Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,791)

Search Parameters:
Keywords = electrolyte additive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2852 KiB  
Review
Review of Quasi-Solid Aqueous Zinc Batteries: A Bibliometric Analysis
by Zhongxiu Liu, Xiaoou Zhou, Tongyuan Shen, Miaomiao Yu, Liping Zhu, Guiyin Xu and Meifang Zhu
Batteries 2025, 11(8), 293; https://doi.org/10.3390/batteries11080293 (registering DOI) - 3 Aug 2025
Abstract
Quasi-solid aqueous zinc batteries (QSAZBs) have wide applications in the energy storage field due to their advantages of high safety, cost-effectiveness, and eco-friendliness. Despite prolific research output in the field of QSAZBs, existing reviews predominantly focus on experimental advancements, with limited synthesis of [...] Read more.
Quasi-solid aqueous zinc batteries (QSAZBs) have wide applications in the energy storage field due to their advantages of high safety, cost-effectiveness, and eco-friendliness. Despite prolific research output in the field of QSAZBs, existing reviews predominantly focus on experimental advancements, with limited synthesis of global research trends, interdisciplinary connections, or knowledge gaps. Herein, we review the research on QSAZBs via bibliometric analysis using the VOSviewer software (version 1.6.20). First, the data from qualitatively evaluated publications on QSAZBs from 2016 and 2024 are integrated. In addition, the annual trends, leading countries/regions and their international collaborations, institutional research and patent distribution, and important keyword cluster analyses in QSAZB research are evaluated. The results reveal that China dominates in terms of publication output (71.16% of total papers), and Singapore exhibits the highest citation impact (103.2 citations/paper). International collaboration networks indicate the central role of China, with strong ties to Singapore, the USA, and Australia. Keyword clustering indicates core research priorities: cathode materials (MnO2 and V2O5), quasi-solid electrolyte optimization (hydrogels and graphene composites), and interfacial stability mechanisms. By mapping global trends and interdisciplinary linkages, this work provides insights to accelerate QSAZBs’ transition from laboratory breakthroughs to grid-scale and wearable applications. Full article
(This article belongs to the Special Issue Battery Interface: Analysis & Design)
Show Figures

Graphical abstract

16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

125 pages, 50190 KiB  
Review
Sulfurized Polyacrylonitrile for Rechargeable Batteries: A Comprehensive Review
by Mufeng Wei
Batteries 2025, 11(8), 290; https://doi.org/10.3390/batteries11080290 (registering DOI) - 1 Aug 2025
Viewed by 74
Abstract
This paper presents a comprehensive review of research on sulfurized polyacrylonitrile (SPAN) for rechargeable batteries which was firstly reported by Jiulin Wang in July 2002. Spanning over two decades (2002–2025), this review cites over 600 publications, covering various aspects of SPAN-based battery systems. [...] Read more.
This paper presents a comprehensive review of research on sulfurized polyacrylonitrile (SPAN) for rechargeable batteries which was firstly reported by Jiulin Wang in July 2002. Spanning over two decades (2002–2025), this review cites over 600 publications, covering various aspects of SPAN-based battery systems. These include SPAN chemical structure, structural evolution during synthesis, redox reaction mechanism, synthetic conditions, cathode, electrolyte, binder, current collector, separator, anode, SPAN as additive, SPAN as anode, and high-energy SPAN cathodes. As this field continues to advance rapidly and garners significant interest, this review aims to provide researchers with a thorough and in-depth overview of the progress made over the past 23 years. Additionally, it highlights emerging trends and outlines future directions for SPAN research and its practical applications in energy storage technologies. Full article
Show Figures

