Low-Cost Sensors in 5G RF-EMF Exposure Monitoring: Validity and Challenges
Abstract
1. Introduction
2. Methodology
3. 5G and RF-EMF Fundamentals
3.1. Key Technological Features of 5G
3.2. Principles of RF-EMF Exposure
3.3. Existing Exposure Assessment Methods
4. The Landscape of Low-Cost RF-EMF Sensors
4.1. Commercial Solutions
4.2. Academic and Open-Source Prototypes
4.3. Citizen Science Initiatives
4.4. Benchmarking Against Professional Equipment
5. Core Challenges in Low-Cost 5G Sensing
5.1. Metrological and Technical Hurdles
5.2. Data Quality and Interpretation Obstacles
5.3. Practical and Ethical Considerations
6. Identifying Critical Research Gaps
6.1. Metrology and Sensor Design
6.2. Data Science and Modeling
6.3. Implementation and Policy Frameworks
7. Discussion and Future Directions
7.1. Technical Context of 5G and Wi-Fi Standards in Exposure Monitoring
7.2. An Interdisciplinary Agenda
7.3. Differentiated Applications
7.4. Case Study Vignettes
7.5. Standardization and Interoperability
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bushberg, J.; Chou, C.; Foster, K.R.; Kavet, R.; Maxson, D.; Tell, R.A.; Ziskin, M.C. IEEE Committee on Man and Radiation—COMAR Technical Information Statement: Health and Safety Issues Concerning Exposure of the General Public to Electromagnetic Energy from 5G Wireless Communications Networks. Health Phys. 2020, 119, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, Q.; Blough, D.M. Joint Link-Level and Network-Level Reconfiguration for mmWave Backhaul Survivability in Urban Environments. In Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Miami Beach, FL, USA, 25–29 November 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 143–151. [Google Scholar]
- Meese, J.; Hegarty, K.; Wilken, R.; Yang, F.; Middleton, C. 5G and Urban Amenity: Regulatory Trends and Local Government Responses around Small Cell Deployment. Digit. Policy Regul. Gov. 2024, 26, 601–616. [Google Scholar] [CrossRef]
- Russell, C.L. 5G Wireless Telecommunications Expansion: Public Health and Environmental Implications. Environ. Res. 2018, 165, 484–495. [Google Scholar] [CrossRef]
- Rowley, J.; Mazar, H. Misunderstandings about Radiofrequency Electromagnetic Field Exposure and 5G Misinformation. In Proceedings of the 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel Aviv, Israel, 1–3 November 2021; pp. 219–221. [Google Scholar]
- Wu, X.; Ma, L.; Low, D.; Sharma, S.; Papyshev, G. Beyond Precautionary Principle: Policy-Making under Uncertainty and Complexity. Policy Des. Pract. 2024, 7, 1–16. [Google Scholar] [CrossRef]
- Frank, J. Electromagnetic Fields, 5G and Health: What about the Precautionary Principle? J. Epidemiol. Community Health 2021, 75, 562–566. [Google Scholar] [CrossRef]
- Bouakkaz, S.; Suárez, L.; Cuppens, N.; Cuppens, F. Design of an Intelligent Trust Management Architecture for 5G Service Deployment. In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025), Porto, Portugal, 20–22 February 2025; pp. 310–317. [Google Scholar]
- Aerts, S.; Vermeeren, G.; Van den Bossche, M.; Aminzadeh, R.; Verloock, L.; Thielens, A.; Leroux, P.; Bergs, J.; Braem, B.; Philippron, A.; et al. Lessons Learned from a Distributed RF-EMF Sensor Network. Sensors 2022, 22, 1715. [Google Scholar] [CrossRef] [PubMed]
- Calvo Palomino, R. Towards Large-Scale and Collaborative Spectrum Monitoring Systems Using IoT Devices. Ph.D. Thesis, Universidad Carlos III de Madrid, Getafe, Spain, 2019. [Google Scholar]
- Zmyślony, M.; Bieńkowski, P.; Bortkiewicz, A.; Karpowicz, J.; Kieliszek, J.; Politański, P.; Rydzyński, K. Protection of the Population Health from Electromagnetic Hazards—Challenges Resulting from the Implementation of the 5G Network Planned in Poland. Med. Pr. 2019, 71, 105–113. [Google Scholar] [CrossRef]
