extent of swelling was greater in the composites that included Al. Because of toluene’s affinity for the matrices, the swelling measurements stayed elevated even with reduced exposure times, and the composites with ferrite showed the lowest swelling compared to those with metallic particles. A remarkable evolution of the dielectric loss factor peak shifting towards higher frequencies with rising temperatures was observed, which is particularly important when the materials are exposed to thermal activation through electromagnetic energy. The reversible bonding experiments were performed on polyolefin samples which were connected longitudinally by overlapping at the ends; specialized hot-melts were employed, using electromagnetic energy at 2.45 GHz, with power levels between 140 and 850 × 103 W/kg and an exposure duration of up to 2 min. The feasibility of bonding polyolefins using homologous hot-melts that include metallic/ferrite elements was verified. Composites with both matrices showed that the hot-melts with Al displayed the highest mechanical tensile strength values, but also had a relatively greater elongation. All created hot-melts were suitable for reversible adhesion of similar polyolefins, with the one based on HDPE and Fe considered the most efficient for bonding HDPE, and the one based on PP and Al for PP bonding. When bonding dissimilar polyolefins, it seems that the technique is only effective with hot-melts that include Al. According to the reversible bonding diagrams for specific substrates and hot-melt combinations, and considering the optimization of energy consumption in relation to productivity, the most cost-effective way is to utilize 850 × 103 W/kg power with a maximum exposure time of 1 min. Full article
(This article belongs to the Special Issue Polymer Joining Techniques: Innovations, Challenges, and Applications)
Show Figures

Figure 1

11 pages, 3899 KB  
Proceeding Paper
Computation of Conduction and Displacement Current Densities in Modelled Human Organs near an Overhead Transmission Line
by Cvetanka Bilbiloska, Elena Todorova, Bojan Glushica and Andrijana Kuhar
Eng. Proc. 2026, 122(1), 9; https://doi.org/10.3390/engproc2026122009 - 15 Jan 2026
Viewed by 131
Abstract
This study employs numerical simulations to analyse current densities in modelled human organs originating from extremely low frequency (ELF) electromagnetic fields emanating from a 110 kV single-circuit high-voltage transmission line. Exposure to these ELF fields gives rise to both conduction and displacement currents [...] Read more.
This study employs numerical simulations to analyse current densities in modelled human organs originating from extremely low frequency (ELF) electromagnetic fields emanating from a 110 kV single-circuit high-voltage transmission line. Exposure to these ELF fields gives rise to both conduction and displacement currents within the human body, potentially perturbing endogenous bioelectric currents and raising concerns of health risks. Using CST Studio Suite 2018 software, a three-dimensional multipart ellipsoidal anatomical model is developed to analyse these phenomena. Although displacement currents have lower magnitudes than conduction currents, they contribute significantly to the total current density and must therefore be included in rigorous safety assessments. Simulation results indicate that the current density values remain below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Full article
Show Figures

Figure 1

21 pages, 699 KB  
Review
Low-Cost Sensors in 5G RF-EMF Exposure Monitoring: Validity and Challenges
by Phoka C. Rathebe and Mota Kholopo
Sensors 2026, 26(2), 533; https://doi.org/10.3390/s26020533 - 13 Jan 2026
Viewed by 205
Abstract
The deployment of 5G networks has transformed the landscape of radiofrequency electromagnetic field (RF-EMF) exposure patterns, shifting from high-power macro base stations to dense networks of small, beamforming cells. This review critically assesses the validity, challenges, and research gaps of low-cost RF-EMF sensors [...] Read more.
The deployment of 5G networks has transformed the landscape of radiofrequency electromagnetic field (RF-EMF) exposure patterns, shifting from high-power macro base stations to dense networks of small, beamforming cells. This review critically assesses the validity, challenges, and research gaps of low-cost RF-EMF sensors used for 5G exposure monitoring. An analysis of over 60 studies covering Sub-6 GHz and emerging mmWave systems shows that well-calibrated sensors can achieve measurement deviations of ±3–6 dB compared to professional instruments like the Narda SRM-3006, with long-term calibration drift less than 0.5 dB per month and RMS reproducibility around 5%. Typical outdoor 5G FR1 exposure levels range from 0.01 to 0.5 W/m2 near small cells, while personal device use can cause transient exposures 10–30 dB higher. Although mmWave (24–100 GHz) and Wi-Fi 7/8 (~60 GHz) are underrepresented due to antenna and component limitations, Sub-6 GHz sensing platforms, including software-defined radio (SDR)-based and triaxial isotropic designs, provide sufficient sensitivity for both citizen and institutional monitoring. Major challenges involve calibration drift, frequency band gaps, data interoperability, and ethical management of participatory networks. Addressing these issues through standardized calibration protocols, machine learning-assisted drift correction, and open data frameworks will allow affordable sensors to complement professional monitoring, improve spatial coverage, and enhance public transparency in 5G RF-EMF exposure governance. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