Figure 1

15 pages, 930 KiB  
Article
The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 (registering DOI) - 31 Jul 2025
Viewed by 79
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
16 pages, 4629 KiB  
Article
Development of a Reflective Electrochromic Zinc-Ion Battery Device for Infrared Emissivity Control Using Self-Doped Polyaniline Films
by Yi Wang, Ze Wang, Tong Feng, Jiandong Chen, Enkai Lin and An Xie
Polymers 2025, 17(15), 2110; https://doi.org/10.3390/polym17152110 - 31 Jul 2025
Viewed by 149
Abstract
Electrochromic devices (ECDs) capable of modulating both visible color and infrared (IR) emissivity are promising for applications in smart thermal camouflage and multifunctional displays. However, conventional transmissive ECDs suffer from limited IR modulation due to the low IR transmittance of transparent electrodes. Here, [...] Read more.
Electrochromic devices (ECDs) capable of modulating both visible color and infrared (IR) emissivity are promising for applications in smart thermal camouflage and multifunctional displays. However, conventional transmissive ECDs suffer from limited IR modulation due to the low IR transmittance of transparent electrodes. Here, we report a reflection-type electrochromic zinc-ion battery (HWEC-ZIB) using a self-doped polyaniline nanorod film (SP(ANI-MA)) as the active layer. By positioning the active material at the device surface, this structure avoids interference from transparent electrodes and enables broadband and efficient IR emissivity tuning. To prevent electrolyte-induced IR absorption, a thermal lamination encapsulation method is employed. The optimized device achieves emissivity modulation ranges of 0.28 (3–5 μm) and 0.19 (8–14 μm), delivering excellent thermal camouflage performance. It also exhibits a visible color change from earthy yellow to deep green, suitable for various natural environments. In addition, the HWEC-ZIB shows a high areal capacity of 72.15 mAh cm−2 at 0.1 mA cm−2 and maintains 80% capacity after 5000 cycles, demonstrating outstanding electrochemical stability. This work offers a versatile device platform integrating IR stealth, visual camouflage, and energy storage, providing a promising solution for next-generation adaptive camouflage and defense-oriented electronics. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

21 pages, 14026 KiB  
Article
Development of PEO in Low-Temperature Ternary Nitrate Molten Salt on Ti6V4Al
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
Materials 2025, 18(15), 3603; https://doi.org/10.3390/ma18153603 (registering DOI) - 31 Jul 2025
Viewed by 114
Abstract
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to [...] Read more.
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to the substrate. In this study, the PEO process was performed using a low-melting-point ternary eutectic electrolyte composed of Ca(NO3)2–NaNO3–KNO3 (41–17–42 wt.%) with the addition of ammonium dihydrogen phosphate (ADP). The use of this electrolyte system enables a reduction in the operating temperature from 280 to 160 °C. The effects of applied voltage from 200 to 400V, current frequency from 50 to 1000 Hz, and ADP concentrations of 0.1, 0.5, 1, 2, and 5 wt.% on the growth of titanium oxide composite coatings on a Ti-6Al-4V substrate were investigated. The incorporation of Ca and P was confirmed by phase and chemical composition analysis, while scanning electron microscopy (SEM) revealed a porous surface morphology typical of PEO coatings. Corrosion resistance in Hank’s solution, evaluated via Tafel plot fitting of potentiodynamic polarization curves, demonstrated a substantial improvement in electrochemical performance of the PEO-treated samples. The corrosion current decreased from 552 to 219 nA/cm2, and the corrosion potential shifted from −102 to 793 mV vs. the Reference Hydrogen Electrode (RHE) compared to the uncoated alloy. These findings indicate optimal PEO processing parameters for producing composite oxide coatings on Ti-6Al-4V alloy surfaces with enhanced corrosion resistance and potential bioactivity, which are attributed to the incorporation of Ca and P into the coating structure. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