- Vermeeren, G.; Van den Bossche, M.; Aminzadeh, R.; Aerts, S.; Leroux, P.; De Meyer, M.; Bergs, J.; Philippron, A.; Martens, L.; Joseph, W. RF EMF Exposure Sensing Network in a Smart-City Context. In Proceedings of the Joint Annual Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association (BioEM2019), Montpellier, France, 23–28 June 2019; Bioelectromagnetics Society (BEMS): Columbia, SC, USA, 2019; pp. 239–243. [Google Scholar]
- Riter, K.; Doraiswamy, P.; Clayton, A.C.; Rountree, K. Solar Station for an Off-the-Grid Air Quality Sensor System; RTI Press: Research Triangle Park, NC, USA, 2023. [Google Scholar]
- Abe, Y. Temporal Citizen Science After Fukushima. Int. J. Commun. 2023, 17, 19. [Google Scholar]
- Hultquist, C.; Oravecz, Z.; Cervone, G. A Bayesian Approach to Estimate the Spatial Distribution of Crowdsourced Radiation Measurements around Fukushima. ISPRS Int. J. Geo-Inf. 2021, 10, 822. [Google Scholar] [CrossRef]
- Charvát, K.; Kepka, M. Crowdsourced Data. In Big Data in Bioeconomy; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Seltzer, E.; Mahmoudi, D. Citizen Participation, Open Innovation, and Crowdsourcing: Challenges and Opportunities for Planning. J. Plan. Lit. 2013, 28, 3–18. [Google Scholar] [CrossRef]
- Christopoulou, M.I.; Kyritsi, T.; Yalofas, A.; Koutounidis, D.; Karabetsos, E. 5G NR Launching in Greece: Preliminary in Situ and Monitoring Network Measurements of Electromagnetic Fields Exposure Levels at Rooftops. Bioelectromagnetics 2024, 45, 193–199. [Google Scholar] [CrossRef]
- McCrory, G.; Veeckman, C.; Claeys, L. Citizen Science Is in the Air—Engagement Mechanisms from Technology-Mediated Citizen Science Projects Addressing Air Pollution. In Proceedings of the International Conference on Internet Science, Thessaloniki, Greece, 22–24 November 2017; Kompatsiaris, I., Cave, J., Satsiou, A., Carle, G., Passani, A., Kontopoulos, E., Diplaris, S., McMillan, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 28–38. [Google Scholar]
- Campmier, M.J.; Gingrich, J.; Singh, S.; Baig, N.; Gani, S.; Upadhya, A.; Agrawal, P.; Kushwaha, M.; Mishra, H.R.; Pillarisetti, A.; et al. Seasonally Optimized Calibrations Improve Low-Cost Sensor Performance: Long-Term Field Evaluation of PurpleAir Sensors in Urban and Rural India. Atmos. Meas. Tech. 2023, 16, 4357–4374. [Google Scholar] [CrossRef]
- Lassalle, M.W. The Present State of Low-Cost Air Quality Sensors in Japan and Their Accuracy. Int. J. Environ. Stud. 2024, 81, 1665–1683. [Google Scholar] [CrossRef]
- Kenens, J.; Van Oudheusden, M.; van Hoyweghen, I.; Mizushima, N. Nonscalability of “Citizen Science” in Post-Fukushima Japan: Unpacking Articulations of Citizen Radiation Measuring Organizations. Public Underst. Sci. 2022, 31, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.H. Citizen Science in Post-Fukushima Japan: The Gendered Scientization of Radiation Measurement. Sci. Cult. 2019, 28, 327–350. [Google Scholar] [CrossRef]
- da Schio, N. The Empowering Virtues of Citizen Science: Claiming Clean Air in Brussels. Engag. Sci. Technol. Soc. 2022, 8, 29–52. [Google Scholar] [CrossRef]
- Deprez, K.; Colussi, L.; Korkmaz, E.; Aerts, S.; Land, D.; Littel, S.; Verloock, L.; Plets, D.; Joseph, W.; Bolte, J. Comparison of Low-Cost 5G Electromagnetic Field Sensors. Sensors 2023, 23, 3312. [Google Scholar] [CrossRef]
- Van der Straeten, J.; Van Bladel, H.; Deprez, K.; Joseph, W.; Vermeeren, G. Design and Validation of a Low-Cost Triaxial 5G RF-EMF Exposure Sensor. IEEE Sens. J. 2025, 25, 16050–16060. [Google Scholar] [CrossRef]