15 pages, 5010 KB  
Article
Aluminum-Foil/Polyester Core-Spun Yarns Conductive Fabric Enabling High Electromagnetic Interference Shielding
by Yanyan Sun, Xiaoyu Han, Kun Zhao, Weili Zhao, Zhitong He, Zhengyang He, Yingtie Mo, Changliu Chu, Toshiaki Natsuki and Jun Natsuki
Polymers 2026, 18(1), 145; https://doi.org/10.3390/polym18010145 - 5 Jan 2026
Viewed by 365
Abstract
With the rapid advancement of modern electronic devices and wireless communication systems, electromagnetic pollution has become a prominent issue, prompting the development of high-performance electromagnetic interference (EMI) shielding materials. Although traditional metal shielding materials exhibit excellent conductivity, there are many limitations such as [...] Read more.
With the rapid advancement of modern electronic devices and wireless communication systems, electromagnetic pollution has become a prominent issue, prompting the development of high-performance electromagnetic interference (EMI) shielding materials. Although traditional metal shielding materials exhibit excellent conductivity, there are many limitations such as high weight, poor flexibility, susceptibility to corrosion, and high cost. To overcome these challenges, in this study, we design and fabricate core-spun yarns using polyester filaments as the core and an aluminum-foil-wrapped layer as the conductive outer component, and further weave them into three conductive fabrics with different structural parameters. Through systematic investigation of their surface morphology, air permeability, electrical properties, and EMI shielding performance, DT5W27 demonstrates optimal overall performance: electrical conductivity of 2722.64 S·m−1, shielding effectiveness of 37.29 dB, and electromagnetic wave attenuation rate of 99.99%. Specifically, even after 100 bending, twisting cycles, and exposure to solutions with pH values ranging from 3 to 9, the fabric maintains high shielding performance. The fabrication process is facile and low cost, and these composites have good flexibility, outstanding EMI shielding performance, exceptional mechanical durability, and chemical stability. These advantages make them have broad application potential in protective clothing and lightweight shielding materials. Full article
Show Figures

Graphical abstract

32 pages, 2855 KB  
Review
From Exposure to Response: Mechanisms of Plant Interaction with Electromagnetic Fields Used in Smart Agriculture
by Margarita Kouzmanova, Momchil Paunov, Boyana Angelova and Vasilij Goltsev
Appl. Sci. 2026, 16(1), 370; https://doi.org/10.3390/app16010370 - 29 Dec 2025
Viewed by 395
Abstract
Smart agriculture technology is rapidly spreading for its economic benefits and increase in farming efficiency. The management of agricultural activities is fulfilled by a network of connected devices and sensors, using wireless technologies and software to exchange data over the Internet. The electromagnetic [...] Read more.
Smart agriculture technology is rapidly spreading for its economic benefits and increase in farming efficiency. The management of agricultural activities is fulfilled by a network of connected devices and sensors, using wireless technologies and software to exchange data over the Internet. The electromagnetic fields (EMFs) these systems use increase the background level in farmlands, and the crop plants are exposed to unusual levels of unnatural, polarized, coherent, and variable EM radiation. This combination determines EMF influence on plants. Many studies found effects at different levels of organization—molecular, organismal, and even ecosystem levels—but the underlying mechanisms are still not well understood. In this review paper, we attempted to clarify possible mechanisms on the very basic molecular level involved in the realization of biological effects, discussing the interaction of EMFs with water molecules in living systems, from their effects on biologically significant molecules, membranes, ion channels, and ion transport, oxidative processes in cells, and photosynthesis to the effects on plant growth and development. In conclusion, we discuss the obstacles to defining the conditions for the manifestation of beneficial or adverse effects and setting exposure limits. Full article
(This article belongs to the Special Issue Electromagnetic Waves: Applications and Challenges)
Show Figures