14 pages, 2351 KiB  
Article
Facile SEI Improvement in the Artificial Graphite/LFP Li-Ion System: Via NaPF6 and KPF6 Electrolyte Additives
by Sepehr Rahbariasl and Yverick Rangom
Energies 2025, 18(15), 4058; https://doi.org/10.3390/en18154058 (registering DOI) - 31 Jul 2025
Viewed by 227
Abstract
In this work, graphite anodes and lithium iron phosphate (LFP) cathodes are used to examine the effects of sodium hexafluorophosphate (NaPF6) and potassium hexafluorophosphate (KPF6) electrolyte additives on the formation of the solid electrolyte interphase and the performance of [...] Read more.
In this work, graphite anodes and lithium iron phosphate (LFP) cathodes are used to examine the effects of sodium hexafluorophosphate (NaPF6) and potassium hexafluorophosphate (KPF6) electrolyte additives on the formation of the solid electrolyte interphase and the performance of lithium-ion batteries in both half-cell and full-cell designs. The objective is to assess whether these additives may increase cycle performance, decrease irreversible capacity loss, and improve interfacial stability. Compared to the control electrolyte (1.22 M Lithium hexafluorophosphate (LiPF6)), cells with NaPF6 and KPF6 additives produced less SEI products, which decreased irreversible capacity loss and enhanced initial coulombic efficiency. Following the formation of the solid electrolyte interphase, the specific capacity of the control cell was 607 mA·h/g, with 177 mA·h/g irreversible capacity loss. In contrast, irreversible capacity loss was reduced by 38.98% and 37.85% in cells containing KPF6 and NaPF6 additives, respectively. In full cell cycling, a considerable improvement in capacity retention was achieved by adding NaPF6 and KPF6. The electrolyte, including NaPF6, maintained 67.39% greater capacity than the LiPF6 baseline after 20 cycles, whereas the electrolyte with KPF6 demonstrated a 30.43% improvement, indicating the positive impacts of these additions. X-ray photoelectron spectroscopy verified that sodium (Na+) and potassium (K+) ions were present in the SEI of samples containing NaPF6 and KPF6. While K+ did not intercalate in LFP, cyclic voltammetry confirmed that Na+ intercalated into LFP with negligible impact on the energy storage of full cells. These findings demonstrate that NaPF6 and KPF6 are suitable additions for enhancing lithium-ion battery performance in the popular artificial graphite/LFP system. Full article
(This article belongs to the Special Issue Research on Electrolytes Used in Energy Storage Systems)
Show Figures

Figure 1

16 pages, 2715 KiB  
Article
Composite Behavior of Nanopore Array Large Memristors
by Ian Reistroffer, Jaden Tolbert, Jeffrey Osterberg and Pingshan Wang
Micromachines 2025, 16(8), 882; https://doi.org/10.3390/mi16080882 - 29 Jul 2025
Viewed by 122
Abstract
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior [...] Read more.
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior of nanopore-array large memristors, formed with different membrane materials, pore sizes, electrolytes, and device arrangements. Anodic aluminum oxide (AAO) membranes with 5 nm and 20 nm diameter pores and track-etched polycarbonate (PCTE) membranes with 10 nm diameter pores are tested and shown to demonstrate memristive and nonlinear behaviors with approximately 107–1010 pores in parallel when electrolyte concentration across the membranes is asymmetric. Ion diffusion through the large number of channels induces time-dependent electrolyte asymmetry that drives the system through different memristive states. The behaviors of series composite memristors with different configurations are also presented. In addition to helping understand fluidic devices and circuits for neuromorphic computing, the results also shed light on the development of field-assisted ion-selection-membrane filtration techniques as well as the investigations of large neurons and giant synapses. Further work is needed to de-embed parasitic components of the measurement setup to obtain intrinsic large memristor properties. Full article
(This article belongs to the Section D4: Glassy Materials and Micro/Nano Devices)
Show Figures