- Korkmaz, E.; Aerts, S.; Coesoij, R.; Bhatt, C.R.; Velghe, M.; Colussi, L.; Land, D.; Petroulakis, N.; Spirito, M.; Bolte, J. A Comprehensive Review of 5G NR RF-EMF Exposure Assessment Technologies: Fundamentals, Advancements, Challenges, Niches, and Implications. Environ. Res. 2024, 260, 119524. [Google Scholar] [CrossRef]
- Nájera, A.; Sánchez-Montero, R.; González-Rubio, J.; Guillén-Pina, J.; Chocano-del-Cerro, R.; López-Espí, P.-L. Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming. Appl. Sci. 2025, 15, 7471. [Google Scholar] [CrossRef]
- Velghe, M.; Aerts, S.; Martens, L.; Joseph, W.; Thielens, A. Protocol for Personal RF-EMF Exposure Measurement Studies in 5th Generation Telecommunication Networks. Environ. Health 2021, 20, 36. [Google Scholar] [CrossRef]
- Salem, M.A.; Lim, H.S.; Diong, K.S.; Alaghbari, K.A.; Zarakovitis, C.C.; Chien, S.F. Electromagnetic Field-Aware Radio Resource Management for 5G and Beyond: A Survey. Computers 2025, 14, 51. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- Bailey, W.H.; Bodemann, R.; Bushberg, J.; Chou, C.-K.; Cleveland, R.; Faraone, A.; Foster, K.R.; Gettman, K.E.; Graf, K.; Harrington, T.; et al. Synopsis of IEEE Std C95.1TM-2019 “IEEE Standard for Safety Levels With Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz”. IEEE Access 2019, 7, 171346–171356. [Google Scholar] [CrossRef]
- Kodera, S.; Taguchi, K.; Diao, Y.; Kashiwa, T.; Hirata, A. Computation of Whole-Body Average SAR in Realistic Human Models From 1 to 100 GHz. IEEE Trans. Microw. Theory Tech. 2024, 72, 91–100. [Google Scholar] [CrossRef]
- Chou, C.K. Controversy in Electromagnetic Safety. Int. J. Environ. Res. Public Health 2022, 19, 16942. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C. Health and Safety Practices and Policies Concerning Human Exposure to RF/Microwave Radiation. Front. Public Health 2025, 13, 1619781. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.R.; Ziskin, M.C.; Balzano, Q. Time-Temperature Thresholds and Safety Factors for Thermal Hazards from Radiofrequency Energy above 6 GHz. Health Phys. 2021, 121, 234. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Gaps in Knowledge Relevant to the “ICNIRP Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (100 kHz TO 300 GHz)”. Health Phys. 2025, 128, 190–202. [Google Scholar] [CrossRef]
- Belyaev, I.; Dean, A.; Eger, H.; Hubmann, G.; Jandrisovits, R.; Kern, M.; Kundi, M.; Moshammer, H.; Lercher, P.; Müller, K.; et al. EUROPAEM EMF Guideline 2016 for the Prevention, Diagnosis and Treatment of EMF-Related Health Problems and Illnesses. Rev. Environ. Health 2016, 31, 363–397. [Google Scholar] [CrossRef]
- Bioadmin. The BioInitiative 2012 Report—Health Risks from EMF & RFR Exposure 2012; BioInitiative Working Group: Columbia, SC, USA, 2012. [Google Scholar]
- Bhatt, C.R.; Henderson, S.; Brzozek, C.; Benke, G. Instruments to Measure Environmental and Personal Radiofrequency-Electromagnetic Field Exposures: An Update. Phys. Eng. Sci. Med. 2022, 45, 687–704. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Escobar, I.; Arribas, E.; Vandenbosch, G.A.E. Systematic Review of Exposure Studies to Radiofrequency Electromagnetic Fields: Spot Measurements and Mixed Methodologies. Appl. Sci. 2024, 14, 11161. [Google Scholar] [CrossRef]
- Ahsan Ashraf, M.; Celik, T. Evaluating Radiofrequency Electromagnetic Field Exposure in Confined Spaces: A Systematic Review of Recent Studies and Future Directions. Radiat. Prot. Dosim. 2024, 200, 598–616. [Google Scholar] [CrossRef]