Figure 1

21 pages, 10223 KB  
Article
In Situ Assessment of EMF Exposure Across Urban Districts of Samsun, Türkiye
by Caner Ali Aslan, Begum Korunur Engiz, Cetin Kurnaz, Adnan Ahmad Cheema and Teoman Karadag
Electronics 2026, 15(1), 68; https://doi.org/10.3390/electronics15010068 - 23 Dec 2025
Viewed by 233
Abstract
This study offers a comprehensive in situ measurement and assessment of electromagnetic field (EMF) exposure in the central urban districts of Samsun, Türkiye, focusing on low-frequency magnetic flux density (BLF) and radiofrequency electric field strength (ERF). Drive-test measurements were [...] Read more.
This study offers a comprehensive in situ measurement and assessment of electromagnetic field (EMF) exposure in the central urban districts of Samsun, Türkiye, focusing on low-frequency magnetic flux density (BLF) and radiofrequency electric field strength (ERF). Drive-test measurements were performed across Atakum, İlkadım, and Canik districts to capture spatial variability and identify primary exposure sources. Band-selective analysis revealed that downlink (DL) transmissions are the main contributors to total ERF exposure, indicating that base station emissions dominate the exposed ERF levels in the environment. Six-minute averaged BLF and ERF values account for temporal fluctuations and confirm that exposure remains well below recommended limits. A one-way ANOVA test indicated that the differences in exposure levels among the three districts were not statistically significant. These findings provide a detailed spatial evaluation of EMF exposure in a large metropolitan region, demonstrating the value of integrated BLF and ERF measurements for environmental monitoring. Full article
(This article belongs to the Special Issue Innovations in Electromagnetic Field Measurements and Applications)
Show Figures

Figure 1

17 pages, 2827 KB  
Article
Electromagnetic Disintegration of Water Treatment Sludge: Physicochemical Changes and Leachability Assessment
by Izabela Płonka, Barbara Pieczykolan and Maciej Thomas
Appl. Sci. 2026, 16(1), 110; https://doi.org/10.3390/app16010110 - 22 Dec 2025
Viewed by 311
Abstract
This paper presents the results of the study of electromagnetic disintegration of sludge in a microwave oven at power levels 180 W, 360 W, 540 W, 720 W and 900 W applied at 30 s intervals from 30 to 300 s, originating from [...] Read more.
This paper presents the results of the study of electromagnetic disintegration of sludge in a microwave oven at power levels 180 W, 360 W, 540 W, 720 W and 900 W applied at 30 s intervals from 30 to 300 s, originating from a water treatment process where polyaluminum chloride ([Al2(OH)nCl6-n]m) as a coagulant was applied. The selected physicochemical parameters of water treatment sludge, including the total solids content (TS), volatile solids content (VS), capillary suction time (CST), settleability, chemical oxygen demand (COD), heavy metals (Cu, Zn, Ni, Pb, Cd, Cr) and macro elements (K, Na, Ca) in the water extract and in the sludge liquid were measured. The results indicated that after 24 h of sedimentation, the sediment volume was within the range of 50–60 mL for almost all the samples, CST decreased to 23.06 and 25.72 s (for 720 and 900 W, respectively) and the COD increased to approximately 140 mg O2/L when the microwave exposure time was extended at least to 120 s. The degree of disintegration of the water treatment sludge increased to 13.4–14.3% for 540–720 W and 270–300 s irradiation time. Heavy metals are not leached from the sludge after microwave disintegration in concentrations that could pose a threat to the environment. The use of electromagnetic disintegration is the viable option for the treatment of sludge from water treatment process. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