Figure 1

24 pages, 5292 KiB  
Article
Assessment of Drought–Heat Dual Stress Tolerance in Woody Plants and Selection of Stress-Tolerant Species
by Dong-Jin Park, Seong-Hyeon Yong, Do-Hyun Kim, Kwan-Been Park, Seung-A Cha, Ji-Hyeon Lee, Seon-A Kim and Myung-Suk Choi
Life 2025, 15(8), 1207; https://doi.org/10.3390/life15081207 - 29 Jul 2025
Viewed by 178
Abstract
Sequential drought and heat stress pose a growing threat to forest ecosystems in the context of climate change, yet systematic evaluation methods for woody plants remain limited. This study aimed to develop a comprehensive screening platform for identifying woody plant species tolerant to [...] Read more.
Sequential drought and heat stress pose a growing threat to forest ecosystems in the context of climate change, yet systematic evaluation methods for woody plants remain limited. This study aimed to develop a comprehensive screening platform for identifying woody plant species tolerant to sequential drought and heat stress among 27 native species growing in Korea. A sequential stress protocol was applied: drought stress for 2 weeks, followed by high-temperature exposure at 45 °C. Physiological indicators, including relative water content (RWC) and electrolyte leakage index (ELI), were used for preliminary screening, supported by phenotypic observations, Evans blue staining for cell death, and DAB staining to assess oxidative stress and recovery ability. The results revealed clear differences among species. Chamaecyparis obtusa, Quercus glauca, and Q. myrsinaefolia exhibited strong tolerance, maintaining high RWC and low ELI values, while Albizia julibrissin was highly susceptible, showing severe membrane damage and low survival. DAB staining successfully distinguished tolerance levels based on oxidative recovery. Additional species such as Camellia sinensis, Q. acuta, Q. phillyraeoides, Q. salicina, and Ternstroemia japonica showed varied responses: Q. phillyraeoides demonstrated high tolerance, T. japonica showed moderate tolerance, and Q. salicina was relatively sensitive. The integrated screening system effectively differentiated tolerant species through multiscale analysis—physiological, cellular, and morphological—demonstrating its robustness and applicability. This study provides a practical and reproducible framework for evaluating sequential drought and heat stress in trees and offers valuable resources for urban forestry, reforestation, and climate-resilient species selection. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses 2024)
Show Figures

Figure 1

34 pages, 5133 KiB  
Article
New Scalable Electrosynthesis of Distinct High Purity Graphene Nanoallotropes from CO2 Enabled by Transition Metal Nucleation
by Kyle Hofstetter, Gad Licht and Stuart Licht
Crystals 2025, 15(8), 680; https://doi.org/10.3390/cryst15080680 - 25 Jul 2025
Viewed by 164
Abstract
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO [...] Read more.
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO2 to Carbon Nano Technology) process. The C2CNT molten carbonate electrolysis technique enables the formation of Carbon NanoTubes (CNTs), Magnetic CNTs (MCNTs), Carbon Nano-Onions (CNOs), Carbon Nano-Scaffolds (CNSs), and Helical CNTs (HCNTs) directly from atmospheric or industrial CO2. We discuss the morphology control enabled through variations in electrolyte composition, temperature, current density, and nucleation additives. We present results from scaled operations reaching up to 1000 tons/year CO2 conversion and propose design approaches to reach megaton scales to support climate mitigation and GNC mass production. The products demonstrate high crystallinity, as evidenced by Raman, XRD, SEM, and TGA analyses, and offer promising applications in electronics, construction, catalysis, and medical sectors. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
13 pages, 5204 KiB  
Article
Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes
by Neng Yu, Qingpu Zeng, Yiming Fu, Hanbin Li, Jiating Li, Rui Wang, Longlong Meng, Hao Wu, Zhuyao Li, Kai Guo and Lei Wang
Batteries 2025, 11(8), 284; https://doi.org/10.3390/batteries11080284 - 24 Jul 2025
Viewed by 305
Abstract
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy [...] Read more.
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy has been proposed, involving the addition of a minute quantity of AgNO3 to the electrolyte to stabilize zinc anodes. This additive spontaneously forms a hierarchically porous Ag interphase on the zinc anodes, which is characterized by its zinc-affinitive nature. The interphase offers abundant zinc nucleation sites and accommodation space, leading to uniform zinc plating/stripping and enhanced kinetics of zinc deposition/dissolution. Moreover, the chemically inert Ag interphase effectively curtails side reactions by isolating water molecules. Consequently, the incorporation of AgNO3 enables zinc anodes to undergo cycling for extended periods, such as over 4000 h at a current density of 0.5 mA/cm2 with a capacity of 0.5 mAh/cm2, and for 450 h at 2 mA/cm2 with a capacity of 2 mAh/cm2. Full zinc-ion cells equipped with this additive not only demonstrate increased specific capacities but also exhibit significantly improved cycle stability. This research presents a cost-effective and practical approach for the development of reliable zinc anodes for ZIBs. Full article
(This article belongs to the Special Issue Flexible and Wearable Energy Storage Devices)
Show Figures