- Vogt-Ardatjew, R.; Dudareva, D.; Wiid, G.; Leferink, F. Low-Cost Measurement Devices for Education. IEEE Electromagn. Compat. Mag. 2023, 12, 100–104. [Google Scholar] [CrossRef]
- Alali, R. Evaluation of Electromagnetic Field Levels Generated from Mobile Communication Stations near the University of Karbala. Tech. Biochem. 2025, 13, 93–111. [Google Scholar] [CrossRef]
- Calabrò, E.; Magazù, S. Monitoring Electromagnetic Field Emitted by High Frequencies Home Utilities. J. Electromagn. Anal. Appl. 2010, 2, 571–579. [Google Scholar] [CrossRef]
- Ibrani, M.; Mekuli, A. Experimental Assessment of Electric Field Levels Emitted by UHF TV Broadcasters. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 486–490. [Google Scholar] [CrossRef]
- Matei, M.; Doru, A.; Radu, C. Analysis in Hospital Operating Rooms: Understanding Perturbations from Electrocautery. IOP Conf. Ser. Mater. Sci. Eng. 2024, 1320, 012016. [Google Scholar] [CrossRef]
- Vasylieva, O.; Neyezhmakov, P. Metrological Traceability of the Results of Testing for Electromagnetic Compatibility in Accordance with the NATO Standards. Ukr. Metrol. J. 2023, 7–15. [Google Scholar] [CrossRef]
- Gaydos, D.; Nayeri, P.; Haupt, R. Experimental Demonstration of a Software-Defined-Radio Adaptive Beamformer. In Proceedings of the 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 26–28 September 2018; pp. 561–564. [Google Scholar]
- Mokhtari, M.; Popović, M. Low-Cost SDR-Based RF Transceiver for Microwave Breast Screening. In Proceedings of the 2024 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Montreal, QC, Canada, 11–13 June 2024; pp. 143–145. [Google Scholar]
- Watne, Å.K.; Linden, J.; Willhelmsson, J.; Fridén, H.; Gustafsson, M.; Castell, N. Tackling Data Quality When Using Low-Cost Air Quality Sensors in Citizen Science Projects. Front. Environ. Sci. 2021, 9, 733634. [Google Scholar] [CrossRef]
- Kotzagianni, M.; Hassani, A.; Morresi, N.; Udina, S.; Kyfonidis, C.; Roussos, A.; Casaccia, S.; Revel, G.M.; Noriega-Ortega, B. Calibration Strategies for Low-Cost Compact Field Sensors in Citizen Science Air Quality Measurements: Insights from SOCIO-BEE Project. In Proceedings of the 2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), Split and Bol, Croatia, 20–23 June 2023; pp. 1–6. [Google Scholar]
- Lin, Z.Y.; Du, Y.C.; Huang, W.; Tang, J.H.; Tang, C.; Huang, G.; Xu, Y.L.; Zhang, D.; Sun, Z.C. The Preliminary Long-Term Slow Drift Calibration Study in Low- Level RF System. J. Phys. Conf. Ser. 2019, 1350, 012161. [Google Scholar] [CrossRef]
- Smith, K.R.; Edwards, P.; Evans, M.; Lee, J.D.; Shaw, M.; Squires, F.; Wilde, S.; Lewis, A. Clustering Approaches to Improve the Performance of Low Cost Air Pollution Sensors. Faraday Discuss. 2017, 200, 621–637. [Google Scholar] [CrossRef]
- Delaine, F.; Lebental, B.; Rivano, H. Rendez-Vous Based Drift Diagnosis Algorithm for Sensor Networks Toward In Situ Calibration. IEEE Trans. Autom. Sci. Eng. 2023, 20, 1393–1407. [Google Scholar] [CrossRef]
- Wilson, P.F.; Remley, K.A.; Young, W.F.; Gentile, C.A.; Ladbury, J.M.; Williams, D.F. A NIST Perspective on Metrology and EMC Challenges for 5G and Beyond. IEEE Electromagn. Compat. Mag. 2018, 7, 77–85. [Google Scholar] [CrossRef]
- Adda, S.; Bottura, V.; D’Elia, S.; Pasquino, N.; Suman, R.; Vaccarono, M. Scalar Measurements of 5G Mm-Wave EMF Power in NLoS Propagation. In Proceedings of the 2024 IEEE International Symposium on Measurements & Networking (M&N), Rome, Italy, 2–5 July 2024; pp. 1–5. [Google Scholar]
- Shastri, A.; Valecha, N.; Bashirov, E.; Tataria, H.; Lentmaier, M.; Tufvesson, F.; Rossi, M.; Casari, P. A Review of Millimeter Wave Device-Based Localization and Device-Free Sensing Technologies and Applications. IEEE Commun. Surv. Tutor. 2021, 24, 1708–1749. [Google Scholar] [CrossRef]