23 pages, 12192 KB  
Article
Alpha-Lipoic Acid Preserves Testicular Integrity Under 2.45 GHz Electromagnetic Radiation by Restoring Redox and Inflammatory Balance
by Tahir Cakir, Seda Keskin, Kenan Yildizhan, Mehmet Hafit Bayir, Fikret Altindag and Erbil Karaman
Biomedicines 2025, 13(12), 3089; https://doi.org/10.3390/biomedicines13123089 - 15 Dec 2025
Viewed by 471
Abstract
Background/Objective: Electromagnetic radiation (EMR) from wireless technologies has raised concerns about male reproductive health. We aimed to evaluate the protective role of alpha-lipoic acid (ALA), a potent antioxidant, against testicular alterations induced by 2.45 GHz EMR. Methods: Twenty-eight adult male rats were randomly [...] Read more.
Background/Objective: Electromagnetic radiation (EMR) from wireless technologies has raised concerns about male reproductive health. We aimed to evaluate the protective role of alpha-lipoic acid (ALA), a potent antioxidant, against testicular alterations induced by 2.45 GHz EMR. Methods: Twenty-eight adult male rats were randomly divided into four groups: control, EMR, ALA, and ALA+EMR. Animals in the EMR and ALA+EMR groups were exposed to EMR for 2 h/day for 1 month. Testicular tissues were examined histologically, stereologically, and immunohistochemically, while serum samples were analysed biochemically. Results: EMR exposure caused marked structural damage, including disruption of seminiferous tubule architecture, increased collagen deposition, and expansion of tubular and interstitial volumes. These pathological changes were primarily prevented in the ALA+EMR group. Immunohistochemical analyses revealed increased IL-6 and TNF-α expression following EMR exposure, whereas ALA supplementation significantly reduced these inflammatory markers and restored AR, ZO-1, and ZO-2 expression. Biochemically, EMR reduced antioxidant enzyme activities (SOD, GSH, GPx) and elevated MDA levels, indicating oxidative stress; these parameters were reversed by ALA treatment. Conclusions: Collectively, our findings demonstrate that 2.45 GHz EMR induces oxidative stress, inflammation, and testicular injury, while ALA provides significant protection. These results highlight the therapeutic potential of ALA as a protective agent against EMR-related reproductive toxicity and infertility risk. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

15 pages, 6102 KB  
Article
Design and Analysis of a Dual-Band Implantable Receiving Antenna for Wireless Power Transfer and Data Communication at 1.32 GHz and 2.58 GHz
by Ashfaq Ahmad, Sun-Woong Kim and Dong-You Choi
Sensors 2025, 25(24), 7507; https://doi.org/10.3390/s25247507 - 10 Dec 2025
Viewed by 572
Abstract
This paper presents the design and performance evaluation of a compact dual-band implantable antenna (Rx) operating at 1.32 GHz and 2.58 GHz for biomedical applications. The proposed antenna is designed to receive power and data from an external transmitting (Tx) antenna operating at [...] Read more.
This paper presents the design and performance evaluation of a compact dual-band implantable antenna (Rx) operating at 1.32 GHz and 2.58 GHz for biomedical applications. The proposed antenna is designed to receive power and data from an external transmitting (Tx) antenna operating at 1.32 GHz. The measured impedance bandwidths of the Rx antenna are 190 MHz (1.23–1.42 GHz) and 230 MHz (2.47–2.70 GHz), covering both the power transfer and data communication bands. The wireless power transfer efficiency, represented by the transmission coefficient (S21), is observed to be −40 dB at a spacing of 40 mm, where the Rx is located in the far-field region of the Tx. Specific Absorption Rate (SAR) analysis is performed to ensure electromagnetic safety compliance, and the results are within the acceptable exposure limits. The proposed antenna achieves a realized gain of −25 dB at 1.32 GHz and −25.8 dB at 2.58 GHz, demonstrating suitable performance for low-power implantable medical device communication and power transfer systems. The proposed design offers a promising solution for reliable biotelemetry and wireless power transfer in implantable biomedical systems. Full article
(This article belongs to the Special Issue Novel Implantable Sensors and Biomedical Applications)
Show Figures

Figure 1

15 pages, 407 KB  
Article
Comparative Evaluation of Novel Pre-Sowing Technologies on Germination and Vigour of Edible Wheat Sprout Seeds
by Aspasia Efthimiadou, Nikolaos Katsenios, Lida Papalamprou, Varvara Andreou, Sofia Chanioti, Marianna Giannoglou, Ioanna Kakabouki and George Katsaros
Seeds 2025, 4(4), 66; https://doi.org/10.3390/seeds4040066 - 9 Dec 2025
Viewed by 308
Abstract
Sprouts are gaining popularity among consumers worldwide due to their high nutritional properties. A comparative evaluation of novel and environmentally friendly pre-sowing seed treatment techniques was conducted to enhance wheat sprout production. Pulsed electromagnetic field (PEMF), cold atmospheric plasma (CAP), and high-pressure processing [...] Read more.
Sprouts are gaining popularity among consumers worldwide due to their high nutritional properties. A comparative evaluation of novel and environmentally friendly pre-sowing seed treatment techniques was conducted to enhance wheat sprout production. Pulsed electromagnetic field (PEMF), cold atmospheric plasma (CAP), and high-pressure processing (HP) at 200 and 600 MPa were applied on durum wheat seeds for 3 and 10 min. The above techniques, along with ozonation (OZ), were also applied for 3 and 10 min for the “activation” of water that was used for immersion of the wheat seeds. Seed germination percentage, root and shoot length, and seedling dry weight were the measurements for the comparative evaluation of 21 treatments of seeds growing in Petri dishes. The results indicated that CAP, PEMF, and OZ treatments had positive effects on wheat sprout production, while prolonged exposure to HP processing appeared to stress the seeds. Overall, the multiple comparisons of four processing technologies, applied by two methods and at two exposure times, could be a benchmark study for further understanding the response of seeds in pre-sowing techniques. Full article
Show Figures