Graphical abstract

15 pages, 4855 KiB  
Article
An Investigation of the Surface-Regulating Mechanism of Tungsten Alloys Using the Electrochemical Polishing Process
by Yachun Mao, Yanqiu Xu, Shiru Le, Maozhong An, Zhijiang Wang and Yuhan Zhang
Solids 2025, 6(3), 39; https://doi.org/10.3390/solids6030039 - 24 Jul 2025
Viewed by 233
Abstract
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic [...] Read more.
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic polishing offers high efficiency, low workpiece wear, and simple processing. In this study, an electrolytic polishing method is adopted and a novel trisodium phosphate–sodium hydroxide electrolytic polishing electrolyte is developed to study the effects of temperature, voltage, polishing time, and solution composition on the surface roughness of a tungsten–nickel–iron alloy. The optimal voltage, temperature, and polishing time are determined to be 15 V, 55 °C, and 35 s, respectively, when the concentrations of trisodium phosphate and sodium hydroxide are 100 g·L−1 and 6 g·L−1. In addition, glycerol is introduced into the electrolyte as an additive. The calculated LUMO value of glycerol is −5.90 eV and the HOMO value is 0.40 eV. Moreover, electron enrichment in the hydroxyl region of glycerol can form an adsorption layer on the surface of the tungsten alloy, inhibit the formation of micro-pits, balance ion diffusion, and thus promote the formation of a smooth surface. At 100 mL·L−1 of glycerol, the roughness of the tungsten–nickel–iron alloy decreases significantly from 1.134 μm to 0.582 μm. The electrochemical polishing mechanism of the tungsten alloy in a trisodium phosphate electrolyte is further investigated and explained according to viscous film theory. This study demonstrates that the trisodium phosphate–sodium hydroxide–glycerol electrolyte is suitable for electropolishing tungsten–nickel–iron alloys. Overall, the results support the application of tungsten–nickel–iron alloy in the electronics, medical, and atomic energy industries. Full article
Show Figures

Graphical abstract

22 pages, 4859 KiB  
Article
Engineered Ceramic Composites from Electrolytic Manganese Residue and Fly Ash: Fabrication Optimization and Additive Modification Mechanisms
by Zhaohui He, Shuangna Li, Zhaorui Li, Di Zhang, Guangdong An, Xin Shi, Xin Sun and Kai Li
Sustainability 2025, 17(14), 6647; https://doi.org/10.3390/su17146647 - 21 Jul 2025
Viewed by 416
Abstract
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite [...] Read more.
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite with 85 g FA exhibits the highest mechanical strength, lowest porosity, and minimal water absorption, the formulation consisting of 45 wt% EMR, 40 wt% FA, and 15 wt% kaolin is identified as a balanced composition that achieves an effective compromise between mechanical performance and solid waste utilization efficiency. Sintering temperature studies revealed temperature-dependent property enhancement, with controlled sintering at 1150 °C preventing the over-firing phenomena observed at 1200 °C while promoting phase evolution. XRD-SEM analyses confirmed accelerated anorthite formation and the morphological transformations of FA spherical particles under thermal activation. Additive engineering demonstrated that 8 wt% CaO addition enhanced structural densification through hydrogrossular crystallization, whereas Na2SiO3 induced sodium-rich calcium silicate phases that suppressed anorthite development. Contrastingly, ZrO2 facilitated zircon nucleation, while TiO2 enabled progressive performance enhancement through amorphous phase modification. This work establishes fundamental phase–structure–property relationships and provides actionable engineering parameters for sustainable ceramic production from industrial solid wastes. Full article
Show Figures