- Wu, W.; Lee, J.; Lau, P.-K.; Kang, T.; Lau, K.K.; Yoo, S.-W.; Zhao, X.; Verma, A.; Lu, I.S.-C.; Yao, C.-W.; et al. A 14-Nm Low-Cost IF Transceiver IC with Low-Jitter LO and Flexible Calibration Architecture for 5G FR2 Mobile Applications. In Proceedings of the 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, 11–13 June 2023; pp. 277–280. [Google Scholar]
- Pawlak, R.; Krawiec, P.; Żurek, J. On Measuring Electromagnetic Fields in 5G Technology. IEEE Access 2019, 7, 29826–29835. [Google Scholar] [CrossRef]
- Wang, Z. Evaluating the Efficacy of Machine Learning in Calibrating Low-Cost Sensors. Appl. Comput. Eng. 2024, 71, 30–38. [Google Scholar] [CrossRef]
- Chu, H.-J.; Ali, M.; He, Y.-C. Spatial Calibration and PM2.5 Mapping of Low-Cost Air Quality Sensors. Sci. Rep. 2020, 10, 22079. [Google Scholar] [CrossRef]
- Hirafuji, M.; Yoichi, H.; Miki, Y.; Kiura, T.; Tanaka, K.; Fukatsu, T.; Ninomiya, S. Deployment and Improvement of Field Servers in India. In Proceedings of the SICE Annual Conference 2010, Taipei, Taiwan, 18–21 August 2010; pp. 2925–2927. [Google Scholar]
- Sitzia, D.; Castello, P.; Muscas, C.; Pegoraro, P.A.; Sulis, S.; Yildiz, S. Performance Evaluation of Particulate Matter Low-Cost Sensors Under Power Supply Variations. In Proceedings of the 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, Scotland, 20–23 May 2024; pp. 1–6. [Google Scholar]
- Taylor, M.D. Low-Cost Air Quality Monitors: Modeling and Characterization of Sensor Drift in Optical Particle Counters. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–2 November 2016; pp. 1–3. [Google Scholar]
- Hassani, A.; Castell, N.; Watne, Å.K.; Schneider, P. Citizen-Operated Mobile Low-Cost Sensors for Urban Pm2.5 Monitoring: Field Calibration, Uncertainty Estimation, and Application. Sustain. Cities Soc. 2023, 95, 104607. [Google Scholar] [CrossRef]
- Yaqoob, I.; Kumar, V.; Chaudhry, S.A. Machine Learning Calibration of Low-Cost Sensor PM2.5 Data. In Proceedings of the 2024 IEEE International Symposium on Systems Engineering (ISSE), Perugia, Italy, 16–18 October 2024; pp. 1–8. [Google Scholar]
- Balteanu, F. RF Circuit Techniques for Transition to 5G Advanced. Int. J. Microw. Wirel. Technol. 2025, 17, 215–233. [Google Scholar] [CrossRef]
- Feng, Z.; Zheng, L.; Ren, B.; Liu, D.; Huang, J.; Xue, N. Feasibility of Low-Cost Particulate Matter Sensors for Long-Term Environmental Monitoring: Field Evaluation and Calibration. Sci. Total Environ. 2024, 945, 174089. [Google Scholar] [CrossRef]
- Okafor, N.U.; Alghorani, Y.; Delaney, D. Improving Data Quality of Low-Cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion and Machine Learning Approach. ICT Express 2020, 6, 220–228. [Google Scholar] [CrossRef]
- Karahan, E.A.; Gupta, A.; Khankhoje, U.K.; Sengupta, K. Deep Learning Based Modeling and Inverse Design for Arbitrary Planar Antenna Structures at RF and Millimeter-Wave. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 499–500. [Google Scholar]
- Ye, Q.; Li, H.; Lin, Z.; Zhu, Q.; Gao, Q.; Cao, B.; Liu, T.; Zhou, J. Data Correction-Based Model-Driven 3D Radiation Directional Pattern Construction for 5G Base Stations. In Proceedings of the 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA, 7–10 October 2024; pp. 1–5. [Google Scholar]
- Scientific-Based Exposure and Risk Assessment of Radiofrequency and Mm-Wave Systems from Children to Elderly (5G and Beyond)|SEAWave|Project|Fact Sheet|HORIZON. Available online: https://cordis.europa.eu/project/id/101057622 (accessed on 26 November 2025).