Figure 1

34 pages, 3902 KB  
Article
Comparing Explainable AI Models: SHAP, LIME, and Their Role in Electric Field Strength Prediction over Urban Areas
by Ioannis Givisis, Dimitris Kalatzis, Christos Christakis and Yiannis Kiouvrekis
Electronics 2025, 14(23), 4766; https://doi.org/10.3390/electronics14234766 - 4 Dec 2025
Viewed by 3055
Abstract
This study presents a comparative evaluation of state-of-the-art Machine Learning (ML) and Explainable Artificial Intelligence (XAI) methods, specifically SHAP and LIME, for predicting electromagnetic field (EMF) strength in urban environments. Using more than 19,000 in situ EMF measurements across Catalonia, Spain, combined with [...] Read more.
This study presents a comparative evaluation of state-of-the-art Machine Learning (ML) and Explainable Artificial Intelligence (XAI) methods, specifically SHAP and LIME, for predicting electromagnetic field (EMF) strength in urban environments. Using more than 19,000 in situ EMF measurements across Catalonia, Spain, combined with high-resolution geospatial features such as building height, built-up volume, and population density, six ML algorithms were trained and assessed over 50 randomized train–test splits. The k-Nearest Neighbors (kNN) model achieved the highest predictive accuracy (RMSE = 0.623), followed by XGBoost (RMSE = 0.711) and LightGBM (RMSE = 0.717). Explainability analysis showed that SHAP consistently identified built-up volume, building height, degree of urbanization, and population density as the dominant global predictors of EMF strength, whereas LIME revealed that degree of urbanization, population density, and building height were the most influential at the local (micro-scale) level. The results demonstrate that integrating interpretable ML frameworks with enriched geospatial datasets improves both predictive performance and transparency in EMF exposure modeling, supporting data-driven urban planning and public health assessment. Full article
Show Figures

Figure 1

16 pages, 4089 KB  
Article
Effect of High Carbon Nanotube Content on Electromagnetic Shielding and Mechanical Properties of Cementitious Mortars
by Ivan Vrdoljak, Ivana Miličević, Oliver Romić and Robert Bušić
J. Compos. Sci. 2025, 9(12), 664; https://doi.org/10.3390/jcs9120664 - 2 Dec 2025
Viewed by 517
Abstract
The increasing exposure to non-ionizing electromagnetic (EM) radiation driven by urbanization and digitalization has encouraged the development of building materials with EM shielding properties. This study investigates the potential of enhancing the electromagnetic shielding properties of cement mortars by incorporating multi-walled carbon nanotubes [...] Read more.
The increasing exposure to non-ionizing electromagnetic (EM) radiation driven by urbanization and digitalization has encouraged the development of building materials with EM shielding properties. This study investigates the potential of enhancing the electromagnetic shielding properties of cement mortars by incorporating multi-walled carbon nanotubes (MWCNT) in various dosages (1%, 3%, 6%, 9% and 10% by binder mass). The microstructural and mechanical effects of MWCNT addition, as well as their efficiency in reducing EM transmission in the frequency range of 1.5–10 GHz (covering LTE, 5G, WiFi, and radar systems), were analyzed. S21 measurements were performed using a modified coaxial transmission line method with a vector network analyzer. Results show that increasing the MWCNT content enhances EM shielding effectiveness but simultaneously affects the mortar’s microstructure and mechanical properties. Higher MWCNT levels achieved the best EM shielding, with an improvement of up to 27.66 dB compared to ordinary mortar in the navigation radar frequency range. These findings confirm the potential of MWCNT-modified mortars for protecting buildings and sensitive infrastructure—such a hospitals, communication hubs, data centers and military facilities—from EM radiation. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

Back to TopTop