Figure 1

15 pages, 1845 KiB  
Article
Comparing the SEI Formation on Copper and Amorphous Carbon: A Study with Combined Operando Methods
by Michael Stich, Christian Leppin, Falk Thorsten Krauss, Jesus Eduardo Valdes Landa, Isabel Pantenburg, Bernhard Roling and Andreas Bund
Batteries 2025, 11(7), 273; https://doi.org/10.3390/batteries11070273 - 18 Jul 2025
Viewed by 255
Abstract
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce [...] Read more.
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce artifacts or misinterpretations as they do not investigate the SEI in its unaltered state immersed in liquid battery electrolyte. Thus, in this work, we focus on using the non-destructive combination of electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) and impedance spectroscopy (EIS) in the same electrochemical cell. EQCM-D can not only probe the solidified products of the SEI but also allows for the monitoring of viscoelastic layers and viscosity changes of the electrolyte at the interphase during the SEI formation. EIS complements those results by providing electrochemical properties of the formed interphase. Our results highlight substantial differences in the physical and electrochemical properties between the SEI formed on copper and on amorphous carbon and show how formation parameters and the additive vinylene carbonate (VC) influence their growth. The EQCM-D results show consistently that much thicker SEIs are formed on carbon substrates in comparison to copper substrates. Full article
(This article belongs to the Special Issue Electrocrystallization in Rechargeable Batteries)
Show Figures

Figure 1

14 pages, 2761 KiB  
Article
Electrochemical Properties of Soluble CuCl·3TU Coordination Compound and Application in Electrolysis for Copper Foils
by Wancheng Zhao, Fangquan Xia and Dong Tian
Chemistry 2025, 7(4), 114; https://doi.org/10.3390/chemistry7040114 - 18 Jul 2025
Viewed by 256
Abstract
As the crucial current collector for lithium-ion batteries (LIBs), electrolytic copper foils are generally manufactured by electrodeposition in acidic copper sulfate solution. However, there are many disadvantages for traditional electrolytic copper foils, such as coarse grains, insufficient mechanical properties, and high energy consumption. [...] Read more.
As the crucial current collector for lithium-ion batteries (LIBs), electrolytic copper foils are generally manufactured by electrodeposition in acidic copper sulfate solution. However, there are many disadvantages for traditional electrolytic copper foils, such as coarse grains, insufficient mechanical properties, and high energy consumption. In order to improve the performances of electrolytic copper foil, a novel cuprous electrodeposition system was developed in this study. A soluble cuprous coordination compound was synthesized. In addition, XPS, FT-IR spectrum, as well as single-crystal X-ray diffraction illustrated that thiourea coordinated with Cu(I) through S atom and therefore stabilized Cu(I) by the formation of CuCl·3TU. Importantly, the corresponding electrochemical behaviors were investigated. In aqueous solution, two distinct reduction processes were demonstrated by linear sweep voltammetry (LSV) at rather negative potentials, including the reduction of adsorbed state and non-adsorbed state. Moreover, the observed inductive loops in electrochemical impedance spectroscopy further confirmed the adsorption phenomenon. More significantly, the designed cuprous electrodeposition system could contribute to low energy consumptions during electrolysis. and produce ultrathin nanocrystalline copper foils with appropriate roughness. Consequently, the electrolysis method based on CuCl·3TU could provide an improved approach for copper foils manufacturing in advanced LIBs fabrication. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

Back to TopTop