- World Health Organization. IARC to Coordinate Production of a Risk Assessment on 5G Exposures as Part of the EU-Funded SEAWave Project 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- SEAWave. Available online: https://www.enea.it/en/enea-projects/seawave.html?utm_source=chatgpt.com (accessed on 26 November 2025).
- comunicacio.isg. GOLIAT Study Explores 5G Radiation Exposure Across 10 European Countries. GOLIAT. 2025. Available online: https://projectgoliat.eu/news/goliat-study-explores-5g-radiation-exposure-across-10-european-countries/# (accessed on 5 September 2025).
- 5G expOsure, Causal Effects, and Risk Perception Through Citizen Engagement. Available online: https://www.isglobal.org/-/5g-exposure-causal-effects-and-risk-perception-through-citizen-engagement (accessed on 26 November 2025).
- Al-Jumaily, A.; Sali, A.; Riyadh, M.; Wali, S.Q.; Li, L.; Osman, A.F. Machine Learning Modeling for Radiofrequency Electromagnetic Fields (RF-EMF) Signals From mmWave 5G Signals. IEEE Access 2023, 11, 79648–79658. [Google Scholar] [CrossRef]
- Eichstädt, S.; Werhahn, O. Metrology for Sensor Networks: Metrological Traceability and Measurement Uncertainties for Air Quality Monitoring. TM—Tech. Mess. 2024, 91, 419–429. [Google Scholar] [CrossRef]
- Orobinskaya, V.N.; Mishina, T.N.; Mazurenko, A.P.; Mishin, V.V. Problems of Interpretability and Transparency of Decisions Made by AI. In Proceedings of the 2024 6th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia, 13–15 November 2024; pp. 667–671. [Google Scholar]
- Manassas, A.; Delidimitriou, S.; Wiart, J.; Samaras, T. Predicting Electromagnetic Field Exposure Using Artificial Intelligence Methods. IEEE Access 2025, 13, 79832–79844. [Google Scholar] [CrossRef]
- Salem, M.A.; Lim, H.S.; Chua, M.Y.; Chien, S.F.; Zarakovitis, C.C.; Ng, C.Y.; Rahman, N.Z.A. Investigation of EMF Exposure Level for Uplink and Downlink of 5G Network Using Ray Tracing Approach. Available online: https://ijtech.eng.ui.ac.id/article/view/5928 (accessed on 27 November 2025).
- Wang, S.; Zhang, Y.; Liu, Y.; Liu, J.; Conil, E.; Jawad, O.; Samaras, T.; Ourak, L.; Wiart, J. Comprehensive Measurement-Based Assessment of Downlink RF-EMF Exposure in Urban Environments: Multi-Method Analysis and Intercomparison. Bioelectromagnetics 2025, 46, e70033. [Google Scholar] [CrossRef]
- Silva, A.T.d.A.; Dias, C.F.; de Lima, E.R.; Fraidenraich, G.; de Morais Eldorado, G.I. A Pathway on 5G EMC Testing: A Tutorial. IEEE Electromagn. Compat. Mag. 2022, 11, 63–72. [Google Scholar] [CrossRef]

| Monitoring Approach | Typical Instruments/Methods | Accuracy and Calibration | Spatial/Temporal Coverage | Cost and Accessibility | Data Transparency and Public Engagement | Key Limitations | Sources |
|---|---|---|---|---|---|---|---|
| Professional Monitoring (regulatory/Research) | Isotropic E-field probes, spectrum analyzers, frequency-selective meters, dosimeters; drive-by surveys, stationary monitoring networks | High—laboratory-calibrated instruments with traceable standards | Limited spatially, high temporal precision (in fixed locations) | High cost, specialized expertise required | Low—data often aggregated or delayed; limited public access | Sparse geographic coverage; episodic campaigns; inaccessible raw data | [18,40,41] |
| Low-Cost Sensor Networks (Research/Institutional Pilot Projects) | Compact RF power sensors, SDR-based detectors, IoT integrated sensor nodes | Moderate—calibration against reference instruments required; sensitivity varies | High spatial, continuous temporal coverage possible | Low to moderate cost, scalable deployments | Moderate—public dashboards increasingly used (e.g., NOEF Greece, France ANFR trials) | Calibration drift, signal discrimination challenges, environmental noise | [27,42] |
| Participatory Citizen Science Monitoring | Low-cost handheld EMF meters, smartphone-based detectors, community sensor kits | Variability—depends on sensor type, calibration, user training | Very high spatial, temporal (depends on volunteer activity) | Low cost, open participation | High—fosters trust, data sharing, cocreation of knowledge | Limited accuracy; inconsistent protocols; potential data misuse | [27,29,41] |
| Device/Platform | Approx. Cost (EUR) | Frequency Range (GHz) | Dynamic Range | Measurement Type | Claimed Accuracy/Uncertainty | Key Features and Notes | References |
|---|---|---|---|---|---|---|---|
| * Narda SRM-3006 (Professional Reference Instrument) | >10,000 | 0.1–40 (depends on probe) | ~100 (manufacturer spec) | Frequency-selective isotropic probe | ±1.5 dB (confirmed in metrology calibration) | Laboratory-calibrated reference instrument used by research institutions, regulators and for ICNIRP compliance; high portability; real-time spectral analysis | [44,45,46,47,48] |
| Adalm-Pluto SDR Analog Devices, Figure 1b) | ~400 | 0.325–3.8 | 0.1–20 | Broadband/SDR-based | ±4–6 dB | Open source SDR platform frequently adapted in research for 5G Sub-6 GHz sensing | [25] |
| ExposureSure Node v3 (IoT sensor) | ~800 | 0.7–6.0 | 0.2–30 | Broadband/IoT node | ±3 dB | Cloud-connected EMF sensor designed for distributed network deployment; limited frequency selectivity | [27] |
| GQ EMF-390 (Consumer Handheld, Figure 1a) | ~300 | 0.1–8.0 | 0.1–20 | Broadband handheld | ±5–6 dB | Widely available consumer meter combining EMF, ELF, and RF modes; coarse spectral discrimination | Manufacturer specifications |
| Low-Cost Triaxial 5G Sensor (Research Prototype) | ~1000–1200 | 3.3–4.2 (5G n77/n78) | 0.06–30 | Triaxial analog-to-digital design | ±3.12 dB | Field-validated against SRM-30006; deviation~2.8 dB within reference uncertainty | [26] |
| Challenge Domain | Key Issues | Typical Impact | Emerging Mitigation Strategies | Reference |
|---|---|---|---|---|
| Metrological and technical aspects | Calibration drift, frequency coverage gaps (especially mmWave); limited dynamic range; inability to capture transient 5G signals (beamforming, DSS) | Measurement uncertainty ±3–6 dB; field calibration drift ~0.3–0.5 dB/month; temperature bias up to 0.8 dB. | Periodic co-location reference probes; temperature-compensated circuits; ML-based calibration and drift correction | [9,25,26,53,67] |
| Data quality and interpretation | Lack of harmonized measurement protocols; inconsistent metadata; temporal variability; mismatch between ambient and personal exposure. | Non-comparable datasets; risk of public misinterpretation; limited integration into official systems. | Standardized metadata templates; multi-modal sensing (ambient + personal); spatial co-location and bias correction frameworks. | [29,52,59] |
| Practical and ethical considerations | Power supply and network instability; weather-related degradation; risk of public alarm from transient peaks; privacy and geolocation concerns. | Data loss; public distrust; potential privacy violations. | Durable enclosures and energy harvesting; automated time-averaging and filtering; anonymization and aggregation data publishing. | [27,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rathebe, P.C.; Kholopo, M. Low-Cost Sensors in 5G RF-EMF Exposure Monitoring: Validity and Challenges. Sensors 2026, 26, 533. https://doi.org/10.3390/s26020533
Rathebe PC, Kholopo M. Low-Cost Sensors in 5G RF-EMF Exposure Monitoring: Validity and Challenges. Sensors. 2026; 26(2):533. https://doi.org/10.3390/s26020533
Chicago/Turabian StyleRathebe, Phoka C., and Mota Kholopo. 2026. "Low-Cost Sensors in 5G RF-EMF Exposure Monitoring: Validity and Challenges" Sensors 26, no. 2: 533. https://doi.org/10.3390/s26020533
APA StyleRathebe, P. C., & Kholopo, M. (2026). Low-Cost Sensors in 5G RF-EMF Exposure Monitoring: Validity and Challenges. Sensors, 26(2), 533. https://doi.org/10.3390/s26020533

